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Distributed atomic quantum 
information processing via optical 
fibers
Ming-Xing Luo1,2, Hui-Ran Li1 & Xiaojun Wang3

The qudit system may offer great flexibilities for quantum information processing. We investigate the 
possibility of realizing elementary quantum gates between two high-dimensional atoms in distant 
cavities coupled by an optical fiber. We show that highly reliable special swap gate is achievable by 
different detuning. The numerical simulation shows that the proposed elementary gate is robust 
against the atomic spontaneous decay, photon leakage of cavities and optical fibers by choosing the 
experimental parameters appropriately.

Non-classical electromagnetic fields have been described with the quantum mechanical for their special statisti-
cal properties, and experimentally realized with quantum optical experiments such as quadrature-squeezed and 
sub-Poissonian light fields1–5. These non-classical light fields may lead various interesting applications such as 
the enhanced measurement beyond the standard quantum limit set by vacuum fluctuations4, 6, or fundamental 
atomic processes through interaction with non-classical light7–9.

A particularly interesting generation of non-classical light fields is related to cavity quantum electrodynam-
ics, in which atoms interact strongly with a single quantized field mode of a cavity10. In both the microwave 
regimes11–13 and optical regimes8, 14, 15 the single atom cavity mode coupling strength may exceed spontane-
ous emission and cavity loss rates to produce observable effects of the coupled system. Rydberg atoms16 and 
very high-Q superconducting cavities17 are constructed in microwave experiments, where spontaneous emis-
sion and cavity damping are negligible on the time scale of the atom-field interaction. In optical regimes, the 
strong-coupling is reached via high-finesse cavities and very small cavity-mode volumes to avoid great spontane-
ous emission. The optical cavity is convenience because of direct transmission of light through the cavity mirrors, 
photon counting and homodyne detection14, 18, 19.

The coherent evolution makes cavity quantum electrodynamics be favorable candidates for the realizations of 
photonic Fock states20, 21 and Schrödinger cat states22, 23. Moreover, by using slowly decaying atomic levels (e.g., 
Rydberg atoms) or far-off-resonance atom-field interactions, atomic entanglements may be built24–28. The reali-
zations of quantum gates between distant qubits in quantum optical settings have been recently investigated27, 28. 
Such proposals are very promising and highly inventive. Serafini et al.29 investigated the possibility of realizing 
effective quantum gates between two atoms in distant cavities coupled by an optical fiber. Zheng proposes an 
efficient scheme for quantum communication between two atoms trapped in distant cavities30. Moreover, flying 
single photons are also used for remote gates31–35.

The purpose of this paper is to build the distributed quantum information processing using multilevel atoms. 
The qudit state (d-dimensional state) may offer greater flexibilities for storing quantum information, improving 
the channel capacity36, 37, reducing the implementation complexity of quantum gates38–41, enhancing the infor-
mation security42–46 and exploring different quantum features47–49. There are various candidate systems for qudit 
states50–53. Unfortunately, few schemes have been proposed for implementing distributed quantum information 
processing based on qudit systems. Our scheme is based upon the adiabatic transformation of eigenstates of the 
atom-cavity system54. We firstly investigate the possibility of realizing deterministic gates between multi-level 
atoms in separate optical cavities, through a coherent resonant coupling mediated by an optical fiber. The only 
control required would be the synchronized switching on and off of the atom-field interactions in the distant 
cavities, which may be achievable through simple control pulses. Combined with single atomic transformations, 
the two-atom gate may be used to realize universal qudit quantum logic using recent circuit synthesis55. Finally, 

1Information Security and National Computing Grid Laboratory, Southwest Jiaotong University, Chengdu, 610031, 
China. 2Department of Physics, University of Michigan, Ann Arbor, MI, 48109, USA. 3School of Electronic Engineering, 
Dublin City University, Dublin, 9, Ireland. Correspondence and requests for materials should be addressed to M.-X.L. 
(email: mxluo@home.swjtu.edu.cn) or H.-R.L. (email: hrlimm@163.com)

Received: 25 January 2017

Accepted: 28 March 2017

Published: xx xx xxxx

OPEN

mailto:mxluo@home.swjtu.edu.cn
mailto:hrlimm@163.com


www.nature.com/scientificreports/

2Scientific RepoRts | 7: 1234  | DOI:10.1038/s41598-017-01245-x

to show the possibility of these schemes, all the adiabatic conditions are considered. The numerical simulations 
show that our elementary gates are insensitive to the cavity decay, fiber loss, and atomic spontaneous emission. 
These gates can be constructed with high fidelity by choosing the parameters appropriately.

Result
Remote atomic model. The atomic level configuration is shown in Fig. 1. Each d + 1-level atom has an 
excite state |r〉 and d ground states …e e, , d1 . Two identical multi-level atoms are trapped in distant cavities 
connected by an optical fiber. The transition ↔e ri2

 of each atom is driven by a classical laser field with Rabi 
frequency Ωi1

, while the transition ↔e ri1
 is driven by the cavity mode with coupling constant gi2

. The mode 
number of the fiber is on the order of ν πl c/2 , where l is the length of the fiber and ν  is the decay rate of the cavity 
field. When ν π ≤l c/2 1, there is only one fiber mode which essentially interacts with the cavity modes and the 
cavity-fiber coupling is described by the Hamiltonian as follows29, 30

ν= + + . .† †H b a a H c( ) (1)0 1 2

where b is the annihilation operator for the fiber mode, †aj  is the creation operator for the j-th cavity mode, and ν 
is the cavity-fiber coupling strength.

Assume that the classical field and cavity mode are detuned from the respective transition by ∆i1
 and ∆i2

. In 
the interaction picture, the Hamiltonian describes the following atom-field interaction
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, the excite state |r〉 can be adiabatically eliminated. It results in the following 
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with δ = ∆ − ∆i i i i1 2 2 1
, =+S e ej i jj i1 2

 and =−S e ej i jj i2 1
. By introducing new Bosonic modes (see Method), the 

effective Hamiltonian is reduced to

Figure 1. Involved atomic levels and transitions. The transition ↔e ri j1
 of the j-th atom is coupled to the 

cavity mode with coupling constant gj and detuning Δ2. The transition ↔e ri j2
 is driven by a classical field 

with Rabi frequency Ωj and detuning Δ1.
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Distributed qudit computation. It is well-known that the qubit rotations and two-qubit CNOT gate are 
universal for synthesizing multi-qubit circuit. In this case, one only needs to construct CNOT gate using the sys-
tem in Fig. 1. In fact, for two three-level atomic systems, each of them has two ground states |e1〉, |e2〉, and one 
excite state |r〉. Let atomic transition ↔e r2  be driven by a classical laser field with Rabi frequency Ω, while the 
transition ↔e r1  be driven by the cavity mode with coupling constant g. Assume that the classical field and the 
cavity mode are detuned from respective transition by Δ1 and Δ2. In the interaction picture, the Hamiltonian is 
simplified as

∑µ χ= − + + + . .
=

+ − − +H e e S S S S H c( ) ,
(7)

eff
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where =+S e ej jj1 2  and =−S e ej jj2 1 . After an evolving time t, it leads to a swapping gate
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Moreover, when µ π= +t k(2 1)  and χ π= +t s(2 1/2)  for some integers k and s, it reduces to the special 
SWAP gate

=
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This gate may be used to generate CNOT gate, as shown in Fig. 2.

Qudit case. Now, we consider the qudit-based quantum computation. From previous result55, the set of qudit 
gates {C2[Xd], Xd} is universal for synthesizing multi-qudit circuits. Here, Xd denotes the single qudit operation of 
Rij(θ) or Zd with the following forms
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and C2[Xd] denotes the controlled qudit operation defined by

Figure 2. The circuit decomposition of the CNOT gate using the iSWAP gate and single qubit gates. H denotes 
the Hadamard gate. Z denotes the Pauli phase flip gate. Rz(θ) denotes the rotation along the z-axis on the Bloch 
sphere with the angle θ while Ph(θ) denotes the global phase gate with angle θ.
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Since the qudit gate Xd may be realized assisted by the classical fields54. In the follow, our consideration is to 
realize C2[Xd] with the proposed atomic systems in Fig. 1. Firstly, we consider C2[Rij] with two d + 1-level atoms. 
Two cavity modes are coupled to the transition ↔e ri  of two atoms with the same detuning Δ1. The transition 

↔e rj  of two atoms is driven by classical fields with the same coupling coefficient Ω and detuning Δ2. In this 
case, the effective Hamiltonian is simplified as

µ χ= − + + + + . .+ − − +H e e e e S S S S H c( ) ( ) , (12)eff i i i i11 22 2 3 2 3

where =+S e ek j kk i  and =−S e ek i kk j . After a proper evolving time t (μt = (2k + 1)π and χ π= +t s(2 1/2)  for 
some integers k and s), it leads to a special swapping gate as follows:
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d
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where i.d.t denotes the identity operation for all the other terms except to |eiej〉 and |ejei〉 of two atoms. From the 
circuit in Fig. 3(a), it easily follows that
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and i.d.t denotes the identity operation for all the other terms except to |eiei〉 and |eiej〉 of two atoms, and 
π πΘ = − − − − −( )0 , /2, 0 , /2, 0i j i d j1 1 1  with 0k being a zero vector of k-dimension.

The two-qudit gate Xij
d may be used to realize controlled qudit gate C2[Xd]. From Fig. 3(b), note that
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where πΘ = −(0 , )d 1 . Now, for an elementary two-qudit gate ΘC Z[ ( )]d2 , from each θ θ θΘ = …( , , , )d1 2 , ΘC Z[ ( )]d2  
may be decomposed into special two-qudit gates as follows

∏Θ = 
 Θ 


∈

C Z C Z[ ( )] ( ) ,
(17)

d
i j

d ij2
( , )

2


where θ θΘ = − − − − −(0 , ,0 , ,0 )ij i i j i j d j1 1 1 , and   denotes the integer-pair partition of the index set … d{1, 2, , }. 
Now for simplicity, consider the subspace defined by { }e e e e e e e e, , ,i i i j j i j j  while the other subspace is 
unchanged for the following evaluations. From the Hamiltonian Heff in Eq. (12), after a proper evolution time t 
(χ π=t k2 ), it follows a two-qudit rotation

φ φ φ = + + + . . .µ µ µ− − −CZ e e e e e e e e e e e e e e e i d t(2 , , , 0): (18)d
i t

i i i i
i t
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with φ µ= − t. From Eqs (10) and (18), it follows that

Figure 3. (a) The circuit decomposition of two-qudit gate Xij
d defined in Eq. (15). (b) The circuit decomposition 

of two-qudit elementary gate C2[Rij(θ)]. π= −Θ⁎R R Z( /2) ( )ij ij d , where −ΘZ ( )d  is defined in Eq. (16) with 
πΘ = −(0 , )d 1 .
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From Eqs (10) and (22), it follows that
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where φ φ φ φ− − − −CZ ( , , 3 , 3 )d  may be obtained by letting φ π φ µ− = − = − t2  for some t. Therefore, Eqs 
(23) and (25) lead to
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Finally, the gate 
 Θ 

C Z ( )d ij2  may be realized from the decomposition of π π⊗ × × ⊗R I CZ R I( ( /2) ) ( ( /2) )in d ij in d  
for different φ.

Effects of spontaneous decay and photon leakage. In this section, we study the influence of atomic 
spontaneous decay and photon leakage of the cavities and fibers. For convenience, we rewrite the interaction 
Hamiltonian under the dipole and rotating wave approximation. The master equation for the density matrices of 
the system is expressed as
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where κ f j
 and κcj

 denote the decay rates of the j-th cavity field and the j-th fiber mode, respectively, γj
rx denotes the 

spontaneous decay rate of the j-th atom from level |r〉 to |ei〉, and σ = = …j s j s d( , 1, , )k
js

kk  are the usual Pauli 
matrices. For the convenience, assume that κ κ κ= =f cj s

 and γ γ= d/j
rx

a  due to the equal probability transition 
of ↔r ei . In the follow, we will discuss the parameter conditions and experimental feasibility of the present 
scheme. With the choice of a scaling g, all the parameters can be reduced to the dimensionless units related to g.

To realize various rotations in Eqs (9) and (15), the rotation parameters χ and μ could achieve various values. 
In detail, consider the parameters of Δ1 = 4g, Δ2 = 4g + δ, ν = g and Ω = g3 . The rotation parameters χ and μ are 
shown in Fig. 4(a,b) respectively. It follows that μ may be changed largely while χ is negative. The ratio of μ and χ 
is changed from −110 to −20 in Fig. 5(a). Moreover, if another set of parameters Δ1 = 9g, Δ2 = 9g + δ, ν = 4g and 
Ω = g3  are considered, the rotation parameters χ and μ are shown in Fig. 4(c,d) respectively. In this case, both of 
them are positive where their ratio is shown in Fig. 5(b).

For the first set of parameters shown in Fig. 4(a), all the adiabatic conditions v 0i  of v1 = δ − λ, 
δ ν λ= − −v 2 /22 , ν λ= −v 2 /23 , and ν η= −v 2 /44  are approximatively satisfied when g and δ/g are 

increased, as shown in Fig. 6(a–d). Here, v2 < 0 should be avoided by choosing proper g and δ. If the second set of 
parameters shown in Fig. 4(c) are considered, the corresponding adiabatic conditions v 0i  of are greatly 
improved and shown in Fig. 6(f–h). Specially, in this case, all the vi > 0 for all g > 2 and δ/g > 2. It means that the 
adiabatic conditions may be satisfied under the weak coupling g < 5.

In order to complete the quantum applications, proper quantum gates should be realized using special phases 
φ = μt and ψ χ= t with proper evolution times. The phases ratio φ ψ/  of all the gates including the iSWAP gate 

Figure 4. Two phase parameters μ and χ vias relative detuning δ/g and coupling strength g. (a) χ vias δ/g and g. 
(b) μ vias δ/g and g. Here, Δ1 = 4g, Δ2 = 4g + δ, ν = g, Ω = g . μ > 0 and χ < 0 are useful for generating negative 
phases. (c) χ vias δ/g and g. (d) μ vias δ/g and g. Here, Δ1 = 9g, Δ2 = 9g + δ, ν = 4g, Ω = g3 . Here, χ and μ are 
positive.
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and inverse iSWAP gate are shown in Fig. 7(a,b). Combined with Fig. 5(a), these gates may be efficiently realized. 
Moreover, if another set of parameters Δ1 = 9g, δ∆ = +g92 , ν = g4 , and Ω = g3  are considered, the rotation 
parameters χ and μ are shown in Fig. 4(c,d) respectively. In this case, both of them are positive, and their ratio is 
shown in Fig. 5(b). The corresponding adiabatic conditions are improved and shown in Fig. 6(e,f). The phases 
ratio φ ψ/  of different gates are shown in Fig. 7(c,d), which mean that the iSWAP gate and inverse iSWAP gate may 
be realized.

To consider atomic spontaneous emission and the decay of the Bosonic modes, let κ γΓ = = = . g0 01 , where 
Γ, κ, and γ are the decay rates for the atomic excited state, the cavity modes, and the fiber mode, respectively. The 
probability that the atoms undergo a transition to the excited state due to the off-resonant interaction with the 
classical fields is = Γ ∆ < .P / 0 011 1

2  for both cases. Meanwhile, the probability that the three modes ci are excited 
due to non-resonant coupling with the classical modes is

Figure 5. μ/χ vias δ/g and g. (a) Δ1 = 4g, Δ2 = 4g + δ, ν = g, Ω = g ; (b) Δ1 = 9g, Δ2 = 9g + δ, ν = 4g, Ω = g3 .

Figure 6. The adiabatic conditions vias δ/g and g. (a–d) Denote the first case in Fig. 4. (e–h) Denote the second 
case in Fig. 4. Here, v1 = δ − λ, δ ν λ= − −v 2 /22 , ν λ= −v 2 /23 , and ν η= −v 2 /44 .
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The P2 is shown in Fig. 8 for two groups of parameters. The effective decoherence rates due to the atomic spon-
taneous emission and the decay of the Bosonic modes are Γ′ = Γ < −P g101

4  and κ κ′ = < . × −P g0 35 102
3 , 

respectively.
The fidelity of the iSWAP gate is defined by

∫ ρ ρ ρ= 


F Tr (29)iSWAP o i o

over all possible states, where ρo denotes the real final density matrix while ρi denotes the ideal final density 
matrix. The fidelity of the iSWAP gate is shown in Fig. 9. For the small ≈ .g 5 275, the fidelity may be reached to 
0.982 after the evolution time ≈ .t 19 575, see Fig. 9(a). For the large ≈ .g 18 4, the fidelity may be reached to 0.994 
after the evolution time ≈ .t 6 375. The ideal iSWAP gate is achieved after eight Rabi-like oscillations, see Fig. 10. 
In the regime ν  gi the fidelities of the gates have been consistently found to be essentially unaffected by fiber 
losses. In general, moreover, the direct effect of spontaneous emission proves to be more relevant than the indirect 

Figure 7. The phase ratio φ ψ µ χ= t t/ ( )/( ) for the iSWAP gate and the inverse of iSWAP. (a,b) Denote the 
evolution times using the first set of parameters shown in Fig. 4(a). (c,d) Denote the evolution times using the 
second set of parameters shown in Fig. 4(c).

Figure 8. The probability P2. (a) The first case; (b) The second case.
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effect of cavity losses. For the iSWAP gate with ν ≈ g4  and ≈ .g 5 275, the maximum fidelity drops to ≈ .F 0 958 
for κ γ β= = = . g0 002 , see Fig. 11. If large coupling strength ≈ .g 18 4, the maximum fidelity drops to 

≈ .F 0 972 for κ γ β= = = . g0 002 . With lower decay rates ≈0.0002g the iSWAP gate is unaffected, while it may 
be spoiled if high rate ≈0.1g is considered. The spontaneous emission rates should be restricted for the fabrication 
of high-finesse optical cavities in experiment. Hyperfine ground levels of effective high level lambda systems 
could be candidates for such schemes. Take 87Rb atoms as examples56. Three ground states may be defined by 
hyperfine atomic levels = = −F m1, 1 , = =F m1, 0 , = =F m1, 1  of 52S1/2, while excited state may be 
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Figure 9. The average fidelity of the iSWAP gate vias g and evolution time. ∆ = g91 , δ∆ = +g92 , ν = 4g, 
Ω = g2 . (a) The diamonds refer to ≈ .g 5 275, the squares and the circle refer, respectively, to a variation of 
−0.025 and +0.025 of g. (b) The diamonds refer to ≈ .g 18 4, the squares and the circle refer, respectively, to a 
variation of −0.05 and +0.05 of g.
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defined by the hyperfine atomic level |F = 1, m = 0〉 of 52P1/2. Each atom can be made localized at a fixed position 
in each cavity with high Q for long time56. Recent experiment57 has achieved the parameters g/2π ≈ 750 MHz, 
κ/2π ≈ 2.62 MHz, and γ/2π ≈ 3.5 MHz in an ultrahigh-Q toroidal microresonators with the wavelength in the 
region 630~850 nm is predicatively achievable with the optical fiber decay rate 0.152 MHz58. By setting 
Ω = Ω = . g0 351 2 , Δ1 = 2.3g, Δ2 = 2.4g, and ν = 0.8g, we can obtain a iSWAP gate the fidelity about 9.21% with 
κ ≈ . g0 0035  and γ ≈ . g0 0046 .

Conclusion
In conclusion, we have investigated the implementation of high-dimensional quantum computation for atoms 
trapped in distant cavities coupled by an optical fiber. The chosen ground states of each atom are coupled via the 
cavity mode and different classical fields in the Raman process. All the atoms do not undergo the real Raman tran-
sitions due to the large detuning while the atomic system is decoupled from the cavity modes and fiber modes. In 
the short fiber regime, reliable elementary gates could be reasonable even if imperfections (atomic spontaneous 
decay and photon leakage of the cavities and fibers) are considered. Let us also mention that, in the considered 
system, not only entangling and swap gates, but also perfect quantum state transfer is possible. Moreover, the pro-
posed setup would also allow for entanglement preparation schemes between distributed atoms, and could useful 
in one-way quantum computation. These schemes would be useful for constructing large-scale and long-distance 
quantum computation or quantum communication networks.

Method
By introducing new Bosonic modes = −c a a( )1

1
2 1 2 , = + +c a a b( 2 )2

1
2 1 2  and = + −c a a b( 2 )3

1
2 1 2 , the 

Hamiltonians H0 may be rewritten as = −ν † †H c c c c( )0 2 2 2 3 3 . Take H0 as the free Hamiltonian and perform the 
unitary transformation =U eiH t0 , it follows an efficient interaction Humiliation
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The Hamiltonian describes multiple off-resonant Raman couplings for each atom induced by the classical field 
and the Bosonic modes c1, c2, c3. If δ λi i i i1 2 1 2

, δ ν λ± 2 /2i i i i1 2 1 2
 and ν λ2 /2i i1 2

, η /4i1
, the Bosonic 

modes do not exchange quantum numbers with the atomic system. The off-resonant Raman coupling leads a 
Stark shift between the atoms.

Thus the effective Hamiltonian is defined by

Figure 11. The fidelity of the iSWAP gate vias g and evolution time using master equation. ∆ = g91 , 
δ∆ = +g92 , ν = 4g, κ = γ = β = 0.002g. Ω = g2 . (a) The diamonds refer to ≈ .g 5 275, the squares and the 

circle refer, respectively, to a variation of −0.025 and +0.025 of g. (b) The diamonds refer to ≈ .g 18 4, the 
squares and the circle refer, respectively, to a variation of −0.05 and +0.05 of g.
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Since †c c2 1 1, 
†c c2 2, †c c3 3 commute with the Hamiltonian Heff, the bosonic modes are unchanged if the vacuum states 

are applied.
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