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Abstract
Observational and interventional studies for Hiv cure research often use single-copy assays to quantify rare entities in 
blood or tissue samples. Statistical analysis of such measurements presents challenges due to tissue sampling variability 
and frequent findings of 0 copies in the sample analysed. we examined four approaches to analysing such studies, 
reflecting different ways of handling observations of 0 copies: (A) replace observations of 0 copies with 1 copy; (B) add 
1 to all observed numbers of copies; (C) treat observations of 0 copies as left-censored at 1 copy; and (D) leave the 
data unaltered and apply a method for count data, negative binomial regression. Because research seeks to estimate 
general patterns rather than individuals’ values, we argue that unaltered use of 0 copies is suitable for research purposes 
and that altering those observations can introduce bias. when applied to a simulated study comparing preintervention 
to postintervention measurements within 12 participants, methods A–C showed more attenuation than method D in 
the estimated intervention effect, less chance of finding P < 0.05 for the intervention effect and a lower chance of 
including the true intervention effect within the 95% confidence interval. Application of the methods to actual data 
from a study comparing multiply-spliced Hiv RNA among men and women estimated smaller differences by methods 
A–C than by method D. we recommend that negative binomial regression, which is readily available in many statistical 
software packages, be considered for analysis of studies of rare entities that are measured by single-copy assays.
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Introduction
Measurements of rare entities in blood or tissue samples are 
important tools in Hiv-related cure research, particularly for 
assessing the latent reservoir, latency reversal and residual viraemia 
in effectively treated study participants [1–10]. Such assays include 
measurements of cell-associated unspliced [11] and multiply-
spliced Hiv RNA [7], integrated DNA [12,13], total DNA [12,14] 
and low levels of Hiv RNA in plasma [15,16]. These differ from 
most measurements used in clinical research because they measure 
very rare entities, often with a substantial fraction of samples 
having no copies at all. Here, we use the term single-copy assay 
to mean a measurement method that quantifies how many copies 
are present in a tissue sample with reasonable precision even 
when there is zero or only one. Statistical analysis of data from 
such assays presents some specific issues summarised in Box 1.

Many investigators may ignore issues 1–3 and make adjustments 
for issue 4 so that familiar statistical methods can be used. we 
evaluate here three such strategies, along with an alternative, 
negative binomial regression, which readily handles all of these 
statistical issues.

Focus on research
To properly evaluate possible statistical analysis approaches, we 
must keep in mind two crucial aspects of the goals of research.

Box 1. Statistical issues for single-copy assays

1. Tissue or blood sampling. The tissue sample or blood volume 
assayed is only a small fraction, often <0.1%, of what is 
present in the participant’s body, which means that it will not 
perfectly represent what is true for the participant as a whole. 
For blood sampling, we might assume perfect mixing, so that 
the sample is a random fraction of the person’s entire 
bloodstream, but this still leaves the number of copies present 
in the sample subject to random variation that follows a 
Poisson distribution. This variation is inevitable, even for an 
assay with no measurement error, and it can be quite 
substantial for the low copy numbers often sought by 
single-copy assays.

2. Assay input varies. in many cases, the number of cells or 
volume of plasma assayed will differ for different samples. For 
example, cell yields may vary, depending on blood volume and 
the CD4+ T cell count, or a damaged tube or short blood draw 
may limit the volume of plasma available to be assayed for a 
particular participant. Statistical analyses will be more accurate 
if they account for this variation, or at least prevent it from 
introducing distortions.

3. Precision varies. The inevitable sampling variation noted in 
point 1 cannot be assumed to be identical for all study 
samples. instead, some will be more precise than others, 
depending on the number of copies found and the input to the 
assay. Accounting for such differences in precision can improve 
statistical analyses of research studies.

4. Zero copies. Because of sampling variation and the rarity of the 
target entities, single-copy assays may indicate that no copies 
were present in some of the tissue samples assayed. This seems 
unacceptable to many investigators, because they know that 
some entities must have been present in the participant, even 
if absent from a particular sample. Zeroes are also problematic 
because interest often focuses on relative changes or 
differences. This leads to analysis on the logarithmic scale, 
where 0 copies would become infinite and so would preclude 
many simple statistical approaches. For example, fold change 
cannot be calculated for a participant whose baseline sample 
had zero copies.
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First, we wish to learn about generalisable patterns rather than 
individual participants. For example, we may want to estimate the 
mean or median of an Hiv reservoir measure in a population, the 
difference between two groups or the effect of an experimental 
treatment. For research purposes, random variations that are 
sometimes upward and sometimes downward can average out 
to produce acceptable overall results. Conversely, improving the 
accuracy of only selected observations can distort the overall 
results. To illustrate this, we consider a very simple example where 
we wish to estimate the mean copies per million cells (CPMC) in 
a population. Suppose every person in the population actually 
has a true CPMC of exactly 1. we recruit some participants and 
assay exactly 1 million cells from each of them with a single-
copy assay. On average, 37% of the participants will have 0 
copies in their million cells assayed, due to Poisson sampling 
variation. if we decide to count those participants as having 1 
CPMC, because each person’s true CPMC must be higher than 
zero, then we will have improved the measurement for each 
person in that 37% from a value that is too low to one that is 
exactly correct. Nevertheless, when we proceed to estimate the 
population mean using the ‘improved’ data, we will on average 
estimate the mean to be 1.37 CPMC instead of the correct value 
of 1 CPMC. in contrast, if we leave the zero results as zero, even 
though they must be lower than the entire person’s true value, we 
will on average estimate the correct mean. in general, selective 
adjustment of only some of the data is likely to disrupt analyses 
of generalisable patterns, particularly if all the adjustments are 
in the same direction.

Second, the importance of an effect or difference depends heavily 
on how large it is, not just whether it exists. Despite the focus 
often given to whether P<0.05, that is only a small part of the 
information that a study provides [17–19]. Notably, the effect 
of a treatment may be too small to be important even when a 
study finds a small P-value for it, and conversely, an effect may 
be large enough to be important even if it has P>0.05. Good 
estimation of effect size is important for maximising the informa-
tion obtained from expensive assays, highly selected individuals 
and trials that ask participants to accept the risks of experimental 
interventions. The uncertainty around the estimate is also impor-
tant, as often shown by the standard error or a confidence interval 
(Ci). Notably, synthesis of evidence via meta-analysis usually 
ignores P-values from individual studies, instead focusing exclu-
sively on the estimated effect sizes and their uncertainty. For 
evaluating different analysis approaches, we therefore care about 
not only the statistical power but also how far off they typically 
are (e.g. median absolute error), how much they systematically 
underestimate or overestimate effects (bias), and how good the 
accompanying uncertainty measures are (e.g. Ci coverage).

Statistical analysis methods
For simplicity in describing and discussing analysis methods, we 
consider measurement of copies per some generic ‘input’. when 
a specific form of input is desirable for illustration, we will focus 
on a measurement of CPMC. we also focus on the common situ-
ation where interest focuses on relative differences or changes, 
so that analysis on a logarithmic scale is appropriate. Box 2 
describes four approaches.

we discuss for each method both theoretical considerations and 
the results of applying them to simulated data sets that have a 
known true effect of interest. we randomly generated 1000 rep-
licates of a study evaluating within-person changes in CPMC 
from before to after a treatment in N=12 participants. we chose 
N=12 because it is a common choice for early studies, where 

small sample sizes are often appropriate [24]. Baseline loge(CPMC) 
was normally distributed with mean loge(3) and SD 0.75. The 
12,000 simulated baseline true CPMC values had a 2.5 percentile 
of 0.7, a median of 3.0 and a 97.5 percentile of 12.8. we ran-
domly generated observed numbers of copies from a Poisson 
distribution with a mean equal to the input number of cells times 
the true CPMC. The array of true CPMC values produced 0 copies 
in 12% of observations with cell input of 1 million. within-person 
changes in loge(CPMC) were normally distributed with mean 
loge(0.25) and SD 0.75, independent of baseline CPMC. The 
simulated true changes in CPMC had a 2.5 percentile of a 17.6-
fold reduction, a median of a 4.0-fold reduction and a 97.5 
percentile of a 1.1-fold increase. The resulting array of true CPMC 
values after intervention produced 0 copies in 45% of post-
treatment observations with cell input of 1 million. This is a 
substantial decrease, while not so overwhelming as to be obvious 
regardless of analysis method.

we then generated four versions of observed data for each simu-
lated participant based on four different measurement scenarios. 
we made two different assumptions about input to the assays: 
either that input was always equal to 1 million cells or that it 
varied at random with a uniform distribution between 500,000 
and 1,500,000 cells. we also assumed either that copies were 
counted exactly without error or that there was a measurement 
error for all non-zero numbers of copies that was normally dis-
tributed on the loge scale with a mean of 0 and an SD of 0.3. 
This corresponds to many assays where there may be a clear 
negative when no copies are present, but positive signals are 
translated to copies using an estimated standard curve, which 
typically produces non-integer values [12,16].

we tallied the performance of the four analysis methods over 
1000 simulated data sets. Bias was shown by comparing the 
median estimated fold reduction to the true value (a fourfold 
reduction). Another measure of the quality of the estimated 
effects is the median of the absolute difference between the 
estimates and the true value. we evaluated the accompanying 
uncertainty of each estimate of the treatment effect by tally-
ing how often the 95% Ci contained the true value (known as 
the ‘coverage’ probability). For a 95% Ci, this should ideally be 
95%. we also tabulated the power, which is the proportion of 
the analyses that had P-values of <0.05. Table 1 summarises the 
results obtained by each method. we have not considered non-
parametric analyses because they do not provide quantitative effect  
estimates.

Box 2. Methods for statistical analysis of studies using a 
single-copy assay.

A. Zero copies treated as 1. Replace all observations of 0 copies 
with 1 copy. Calculate log(copies/input) for all observations 
and analyse this by standard methods for normally distributed 
data, such as t-tests and linear regression. For example, see 
Reference 20.

B. Add 1 to copies. Calculate log((1+copies)/input) and analyse 
this by standard methods for normally distributed data.

C. Zero copies treated as left-censored. Consider observations of 0 
copies as indicating that log(copies/input) might be any value 
less than log(1/input). Analyse the resulting data by methods 
for left-censored, normally distributed data [21–23]. For 
example, see Reference 10.

D. Negative binomial regression. Analyse the observed copies 
(including 0) by negative binomial regression. include input as 
an ‘exposure’ variable, or equivalently loge(input) as an ‘offset’ 
(depending on the statistical software used), in order to 
effectively model loge(copies/input). For example, see 
Reference 7.
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Table 1. Summary of analysis results for 1000 simulated studies of before–after differences in copies per million cells, using four different analysis 
methods (see Box 2 and text)

Method Median estimated 
fold reduction

Median absolute error 
(log10 scale)

95% CI coverage 
(%)*

Power (%)

input fixed at 1,000,000 cells. Copies counted exactly.

A. 0 copies reset to 1, paired t-test 2.03 0.29 27.1 81.9

B. Add 1 to copies, paired t-test 2.08 0.28 22.3 86.4

C. 0 copies treated as left-censored 2.66 0.18 77.1 87.5

D. Negative binomial regression 3.20 0.15 88.1 89.5

input fixed at 1,000,000 cells. Copies measured with error.

A. 0 copies reset to 1, paired t-test 2.03 0.29 29.2 77.0

B. Add 1 to copies, paired t-test 2.11 0.28 25.6 83.4

C. 0 copies treated as left-censored 2.78 0.17 80.6 83.6

D. Negative binomial regression 3.30 0.15 87.4 85.8

input varies from 500,000 to 1,500,000 cells. Copies counted exactly.

A. 0 copies reset to 1, paired t-test 2.01 0.30 24.5 75.7

B. Add 1 to copies, paired t-test 2.08 0.28 23.2 82.9

C. 0 copies treated as left-censored 2.71 0.17 76.6 85.7

D. Negative binomial regression 3.23 0.14 87.5 87.3

input varies from 500,000 to 1,500,000 cells. Copies measured with error.

A. 0 copies reset to 1, paired t-test 2.00 0.30 26.0 72.3

B. Add 1 to copies, paired t-test 2.09 0.28 28.2 79.5

C. 0 copies treated as left-censored 2.77 0.16 81.6 81.7

D. Negative binomial regression 3.23 0.15 87.4 85.0

Ci: confidence interval.
each study includes N = 12 persons, and the true mean reduction in log(copies per million cells) corresponds to a fourfold reduction in copies per million cells.
*For Cis, the ideal value for coverage is 95%.

Method A can arise from consideration of the lower limit of 
detection (LLOD) of the assay. For a single-copy assay as defined 
here, detection is limited only by the absence of any copies in 
the sample assayed, so for any given input, the LLOD is 1/input. 
Method A therefore is equivalent to the common practice of 
treating ‘undetectable’ results as being equal to the limit of 
detection [21]. As described in the previous section, this will 
cause bias, and the general strategy of treating undetectable 
results as if they were observed values of the LLOD has been 
cogently criticised [21,25]. Because there is no accounting for 
assay input, 0 copies with low input will end up being counted 
as a higher value than 1 copy obtained from a higher input. in 
situations with a highly variable input, an ad hoc way to mitigate 
this problem is to exclude measurements with very low input, 
but this requires an arbitrary threshold for what input is ‘too low’. 
An intuitively appealing variation, excluding samples with low 
input only if they turn out to have 0 copies, introduces additional 
bias by selectively excluding lower (zero) values.

The theoretical disadvantages of method A are reflected in the 
results in Table 1, where we have applied the paired t-test command 
in Stata version 13.1 (StataCorp, College Station, TX, USA) to 
logarithmically transformed values, obtaining the estimated mean 
change and its 95% Ci in addition to the P-value. Method A 
tended to estimate only half as much within-person change as 
was typically present, and its Cis excluded the true value about 
80% of the time. A variation on method A [26] that replaces 0 
copies with 0.5 copies performed better, closer to method C. it 
was least biased for the case with fixed input and with measure-
ment error, where it had a median estimated effect of 2.61, 95% 
Ci coverage of 69.0% and power of 82.3%.

Method B also converts observations of 0 copies to 1 copy, but 
it preserves the distinction between 0 and 1 observed copies by 
also altering all the other observations. while this applies a con-
sistent transformation to all data, it does not perfectly preserve 
the interpretation of results in terms of fold effects, which is 
often an important reason for using logarithmic transformation. 
in order to obtain an interpretable quantitative estimate of the 
effect of treatment, we can nevertheless treat the analysis results 
as if they were from an unmodified logarithmic transformation. 
This produces the results shown in Table 1, where method B is 
only slightly better than method A: it is typically off by about 
twofold and its Ci only rarely includes the true value. in addition, 
method B can still count 0 copies with low input as if it were a 
higher observed rate than 1 copy with a higher input. if input 
varies systematically, such as might occur when comparing dif-
ferent tissues or cell types, this could spuriously make the lower 
input case appear to have higher rates.

Method C treats observations of 0 copies as being left-censored 
observations of 1 copy, meaning that log(copies/input) could be 
any number less than log(1/input). This follows an approach that 
was advocated by Marschner et al.[21] for Hiv viral load assays 
that had fairly high LLODs. That approach was an important 
improvement over treating undetectable results as equal to the 
LLOD, and it has been generalised for application in mixed-effects 
models [22,23,27]. For single-copy assays, however, this approach 
does not match the information actually provided by the data. 
A result of 0 copies indicates that no copies were present in the 
particular sample assayed, not that some fractional number less 
than 1 was present. in addition, observing 0 copies does not 
provide strong evidence that the person’s true CPMC is below 
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1/input: the upper 95% Ci bound would be 3/input [28], and 
there is no sharp demarcation between possible and impossible 
values. Thus, method C does not match the information about 
either the particular sample assayed or the CPMC in the person. 
An additional drawback of method C is that, as with methods A 
and B, it does not account for varying input. The analyses sum-
marised in Table 1 used Proc NLmixed in SAS version 9.4 (SAS 
institute, Cary, NC, USA), with a random person effect and a 
fixed effect quantifying within-person change from pretreatment 
to post treatment [27]. The results are better than those for 
methods A and B, but still with considerable downward bias in 
the intervention effect estimate and poorer performance overall 
than method D.

Method D uses a count model, which is a natural choice for the 
number of copies present in the samples. As noted in Box 1, 
Poisson variation in the number of copies present in a tissue 
sample is inevitable, and it will be of non-negligible magnitude 
for rare entities. Although Poisson regression is a simple count 
model, it may often be too optimistic about random variation 
because of additional sources of variability, such as person-to-
person differences and assay measurement error. we therefore 
focus here on negative binomial regression, which generalises 
the Poisson distribution to also allow for such additional sources 
of variability [29]. it can be used to model rates such as CPMC 
by employing a standard modification to account for the denomi-
nator (e.g. the ‘per million cells’ in ‘CPMC’). Appendix A provides 
details of how this is done and shows how to implement it in 
the popular statistical packages Stata and SAS. The variability of 
the observed copies around their modelled expectation is assumed 
to follow a negative binomial distribution. This model matches 
biological intuition in that all study participants are assumed to 
have a non-0 (but possibly small) true CPMC, and observations 
of 0 copies are assumed to have arisen via sampling variability. 
Observations of 0 copies can therefore be included without any 
ad hoc modifications. Observations that are likely to be less precise 
(due to lower observed number of copies and/or lower input) 
are automatically given less influence on the model results. Notably, 
observations with 0 copies and low input are appropriately down-
weighted without any need for a cutoff defining when input is 
too low and observations should be excluded. we fit the models 
with the menbreg command in Stata version 13.1 (StataCorp). 
This command allowed us to include a normally distributed random 
intercept to reflect the repeated observations (preintervention 
and post intervention) on the same participants. The models 
estimate multiplicative effects on the expected number of copies 
in each sample, along with an overdispersion parameter reflecting 
variation in excess of that expected from Poisson sampling vari-
ability alone.

The theoretical advantages of method D are reflected in the 
results in Table 1, where it had the best performance on all the 
metrics. it still had some bias, typically estimating an attenuated 
~3.2-fold decrease instead of the true 4.0-fold decrease, but 
the bias is smaller with this method than with any of the others. 
Similarly, the Ci coverage is less than the ideal 95%, but it is 
better than for any other method. Although the negative binomial 
distribution was originally defined for integers, the method readily 
generalises to non-integer numbers of observed ‘copies’ by cal-
culation of the likelihood with the mathematical gamma function 
in place of factorial terms (see Reference 30, page 203). The 
workability of this generalisation is reflected in the Table 1 cases 
with measurement error, where none of the non-0 observed values 
are integers. Thus, negative binomial regression can be applied 
directly to observed data without rounding whenever assays 
produce non-integer numbers of copies.

The bias that was seen even with method D results from the 
combination of two factors: (1) imprecision in the measurements 
caused by Poisson sampling variability and (2) the person-to- 
person variation in the effect of the intervention (see Appendix 
B). if the simulated studies examine 100 million input cells instead 
of 1 million, sampling variation is mostly eliminated. This elimi-
nates the bias while also making observation of 0 copies very 
rare and consequently making all four methods roughly equivalent. 
in contrast, the bias remains largely unchanged if cell input remains 
at 1 million and the number of participants is increased 10-fold 
to N=120. (Thus, for Hiv clinical trials, increasing the number 
of participants may not mitigate the statistical challenges shown 
here. increasing tissue or blood sampling would reduce the bias 
of these methods but will likely encounter limitations of cost, 
acceptability and feasibility.) when the simulations are done with 
every person having exactly a fourfold reduction, the bias for 
method D is also eliminated. Bias for the other methods is reduced 
slightly, but with methods A and B still having median estimates 
of <2.3-fold and method C having a median estimate of <3.1-
fold. we have not presented this more favourable case as the 
primary set of results because we believe that person-to-person 
variation in intervention effects will usually occur.

Null simulations

we also ran simulations identical to those for Table 1, except 
with the intervention having no effect. in this case, the null 
hypothesis is true, and P-values should therefore be <0.05 about 
5% of the time. Table 2 shows that all the methods were close 
to this theoretical expectation, except that method D found 
P < 0.05 too often when measurement error was present. The 
Stata command for these method D analyses uses a normal 
approximation to compute P-values. if we instead use a t distri-
bution with 11 degrees of freedom, then the per cent with P < 0.05 
would be about right: 5.3% for fixed input and 5.4% for varying 
input. This, however, comes at the cost of excessive conservatism 
when measurement error is not present, with P < 0.05 only 1.8% 
of the time with fixed input and 2.5% of the time with varying 
input. Thus, in this challenging situation with a very small sample 
size, there was no ideal solution for method D.

Example
A recent study [31] examined sex differences in multiply-
spliced Hiv RNA among effectively treated persons with Hiv. 
This measurement provides a good illustration of the issues dis-
cussed here, because samples from 24 of the 52 participants 
(46%) had 0 copies, and the input to the assay ranged widely 
from 62,000 to 3,288,000 resting CD4 cells, with a median of  
1,485,000.

Table 3 shows the results of applying the four Box 2 methods; 
for the reasons noted earlier, the study itself used negative bino-
mial regression (method D). Although this is a between-person 
comparison, the results are qualitatively similar to the within-
person scenario shown in Table 1. Methods A–C all produce smaller 
estimated differences and larger P-values than method D.

Discussion
For studies measuring rare entities via single-copy assays, results 
can vary substantially, depending on the methods used for sta-
tistical analysis and how observations of 0 copies are handled. 
Negative binomial regression handles the specific challenges noted 
in Box 1, and its theoretical advantages manifested as expected 
in our simulations and when applied to a data set from an actual 
study. Null hypothesis testing, however, was either too liberal in 
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Table 2. Summary of analysis results for 1000 simulated studies 
similar to those summarised in Table 1, but with interven-
tion having no effect

Method Per cent with 
P < 0.05*

input fixed at 1,000,000 cells. Copies counted exactly.

A. 0 copies reset to 1, paired t-test 5.2

B. Add 1 to copies, paired t-test 5.5

C. 0 copies treated as left-censored 5.9

D. Negative binomial regression 3.9

input fixed at 1,000,000 cells. Copies measured with error.

A. 0 copies reset to 1, paired t-test 5.4

B. Add 1 to copies, paired t-test 4.9

C. 0 copies treated as left-censored 5.8

D. Negative binomial regression 8.0

input varies from 500,000 to 1,500,000 cells. Copies counted 
exactly.

A. 0 copies reset to 1, paired t-test 5.5

B. Add 1 to copies, paired t-test 5.0

C. 0 copies treated as left-censored 6.4

D. Negative binomial regression 4.8

input varies from 500,000 to 1,500,000 cells. Copies measured 
with error.

A. 0 copies reset to 1, paired t-test 5.0

B. Add 1 to copies, paired t-test 5.9

C. 0 copies treated as left-censored 6.4

D. Negative binomial regression 7.3

*The ideal value for this is 5%.

Table 3. estimated differences in multiply-spliced Hiv RNA per million 
resting CD4 cells, from a study comparing 26 women with 
26 men, all with effectively treated Hiv [31]

Method Estimated 
male : female 

ratio

95% 
Confidence 

interval

P-value

A. 0 copies reset to 
1, unpaired t-test

2.38 1.07–5.27 0.034

B. Add 1 to copies, 
unpaired t-test

2.11 0.98–4.53 0.055

C. 0 copies treated 
as left-censored

2.73 0.87–8.56 0.084

D. Negative 
binomial regression

6.17 1.95–19.6 0.002

some cases or too conservative in other cases, depending on 
whether a normal or t-distribution was used for the P-value cal-
culations. Although the negative binomial distribution is classically 
defined for integer counts, negative binomial regression can handle 
continuous values (as reflected in our simulations with measure-
ment error), and our simulations verified that measurement error 
producing non-integer numbers of copies had little impact on 
the advantages of negative binomial regression over the other 
methods evaluated. Thus, this approach can be implemented 
using standard statistical software, such as Stata [30], SAS [32] 
or R [33,34], regardless of whether the assay produces exact 
integer numbers of copies.

when a single-copy assay indicates that no copies of the target 
entity were present in the sample analysed, labs often report the 
value that would have been produced if 1 copy had been present, 
usually preceded by a ‘<’ symbol. A statistician taking this at 
face value would naturally be led to method A (if no < was 
included) or method C (if < was included). Statisticians must 
therefore ensure that they understand the actual information 
that assays provide; if it is a single-copy assay in the sense 
addressed here, then analysis of the actual copies measured, 
including zeroes, can be accomplished by negative binomial 
regression. As we have discussed, including an observed zero 
does not assume that the participant had no entities in his or 
her entire body or that an additional sample would necessarily 
also have had 0 copies. it simply makes use of the actual result 
for the sample that was actually assayed, treating observed zeroes 
as resulting from Poisson sampling variability.

Regardless of the method used, assessment of potential overly 
influential observations or outliers will often be relevant for the 
study of rare entities. when most samples contain copy numbers 
in the single digits, an observation with hundreds of copies could 
disrupt any quantitative statistical analysis. in many cases, such 
observations will warrant special investigation or handling, such 
as exclusion or winsorizing [35]. we also caution against ‘P- 
hacking’ [36]. Although we evaluated four different analysis 
methods here, analysing an actual study by applying all four and 
then presenting only the one with the smallest P-value would 
be a poor approach.

we have focused here on just a few relatively simple situations, 
with the goal of pointing out potential difficulties with analysis 
of single-copy assays and the potential advantages of using nega-
tive binomial regression. Additional research in this area could 
investigate a wider variety of situations. in more extreme situa-
tions than those considered here, such as even smaller sample 
sizes or even higher proportions of zero observations, study-
specific simulations may be useful for choosing an analysis method. 
Some attenuation of the estimated intervention effect was present 
in Table 1 even for the negative binomial regression analyses, so 
development of improved methods for analysing such studies 
would be worthwhile.

we have considered here measurement methods that seek to 
determine how many copies of a rare entity are present in a tissue 
or blood sample. Statistical methods for count data are therefore 
a natural choice, and negative binomial regression is a flexible 
type of count model that is implemented in many statistical 
software packages and can be applied when the data include 
zero counts and non-integer numbers of copies. it readily deals 
with the Box 1 issues, while the other methods all have both 
theoretical drawbacks and poorer performance in the situations 
examined here. we therefore recommend that researchers using 
single-copy assays to measure rare entities consider negative 
binomial regression for statistical analysis.
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Appendix A: Details for method D and syntax 
for implementing it in Stata and SAS
Negative binomial regression can model rates such as CPMC, 
defined as copies/input, by including the amount of input as an 
‘exposure’ or ‘offset’ variable, meaning that loge(input) is included 
in the predictive model as a fixed term (its regression coefficient 
is fixed at 1 instead of being estimated). For the simulated study 
data used here, the model for each given participant i (i=1 to 
12) at time j (before or after the intervention, j=0 or 1) is

log log ,e eE copies inputij i ijj( )[ ] = + + + ( )α γ β

where E is the expectation (mean), α is the fixed overall intercept 
term, γi is the person-specific random intercept and β is the 
regression coefficient for the effect of the treatment. This model 
is mathematically equivalent to

log ,e E copies inputij ij i j( )[ ] = + +α γ β

which shows how it models loge(copies/input) as desired.

we now describe examples of how to implement method D on 
data similar to the simulations described in the main text. The 
methods require that the data set be in ‘long’ format with two 
observations per participant, one for before intervention and one 
for after, and we use the following variables:

iD = identification number for each participant
After = 1 if the observation is for the postintervention 

measurement
=0 if the observation is for the preintervention (baseline) 

measurement
Copies = measured # of copies of target entity present in the 

sample assayed
inputCells = # of cells in the sample assayed
loginputCells = loge(inputCells)

Stata:
menbreg Copies After, exposure(InputCells) 
|| ID:

SAS:
proc glimmix;
class ID;
model Copies = After / dist=negbin 
offset=logInputCells solution cl;  
random int / subject=ID;

run;

Appendix B

Discussion of bias for method D
The factors leading to bias even for method D may seem 
counterintuitive, along with the fact that increasing N does not 
eliminate the bias. while a detailed mathematical analysis of this 
is beyond the scope of this paper, we offer here a possible 
conceptual explanation.

Because the relation between loge(CPMC) and CPMC is nonlinear, 
the symmetric normal distributions of true loge(CPMC) values 
correspond to asymmetric log-normal distributions of true CPMC 
values. The mean CPMC is therefore larger than the exponentiated 
value of the mean loge(CPMC), and the difference between the 
two is more pronounced for the postintervention values of 
loge(CPMC) because they have a larger variance. Consequently, 
the ratio of the mean true CPMC at baseline to the mean true 
CPMC after intervention is only about 3, instead of the fourfold 
difference that is typical within subjects. Thus, if this were a 
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between baseline and postintervention copies to a value that is 
less than the within-person correlation in true CPMC values. This 
could cause the ‘typical’ within-person change, as defined for 
negative binomial regression, to be less than the fourfold change 
that we defined as being the most meaningful typical within-person 
change in the simulation specifications. increasing the sample 
size would not change this. On the other hand, increasing the 
input to 100 million cells would substantially reduce the relative 
variability in the observed counts, making them correspond closely 
to the true CPMC values. This would mitigate the attenuation of 
the correlation, making the estimate that accounts for within-
person correlation in the number of copies correspond better to 
the desired fourfold reduction.

cross-sectional study comparing two groups, the correct value 
for negative binomial regression would be 3 because it estimates 
multiplicative effects on the mean number of copies. (This would 
not occur if the change in true loge(CPMC) from baseline to 
postintervention were the same for everyone.)

inclusion of random intercepts in the model attempts to focus 
on the within-person changes by accounting for within-person 
correlation. ideally, this would change the correct result for negative 
binomial regression from threefold to the fourfold typical change 
as specified for the simulations. we believe, however, that the 
correct result moves only part way toward fourfold because 
Poisson sampling variation attenuates the within-person correlation 


