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Abstract

Gram-positive bacteria employ an array of secreted peptides to control population-level

behaviors in response to environmental cues. We review mechanistic and functional fea-

tures of secreted peptides produced by the human pathogen Streptococcus pneumoniae.

We discuss sequence features, mechanisms of transport, and receptors for 3 major catego-

ries of small peptides: the double-glycine peptides, the Rap, Rgg, NprR, PlcR, and PrgX

(RRNPP)-binding peptides, and the lanthionine-containing peptides. We highlight the

impact of factors that contribute to carriage and pathogenesis, specifically genetic diversity,

microbial competition, biofilm development, and environmental adaptation. A recent expan-

sion in pneumococcal peptide studies reveals a complex network of interacting signaling

systems where multiple peptides are integrated into the same signaling pathway, allowing

multiple points of entry into the pathway and extending information content in new direc-

tions. In addition, since peptides are present in the extracellular milieu, there are opportuni-

ties for crosstalk, quorum sensing (QS), as well as intra- and interstrain and species

interactions. Knowledge on the manner that population-level behaviors contribute to disease

provides an avenue for the design and development of anti-infective strategies.

Introduction

Social behaviors are widespread across organisms. Ant colony formation, coordinated move-

ment in locusts, and shoaling of fish are sophisticated examples of social behaviors. These

behaviors benefit the population by providing protection against predation, increases in the

food supply, or strategic advantages over competitors. Bacteria are no exception to such social

behaviors. Bacteria perform quorum sensing (QS): cell density-linked signaling that results in

the induction of a population-level response [1]. An early demonstration of QS was in the

marine bacterium, Vibrio fischeri, where high cell density induces bioluminescence as part of a

symbiotic relationship between bacteria and squid [2]. Since then, bacterial group behaviors

have been implicated in cellular processes such as gene transfer, motility, antibiotic produc-

tion, and biofilm formation [3–5].

Cell–cell communication is coordinated by signaling molecules that are secreted by the

donor cell into the extracellular milieu and sensed by producing and neighboring cells [6].
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Sensing results in changes in gene expression, ultimately triggering synchronized population

behaviors. Central to this cell–cell communication is signaling by autoinducer-2 (AI-2) and

peptides. This review highlights mechanistic and functional features of secreted cell–cell com-

munication peptides produced by the human pathogen Streptococcus pneumoniae.
S. pneumoniae (or pneumococcus) is a major cause of otitis media, bacterial meningitis,

septicaemia, and community-acquired pneumonia. WHO classifies pneumococcus as an anti-

biotic-resistant “priority pathogen.” It is 1 of the top causes of lower respiratory infections and

is responsible for almost 1 million annual deaths in children worldwide [7–9]. The pneumo-

coccus occupies different niches in the human host leading to commensal and pathogenic exis-

tences; these occupations can occur sequentially and/or simultaneously in the form of biofilm

or planktonic modes of growth. Invasive pneumococcal disease is a multistep process; it is ini-

tiated through pneumococcal infiltration into the sugar-rich mucus layer, followed by adher-

ence to the epithelial cell layer of the human nasopharynx. Often, the microbe colonizes the

nasopharynx for an extended period of time without causing disease. Alternatively, for reasons

unknown, it can disseminate into the middle ear, lungs, brain, or blood. Entry into the blood,

either directly from the nasopharynx or most often through lungs, provides access to the cen-

tral nervous system, the heart, and the spleen. In all these tissues, the pneumococcus is exposed

to assaults by the immune system and diverse environmental conditions including varying

concentration of oxygen, metals, sugars, and a wide temperature range [10–17]. In such fluctu-

ating host environments, community-level synchronization of transcription enables microbes

to acquire a phenotype consistent with the requirements of the specific host niche. In this man-

ner, peptide-mediated communication is critical to colonization and pathogenesis.

Overall classification of pneumococcal cell–cell communication systems

The pneumococcal cell–cell communication systems can be classified into 3 main categories

based on peptide sequences, transporters, and receptors (Fig 1). These are (1) double-glycine

peptides, (2) peptides associated with the RRNPP superfamily of QS proteins, and (3) lanthio-

nine-containing peptides. In terms of their roles, the peptide-mediated cell–cell communica-

tion systems fulfill at least 3 main functions: of ensuring genetic diversity, microbial

competition, and environmental adaptation.

Double-glycine peptides. The best characterized pneumococcal double-glycine peptide is

the competence-stimulating peptide (CSP) [18]. Other examples include the bacteriocin-

inducing peptide (BIP) [19], the competence-induced bacteriocins (CibA and CibB) [20], pep-

tides of the bacteriocin immunity region (BIR) [21], the virulence peptide 1 (VP1) [22], the

biofilm-regulating peptide induced by competence (BriC) [23,24], peptides of the rtg locus

[25], and LanA [22,26] (Table 1, S1 Table). Furthermore, comparative genomic approaches

have revealed additional double-glycine peptides that remain to be characterized [22,27].

Double-glycine peptides are characterized by a conserved N-terminal leader sequence that

terminates in Gly–Gly residues (or more rarely in Gly–Ala or Gly–Ser) [22,28] (Fig 1A). The

leader guides these peptides to peptidase-containing ATP-binding cassette (ABC) transporters

(with a C39-peptidase domain), which cleave the leader sequences and export peptides out of

the cell [29]. The genomic locus of CSP and BIP encodes their cognate exporters ComAB and

BlpAB, respectively [29–31]. A frameshift mutation renders BlpAB nonfunctional in approxi-

mately 60% of the strains. Yet, during competence activation, these strains employ ComAB for

BIP secretion, illustrating redundancy in exporters [21,32–34]. Further, ComAB also contrib-

utes to the export of BriC [23]. However, not all transporters are promiscuous. Peptides of the

rtg locus are not secreted by ComAB or BlpAB and instead are exported by another trans-

porter, RtgAB [25]. Finally, BlpI, a peptide from BIR, can be secreted by all 3, albeit at different
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Fig 1. Schematic diagram of 3 main classes of pneumococcal secreted peptides. Schematic diagram showing peptide features, processing and export, receptors, and

phenotypic consequences of different families of peptides, namely (A) double-glycine peptides, (B) peptides signaling via the RRNPP superfamily of regulators, and (C)

lanthionine-containing peptides. (A) The conserved N-terminal leader of double-glycine peptides guides them for processing and export via C39-peptidase domain

containing ABC transporters, ComAB, BlpAB, or RtgAB. A combination of features in both the leader sequence and cargo peptide determine transporter-substrate

specificity and efficiency of transport. Some peptides can be exported by multiple transporters. The secreted peptide can activate a response in the recipient cell either

directly (e.g., fratricide by CibAB) or indirectly by inducing signaling upon binding a receptor (e.g., CSP and BIP). Double-glycine peptides lead to downstream

phenotypes that include biofilm formation, extracellular matrix interaction, genetic diversity, and bactericidal activity. (B) Peptides that signal via the RRNPP superfamily

of regulators include SHP and Phr peptides. Based on data for 1 pneumococcal SHP (RtgS) and from other species, we propose that SHPs are secreted outside the cell by

the ABC transporter, PptAB. It is proposed that SHPs undergo processing and maturation either concomitant with (via the Eep membrane protease) or after their

secretion (via an uncharacterized protease). The mechanisms of Phr peptide processing in pneumococcus remain unknown. Following maturation, both SHP and Phr

peptides are imported into the recipient cell via an oligopeptide permease system, AmiACDEF. Once internalized, SHPs interact with their cognate Rgg regulators

resulting in DNA binding and transcriptional activation. Phr peptides interact with their cognate Tpr regulators, releasing Tpr-mediated inhibition of gene expression.

Signaling via SHP and Phr peptides facilitates environmental adaptation for the bacteria and can induce production of double-glycine and lanthionine-containing

peptides. (C) The lanthionine-containing peptides undergo posttranslational modifications and cyclization by the action of intracellular lanthionine modification

enzymes. Owing to their conserved leader sequence, these propeptides are directed for secretion by dedicated ABC transporters. While the targets and function (as signal

or bacteriocins) of most lanthionine-containing peptides are unknown, pneumolancidin functions by activating a TCS system on the target cells, ultimately exerting

bactericidal activity. ABC, ATP-binding cassette; BIP, bacteriocin-inducing peptide; CSP, competence-stimulating peptide; GG, double-glycine; Phr, phosphatase

regulator; Rgg, Regulator gene of glycosyltransferase; RRNPP, Rap, Rgg, NprR, PlcR, and PrgX; SHP, short hydrophobic peptide; TCS, two component systems.

https://doi.org/10.1371/journal.ppat.1008931.g001
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efficiencies. It appears that a combination of features in the leader sequence and the cargo pep-

tide determine the nature of the transporter and efficiency of transport. The entire rulebook of

transporter substrate specificity is a subject of intense research, and once resolved will facilitate

in silico prediction of peptide transporter sets.

Table 1. Ribosomally synthesized peptides experimentally studied in Streptococcus pneumoniae. Peptides are divided into different families: (1) Double-glycine pep-

tides (green), (2) RRNPP peptides—small hydrophobic peptides (dark blue) & Phr peptides (light blue), and (3) lanthionine-containing peptides (yellow). Gene ID for

TIGR4 (sp_) and D39 (spd_).

S.

No.

Peptide Gene Number Exporter Receptor (if

Signaling)

Strain

Distribution#
Function References

1 CSP sp_2237 (spd_2065) ComAB and

BlpAB

ComD Core or Almost

Core

Competence [18,30,35]

2 CibA and

CibB

sp_0125 (spd_0133) and sp_0124
(spd_0132)

ComAB� and

BlpAB�
Core or Almost

Core

Fratricide [20]

3 BriC sp_0429 (spd_0391) ComAB Unknown Core or Almost

Core

Biofilm Development and

Colonization

[23,24]

4 BIP sp_0528 (spd_0470) BlpAB and

ComAB

BlpH Core or Almost

Core

Bacteriocin Production [19,31,32,33]

5 BlpM and

BlpN

sp_0539 and sp_0540 BlpAB� and

ComAB�
Accessory Bacteriocin [21,31]

6 BlpI and BlpJ sp_0531 and sp_0532 BlpAB and

ComAB

Accessory Bacteriocin [21,36]

7 BlpK sp_0533 and sp_0041 (spd_0046) BlpAB� and

ComAB�
Accessory Bacteriocin [21,36]

8 VP1 sp_0142 (spd_0145) Unknown Unknown Core or Almost

Core

Adherence to Epithelial Cells

and Colonization

[22,79]

9 RtgG CGSSp9BS68_07272 RtgAB Unknown Rare Unknown [25]

10 RtgC sp_0115 (spd_0116) RtgAB Unknown Accessory Unknown [25]

11 RtgT CGSSp9BS68_02658 (or spd_0121) RtgAB� Unknown Accessory Unknown [25]

12 RtgW CGSSp9BS68_07277 (or spd_0123##) RtgAB� Unknown Accessory Unknown [25]

13 SHP144 Adjacent to sp_0141 (spd_0144) PptAB� Rgg144 Core or Almost

Core

Environmental Adaptation [22,43]

14 SHP939 Adjacent to spd_0939 PptAB� Rgg939 Accessory Environmental Adaptation [42,43]

15 RtgS (Type A

and B)

Adjacent to sp_0114 (spd_0112 or

CGSSp9BS68_07247)
PptAB RtgR Accessory Colonization [25]

16 SHP1518 Adjacent to spd_1518 PptAB� Rgg1518� Accessory Unknown [25,43]

17 PhrA sp_1947 (spd_1746) Sec secretion

pathway

TprA Accessory Virulence [26]

18 PhrA2 spn23F_12740 Sec secretion

pathway

TprA2 Rare (Unique to

PMEN1)

Commensalism [44]

19 LanA1^ and

LanA2^

sp_1948 (spd_1747) and sp_1949
(spd_1748)

LanT� Accessory Unknown [22,26]

20 LcpA spn23F_12701 LcpT� Accessory Unknown [44]

21 PldA1–PldA4 Downstream of the spn23F_12760
Homolog in P174

PldT Rare Bacteriocin [66]

�Putative, lacks direct experimental evidence.
#Categorized based on presence in strains tested in published data sets above in addition to Javan et al. [27]: Rare: Less than 10%, Accessory: 10%–90%, Core or Almost

Core: More than 90%.
##Contains an alternative start codon 33 bp upstream in D39.
^LanA peptides also contain N-terminal leader sequences characteristic of double-glycine peptides.

BIP, bacteriocin-inducing peptide; BriC, biofilm-regulating peptide induced by competence; CSP, competence-stimulating peptide; Phr, phosphatase regulator; PMEN1,

pneumococcal molecular epidemiology network clone 1; RRNPP, Rap, Rgg, NprR, PlcR, and PrgX; VP1, virulence peptide 1.

https://doi.org/10.1371/journal.ppat.1008931.t001

PLOS PATHOGENS

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1008931 October 29, 2020 4 / 20

https://doi.org/10.1371/journal.ppat.1008931.t001
https://doi.org/10.1371/journal.ppat.1008931


Once secreted from the donor cell, some double-glycine peptides induce a response in the

recipient by signaling through two component systems (TCS). The peptide binds the histidine

kinase of the TCS, triggering its autophosphorylation and the transphosphorylation of its cog-

nate response regulator, subsequently altering the transcriptional state of the cell. This is

observed for signaling of CSP via ComDE and of BIP via BlpHR, where peptide–receptor pairs

are located in the same locus [19,35]. Other double-glycine peptides are not adjacent to TCS

systems, and as such, their receptors have not been identified; they may induce signaling via

TCSs or other families of receptors. For the double-glycine peptides with bacteriocidal activi-

ties, such as CibAB and the peptides encoded within the BIR, it remains unclear whether the

bacteriocidal activity even requires binding partners [20,31,36]. Finally, LanA possesses fea-

tures of both double-glycine and lanthionine-containing peptides (see below), and it is unclear

the extent to which its transport and receptors (if any) share features with each of these fami-

lies. Studies on double-glycine peptides have focused on their role across bacteria, emerging

evidence suggests that the host may also be listening. A G-protein couple receptor on mast

cells binds positively charged peptides, including CSP, triggering an immune response and

enhancing bacterial clearance [37].

Peptides of RRNPP superfamily of QS proteins. Peptides in this group signal by direct

interaction with their cognate cytoplasmic transcription factors, which are members of the

RRNPP superfamily [38–40] (Fig 1B). These peptides can be classified based on a variety of

sequence features, as previously reviewed [41]. In pneumococcus, the short hydrophobic pep-

tide (SHP) SHP144, SHP939, SHP1518, and RtgS, and the phosphatase regulator (Phr) pep-

tides PhrA and PhrA2 have been characterized [22,25,26,42–46].

Across streptococci, Regulator gene of glycosyltransferase (Rgg) proteins are activated upon

binding with their cognate SHP, which are usually encoded adjacent to rgg genes [41,47,48].

SHPs are only active after export, after processing from precursor polypeptides that are typi-

cally shorter than 35 residues [39,49]. The processing protease(s) have not been studied in

pneumococcus, yet in other streptococcal species, a membrane-bound metalloprotease (Eep)

contributes to the processing [40,50]. Multiple streptococcal species export SHPs through an

ABC transporter, PptAB, whose homolog in Enterococcus faecalis exports sex pheromones

[51–53]. In the absence of a known target sequence, the mechanisms directing SHPs to their

transporter remain unclear. The mature peptides are reimported into the cell via an oligopep-

tide permease system, where they interact with the cognate Rgg regulator altering the cell’s

transcriptional state [40,50,52]. In pneumococcus, RtgS is the only SHP whose precursor pep-

tide has been shown to be exported by PptAB and internalized by the Ami oligopeptide

importer, AmiACDEF [25]. Given the broad function of PptAB across species, it is likely that

the other pneumococcal SHPs utilize the same mechanism for export and import.

Phr peptides signal through members of the RRNPP superfamily [54,55]. In Bacillus subti-
lis, export of Phr precursor peptides is mediated by a conserved N-terminal signal sequence

that directs export via the Sec-dependent pathway [55,56]. Additional maturation takes place

extracellularly to generate 5 to 7 residues peptides, which are internalized by oligopeptide per-

mease systems [55–61]. The pneumococcal pangenome encodes at least 4 Phr peptides (PhrA,

PhrB, PhrC, and PhrA2), of which PhrA and PhrA2 have been characterized experimentally

[26,44–46]. While the Phr peptides in Bacilli signal by interacting with Rap proteins, the pneu-

mococcal Phr peptides interact with the Tpr (transcription factor regulated by Phr peptide) set

of PlcR homologs [26,55]. The genomic organization of pneumococcal Phr-signaling cassettes

is in contrast with those encoded in B. subtilis, since the pneumococcal tprA (and tprA2) and

phrA (and phrA2) are oriented in opposite directions and not the same direction [26]. How-

ever, like other species, the pneumococcal PhrA is internalized in the cell through the
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oligopeptide permease system, AmiACDEF [26]. Once internalized, PhrA and PhrA2 interact

with their cognate Tpr regulators and relieve the Tpr-mediated inhibition of gene expression.

Lanthionine-containing peptides. This is a family of small (19–38 amino acids) pep-

tides produced by gram-positive bacteria that possess diverse structures and functions. These

are cyclic peptides, characterized by posttranslational modifications that result in the introduc-

tion of thioether amino acids lanthionine and methyllanthioine (Fig 1C) [62]. Their characteris-

tic structure is formed by LanM modification enzymes, when serine or threonine residues in

the propeptide are dehydrated and linked to cysteine thiols. The peptide is exported by dedi-

cated LanT transporters [62–64]. Many lanthionine-containing peptides form 1 of the 2 major

classes of bacteriocins [65]. These peptides are known as lantibiotics, or lanthionine-containing

antibiotics [62]. Genes for processing of lanthionine-containing peptides, modification

enzymes, immunity proteins, and transporters are generally organized in clusters. Numerous

such clusters are present in pneumococcus; of these, the lanthipeptides associated with Tpr/Phr

and the pneumolancidin cluster have been studied [26,44,66].

Functional attributes of pneumococcal cell–cell communication systems

The pneumococcal peptide mediated cell–cell communication systems provide several, not

mutually exclusive, functionalities. A cell–cell communication system can be conceptualized as

a circuit that controls population-level structures and behaviors. Many of these cell–cell com-

munication circuits respond to diverse environmental stimuli such as population density, nutri-

tional status, pH, oxygen availability, and antibiotic stress [67–74]. Signaling from cell–cell

communication systems phenotypically converge in changes at the population level. These may

impact development of biofilms or be associated with modifications in cell surface components

such as membrane composition and capsule expression [22,23,43]. Cell–cell communication

system behaviors may also be accompanied by modification in ability for DNA uptake, fratri-

cide, or bactericidal activity [20,23,31,75,76]. These physiological changes may alter the propen-

sity of cells to acquire antibiotic resistance genes and influence the emergence of vaccine-escape

strains. Further, intercellular communication systems may also regulate degradation of host

matrix, biofilm development, and nutrient uptake ability [22,23,43,77–79]. Thus, together these

properties influence pathogenic potential, antibiotic resistance, and response to vaccines.

The ability to regulate population responses provide competitive advantage to pneumococ-

cal cells over other microbial species inhabiting nasopharynx. Cell–cell communication sys-

tems enable the microbe to alter its transcriptional profile to acquire a suitable phenotype to

optimize the population-level fitness. It is very likely that the systems such as competence,

which introduce diversity at the DNA level and transcriptional level, enable long-term mainte-

nance of commensal lifestyle in the nasopharynx, where the pneumococcus is found in bio-

films in highly variable densities during asymptomatic periods [80]. Further, in general,

“transcriptional adaptation” not only contributes to survival in the dynamic nasopharynx but

also promotes survival when the microbe migrates from 1 host niche to another during

infection.

Generation of genetic and phenotypic diversity. Competence cascade is 1 of the key

mechanisms for generating both genetic diversity by DNA acquisition and phenotypic diver-

sity by changes in gene expression. Nonmutually exclusive hypotheses have been proposed to

explain how DNA acquisition provides a fitness advantage: genomic diversification, nutrient

source, and DNA for repair. The activation of competence pathway in response to DNA dam-

age has also been described as a general stress response phenomenon [76].

The competence system is activated upon detection of the CSP: the canonical representative

of the double-glycine peptide family. The pneumococcal pangenome possess 6 diverse alleles
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for comC, where the majority of strains encode 1 out of 2 allelic variants [81]. In a mixed popu-

lation, competence may not only be spatially localized to a certain region within a biofilm; sig-

nals may be confined to individual pherotypes (Box 1). CSP is autoinduced by cues including

Box 1. Pherotypes

The term “pheromone” was coined in 1959 to refer to secreted substances that mediate

intraspecies communication resulting in specific actions such as behavioral changes

[120]. “Pherotypes” are pheromone signal variants generated due to allelic differences,

and a pheromone may possess multiple distinct pherotypes. These pherotypes confer the

cells with a mechanism for providing specificity in signal–receptor interactions. How-

ever, there is no difference in the molecular pathway that is regulated downstream of the

receptors. Pherotypes are characterized by amino acid variations in certain key residues

of the functional peptide pheromone that are important for interactions with the recep-

tor. Mutations in other residues that are not important for this interaction will not lead

to generation of a distinct pherotype. Allelic changes that result in the generation of

pherotypes are usually accompanied by corresponding changes in the sequence of their

cognate receptors to maintain the specificity of pherotype–receptor interactions and

enable strain-specific signaling. The best characterized examples of pneumococcal pher-

otype–receptor pairs are that of CSP–ComD and BIP–BlpH [81,92,121]. Other signaling

peptides such as VP1 and BriC also encode for multiple alleles and suggest the existence

of pherotypes, yet their cognate receptors have not been discovered [22,23].

A pneumococcal cell encodes for multiple peptides that mediate intercellular communi-

cation. Strains encode for a distinct pherotype for each of the peptides they possess. As

such, this has given rise to a diversity of pherotype combinations among the strains at

the population level. For each of these peptides, strains that respond to 1 pherotype are

grouped together into a “pherogroup” for the given peptide. While 2 strains may belong

to the same pherogroup for peptide A, they may be placed in different pherogroups for

peptide B. For instance, even though BriC is induced upon CSP-mediated competence

activation, there is no association between CSP pherotypes and alleles encoding for BriC

among pneumococcal strains [23]. Such an arrangement allows for an additional level of

control during intraspecies kin identification. Alternatively, nonidentical distribution of

strains into distinct pherogroups for different peptides may expand the repertoire of

intraspecies interactions. This may be especially important during episodes of multi-

strain infection. Further, this also presents an opportunity for granularity in the regula-

tion of a subset of genes within the cell. In the example above, BriC may serve as an

additional point of entry into regulation of a subset of genes in the cell. This form of reg-

ulation may be efficient for a population, wherein the cells can optimally expend their

energy in carrying out the desired phenotypic effect.

Given the existence of different pherotypes of CSP in pneumococcus, an intriguing ques-

tion was whether these polymorphisms in CSP pherotypes alter the pneumococcal popu-

lation structure. It was hypothesized that existence of pherotypes may facilitate

recombination among strains belonging to the same CSP pherogroup, resulting in the

maintenance of a genetically diverse subpopulation within the species [122,123]. How-

ever, mounting evidence has suggested that there is no increased genetic exchange

between strains belonging to the same CSP pherogroup. Instead, CSP-mediated fratri-

cide facilitates recombination between strains with varying CSP pherotypes [124,125].
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high cellular density, increase in pH, oxygen availability, and antibiotic stress [68,69,71–74]. In

addition to diffusing through the environment, CSP signals to the neighboring cells through

other mechanisms that include autocrine signaling and cell–cell contact [74,82,83]. Activation

results in transcriptional changes in up to 10% of a strain’s genes [75,84]. The best character-

ized response is activation of the transformation machinery, allowing incorporation of foreign

DNA by recombination, and, in doing so, contributing to generation of genetic diversity by

exchange of alleles and changes in gene possession (Fig 2). The exchange of genetic material

within the pangenome tests novel genetic combinations where individual alleles or gene frag-

ments have already overcome pruning by selection.

Competence activates BriC, a widespread double-glycine peptide, up-regulated during the

early phase of competence activation [23,24]. In addition to the competence-dependent regu-

lation, a subset of clinically important pneumococcal strains contains a promoter insertion

(RupB1) that provides for a competence-independent mechanism of briC induction. BriC

stimulates biofilm development and colonization in a murine model. A pathway that connects

Fig 2. Hierarchical activation of multiple double-glycine peptides. The competence pathway is turned on by activation of ComDE by the double-

glycine peptide, CSP. Competence induction by CSP results in transcriptional activation of a number of double-glycine peptides including BIP, CibAB,

and BriC, each of which have phenotypic consequences. Activation of the competence pathway also allows for uptake of DNA and generation of genetic

diversity. The schematic diagram illustrates ComE-dependent induction of briC along with other early competence genes. Upon being exported through

ComAB, intercellular communication via BriC promotes biofilm development. This highlights the interconnectedness of mechanisms that impart

genetic and phenotypic diversity. The design architecture that allows for hierarchical activation of different intercellular communication peptides may

provide an opportunity for alternative activation of subsets of genes without expending energy to turn on the entire pathway. BIP, bacteriocin-inducing

peptide; BriC, biofilm-regulating peptide induced by competence; competence-induced bacteriocin; CSP, competence-stimulating peptide; GG, double-

glycine; TCS, two component systems.

https://doi.org/10.1371/journal.ppat.1008931.g002
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competence and biofilm development increases opportunities for DNA uptake and generation

of diversity (Fig 2). There are 19 different alleles of briC in the pneumococcal population, yet

most strains encode for 1 of 2 major alleles. Interestingly, there is no clear correlation between

CSP pherotypes and briC alleles. Finally, a murine study analyzing evolution of pneumococcal

population during colonization of a single strain captured nonsynonymous mutations in cod-

ing sequence of briC that were fixed in the population. These data suggest that briC is either

linked to a genotype under selection or that briC itself is under selective pressure during long-

term carriage [85].

Microbial competition. Intra- and interspecies competition is part of the pneumococcal

lifestyle in the respiratory tract. Bactericidal activity is generated through small molecules from

the double-glycine and lanthionine-containing peptide families [20,31,36,66]. The ability to

restrict the growth of competitors is important for bacterial colonization. Moreover, victims

may serve as a source of DNA, increasing the potential for evolution.

Competence activation leads to the production of many of these effector molecules, includ-

ing CibAB and BIR locus. The double-glycine peptides CibAB are triggers for allolysis or lysis

in trans and are responsible for lysis of noncompetent cells in a cell contact–dependent man-

ner [20]. Similar to the Lactococcus bacteriocin IFPL105, this fratricide is thought to be carried

out by an insertion of the bacteriocin in the membrane of sensitive cells leading to a depletion

of their cellular energy [86,87]. Thereafter, lysis is caused by the action of cell wall hydrolases

that include autolysin LytA, lysozyme LytC, and murein hydrolase CbpD [20,87]. The trans-

membrane peptide CibC protects cells against allolysis by CibAB [87]. The nutrients and DNA

released from noncompetent cells by CibAB may benefit the attacking cells [87]. In a murine

model of colonization, the allolysis induced by CibAB provides resident strains the ability to

resist competition and colonization by invading strains [88].

The BIR encodes a wide variety of effector genes that confer either bactericidal activity or

immunity from their inhibitory action [21]. The BIR locus is syntenic, yet the bacteriocins

(putative and characterized) and immunity proteins vary extensively across strains. The prod-

ucts of blpIJ, blpMN, and blpK have confirmed bactericidal activity. These are double-glycine

peptides, exported by BlpAB, and cotranscribed with cognate immunity proteins [31,36]. All

these peptides display interstrain activity, and, in vivo, the BlpMN and BlpIJ bacteriocins pro-

vide strains with a competitive advantage over immunity-deficient strains during colonization

[25,31]. Beyond pneumococcus, expression of the bacteriocin locus also inhibits some other

gram-positive bacteria including Streptococcus pyogenes, Streptococcus mitis, Streptococcus ora-
lis, and Lactococcus lactis but not others such as Streptococcus mutans, E. faecalis, or Listeria
monocytogenes [36].

The expression of the BIR loci is induced by BIP, which is encoded by blpC and upstream

of BIR [19,36,89–91]. Analogous to CSP, BIP binds a membrane-bound histidine kinase

(BlpH), and there is specificity between the peptide and its receptor [92]. This specificity

restricts crosstalk between competing pherotypes. Similar to the activation of the competence

pathway, expression of BIP is induced by antibiotics and increases in pH [32]. Moreover, there

is crosstalk between the competence and bacteriocin systems, wherein the production of BIP is

induced upon CSP stimulation [33].

Another class of bacteriocins is the lanthionine-containing peptides, of which pneumolan-

cidin (pld) is characterized [66]. The pld locus is rare across pneumococcal isolates and charac-

terized by 4 tandem putative short peptide homologs (PldA1–PldA4). Three of these 4

peptides, PldA1–3, are required for the cell’s bactericidal activity, while the fourth peptide

PldA4 is dispensable for the phenotype [66]. In addition to their bactericidal properties, pneu-

molancidins (PldA1–3) serve as autoinducing signaling peptides that signal through the histi-

dine kinase encoded within the locus (pldK) resulting in activation of the pld locus [66].
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Immunity is conferred by a neighboring ABC transporter, PldFE. The signaling and bacteri-

cidal role of these peptides are interconnected: when signaling by Pld peptides is low, PldA2

does not induce bacterial inhibition [66]. In addition, pneumolancidins provide pneumococcal

strain with a competitive advantage during colonization in mice [66].

Finally, a comprehensive comparative genomic screen reveals many other peptides, with

varied distributions across pneumococcal strains (from rare to core), as well as unique to

pneumococcus or shared across streptococcal species [27]. Many are organized into operons

with putative transporters, modification proteins, or immunity proteins. The diverse distribu-

tions within pneumococcus strains and related species is consistent with roles in intra- and

interspecies microbial competition.

Impact of cell–cell communication systems on environmental adaptation. The pneu-

mococcus has a network of cell–cell communication systems that modulate its adaptation to

the host environment. Pneumococcus can only use sugars for the generation of its metabolic

energy [93]. Further, sugars are used for capsule production and perhaps signaling [94]. In

addition, transport of sugars by phosphotransferase systems (PTS) can trigger phosphoryla-

tion-dependent signal pathways [95,96]. Moreover, degradation of host sugars is not only a

source of nutrients but also a major contributor to host adhesion, colonization, and virulence.

The expression of several cell–cell communication peptides is responsive to levels of host

carbohydrates: SHP144 and SHP939 are induced in mannose and galactose and PhrA in

galactose. Further, these peptides, as well as PhrA2 and VP1, are repressed in rich media

[22,43,44,46]. The Rgg144/SHP144 system is core; it is activated when the autoinducing peptide

SHP144 is imported into the cell and binds Rgg144. Rgg144 is negatively controlled by master

nutritional regulator CodY and glutamine/glutamate metabolism [97,98]. It has an extensive regu-

lon, which includes regulation of genes that have a function in replication, recombination, transla-

tion, and nucleotide transport and metabolism [43]. The most highly induced locus encodes the

double-glycine signaling peptide VP1. It also controls multiple sugar transporters and represses

capsule biosynthesis [43,79]. Further, the regulon is sugar specific, with a broad response in man-

nose and a restricted response in galactose. The mechanism underlying this sugar-specific regula-

tion is unknown but may emerge from a regulatory web that includes multiple Rggs.

SHP939 is an autoinducing peptide that positively regulates Rgg939; this system is part of

the accessory genome [42,43]. The diversity of genes regulated by Rgg939/SHP939 varies in

response to environmental conditions, with an extensive regulon when grown on mannose

and a limited regulon in galactose [42,43]. The regulon is predicted to function in cell division,

iron transport, cell membrane biogenesis, and metabolism among others. Rgg939 also regu-

lates capsule synthesis. However, both negative and positive regulation have been reported in

strain D39, and the factors responsible for the differences remain to be determined [42,43].

Zhi and colleagues suggest that Rgg939 can directly inhibit expression from the capsule locus

[43]. Related to this, Roger Junges and colleagues showed that Rgg939 expression positively

regulates the expression of genes involved in production of compounds present in capsular

polysaccharides of serotypes 12A and 12F, but outside the capsular locus [42]. Rgg939/Shp939

signaling negatively regulated biofilm development on A549 epithelial cells [42]. In mice,

Rgg939/SHP939 was shown to be associated with a reduction in bacterial fitness in a pneumo-

nia model [42], or alternatively, increased nasopharyngeal colonization and virulence in car-

riage and pneumonia models [43].

The Rgg systems do not act in isolation, but instead appear to form a connected network.

In accordance, the presence of noncognate Rgg regulators is required for maximal induction

of SHP144 and SHP939 [43]. Further, Rgg1518 controls its adjacent locus (SPD_1513–1517),

and these genes are also regulated by Rgg144 and Rgg939 [43]. This crosstalk may extend

beyond the boundaries of species. The sequence of SHP939 is identical to that of SHP3 found
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in S. pyogenes and differs by 1 residue from SHPs in Streptococcus agalactiae and S. mitis
[42,48,99]. This similarity in SHP sequences may allow pneumococcal Rgg systems to be

impacted by other resident bacteria.

The web of Rgg regulators and associated peptides extends beyond the RRNPP peptides

and includes double-glycine peptides. Rgg144 is a positive inducer of VP1, and the Rgg-regu-

lated transporter of double-glycine peptides (RtgR) is a positive inducer of a locus which

encodes multiple double-glycine peptides. In these instances, the Rgg and peptides are adja-

cently located on the genome [22,25,43]. The gene rgg144 is down-regulated by CodY, suggest-

ing that once CodY-mediated inhibition is relieved, Rgg144 enhances transcriptional

activation of vp1. VP1, present in the vast majority of strains, is 1 of the most highly expressed

transcripts when pneumococci are exposed to host cells [22,24]. Functionally, VP1 promotes

biofilm development and positively regulates a genomic locus responsible for processing,

import, and catabolism of hyaluronic acid [79,100,101]. In animal models, VP1 is a virulence

factor that contributes to carriage, dissemination, and mortality [22,79].

RtgR is encoded with a SHP (RtgS) and an ABC transporter. RtgS activates RtgR, and some

strains encode 2, highly similar, copies of rtgS. The transporter secretes double-glycine pep-

tides localized downstream (Table 1, S1 Table) [25]. There is high diversity in the distribution

of rtg-associated double-glycine peptides present across the pneumococcal population: there is

variability in the encoded peptides as well as the number of peptides present in a strain. The

function of these peptides is unclear, but a functional rtg locus provides a competitive advan-

tage during colonization of the mouse nasopharynx.

The PlcR family is a second family of peptide/regulator systems regulated in response to

nutritional sensing and induced in vivo [44]. The core TprA/PhrA and the pneumococcal

molecular epidemiology network clone 1 (PMEN1)-associated TprA2/PhrA2 systems induce

Phr and lanthionine-containing peptides. The Phr peptides bind to their cognate Tpr regula-

tor. The phrA promoter contains a catabolite-responsive element (CRE) region for binding by

carbon-catabolite repressor CcpA [102]. In high glucose, binding of CcpA to the phrA pro-

moter inhibits its transcriptional activation. Instead, phrA is expressed in the presence of galac-

tose and mannose [26,45,46]. GlnR, a regulator of glutamine and glutamate metabolism, also

binds the promoter region of tprA activating its expression in the presence of multiple different

sugars [46]. Thus, activation of the TprA/PhrA signaling cascade is regulated by a complex net-

work of different metabolic pathways.

After its import, the mature PhrA peptide binds to TprA regulator releasing it from the

DNA. TprA is usually a negative regulator, such that PhrA promotes gene expression. This

includes genes involved in sugar metabolism, neuraminidase, genes neighboring and regulated

by Rgg1518, and a locus for the synthesis and processing of lanthionine-containing peptides

[26,45]. In an in vivo setting, the high abundance of galactose and mannose in the host glycans

and the nasopharynx [14,15] are expected to turn on the TprA/PhrA signaling system. PhrA

promotes virulence in a chinchilla otitis media model and murine models of pneumonia and

septicemia [45,103]. Evidence that anti-peptide therapies may be effective in combating pneu-

mococcal disease comes from anti-PhrA peptides, where soluble linear molecularly imprinted

polymers (LMIP) targeting PhrA dramatically decreased morbidity in mice [45]. It is curious

that the TprA/PhrA signaling system impacts virulence in the blood, where glucose is in abun-

dance. Perhaps, in this setting, the impact on TprA/PhrA system may be attributed to other

pathways and not to galactose and mannose metabolism [46].

Analogous to TprA/PhrA, PhrA2 interacts with TprA2 resulting in the derepression of the

TprA2 regulon and induced expression of a lanthionine-containing peptide (LcpA), immedi-

ately downstream [44]. There is evidence of unidirectional crosstalk between the TprA2/

PhrA2 and the TprA/PhrA systems (Fig 3) [44]. Presence of PhrA2 activates signaling through
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Fig 3. Example of peptide crosstalk, as seen for PhrA and PhrA2. The blue cell on the left side of the diagram encodes both TprA/PhrA and TprA2/PhrA2. The yellow

cell on the right side of the diagram encodes only for TprA/PhrA. The gene encoding PhrA is induced in galactose and repressed in glucose; its promoter encodes a site for

CcpA catabolite repression. In contrast, phrA2 is not repressed by glucose. Thus, when PMEN1 is grown in glucose, PhrA2 is produced. Moreover, PhrA2 can bind TprA,

partially overcoming repression of the TprA/PhrA system. In accordance, PhrA is also produced in PMEN1 cells grown in glucose. Because PhrA2 is secreted and

imported by the ubiquitous oligopeptide permease system, AmiACDEF, PhrA2 can bind TprA in neighboring cells, independent of strain identity. In vitro, PhrA2

secreted by PMEN1 cells activates gene expression of tprA in both PMEN1 and non-PMEN1 cells. This figure illustrates cells in rich media, where signaling of non-

PMEN1 cells is reduced. In the top panel (condition A), in the absence of input from the neighboring PMEN1 strain, TprA is bound to DNA, inhibiting gene expression.

In the lower panel (condition B), in the presence of peptides from the neighboring PMEN1 strain, TprA/PhrA system is induced by exogenous peptides, ultimately

inducing production of endogenous PhrA. PMEN1, pneumococcal molecular epidemiology network clone 1.

https://doi.org/10.1371/journal.ppat.1008931.g003
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the TprA/PhrA system resulting in an induction of the TprA regulon. In contrast, the presence

of PhrA does not activate the expression of TprA2 regulon. Interestingly, PhrA2 from a

PMEN1 strain can relieve the inhibition of the noncognate regulator TprA in a non-PMEN1

strain. PhrA is normally induced in the presence of galactose, while PhrA2 regulation has not

been shown to be dependent on carbon source [26,46]. This crosstalk may allow the induction

of PhrA in conditions where PhrA2 is induced and galactose is not the main carbon source.

This interaction highlights the potential of the Tpr/Phr systems to influence interstrain com-

munication in multistrain colonization events.

Perspectives and conclusions

The diversity of peptides encoded by the pneumococcus highlights the importance of commu-

nity-level phenotypes in introducing genetic diversity, microbial competition, and environ-

mental adaptation. Several studies demonstrated the contribution of intercellular

communication in pneumococcal virulence. Additional studies are required to map the spatio-

temporal expression of these systems during the course of infection.

The upper respiratory tract is the resident niche for many bacterial species [104]. To estab-

lish itself in the host environment, pneumococcal cells must survive the competition and resist

challenges mounted by other resident species. Pneumococci produce numerous peptides

that mediate bactericidal activity either directly (e.g., Blp peptides or lantibiotics) or indirectly

by activating downstream molecules (e.g., activation of CibAB or CbpD by CSP). While

some of these bacteriocins are characterized, many putative bacteriocins await functional char-

acterization, especially in the context of target strains/species and environmental conditions

that stimulate their synthesis.

Multiple pneumococcal peptides are associated with biofilm development, including CSP,

BriC, and VP1. Biofilms play a critical role in carriage and disease [77,105–110]. Carriage

includes a biofilm mode of growth, which itself enables local cell–cell communications (by

peptides and AI-2) and uptake of DNA supplied in the biofilm matrix. Further, biofilms pro-

vide a platform for phenotypic heterogeneity, an underexplored topic, perhaps contributing to

pneumococcal fitness in chronic infections and adaptation to host niche. In addition, biofilms

promote pathogenesis. They not only serve as a ground from which bacteria can disseminate

but also bacteria disseminated from biofilm are more virulent than their biofilm or planktonic

counterparts [111]. In summary, pneumococcal signaling peptides and biofilms are tightly

connected: local environments in biofilms likely promote conditions for cell–cell communica-

tion and peptides to influence biofilm development and dispersion to other tissues and new

hosts.

The control of regulatory networks by peptides allows the pneumococcus to quickly

respond to its environment, not only at the level of an individual cell but also at the level of the

entire population. Crosstalk between systems and regulation of a pathway by multiple peptides

allows the different signals to be integrated, presumably increasing the dynamics and complex-

ity of responses. Studies have revealed that multistrain pneumococcal co-colonization is a rela-

tively common occurrence [112–115], highlighting the importance of peptide exchange across

strains. Crosstalk has been documented for PhrA2 and PhrA (Fig 3). Further, peptides from

the same family or diverse families can signal in the same pathway. For instance, signaling

through CSP induces multiple double-glycine proteins, and SHP144 induces the levels of VP1,

a double-glycine peptide. This hierarchy of peptide activation depicts the existence of multiple

points of entry into activation of biological pathways. It indicates that the activation of these

pathways is tightly controlled and represents related but different possibilities. One possibility

is that different signal combinations allow for induction of an entire pathway or section(s) of

PLOS PATHOGENS

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1008931 October 29, 2020 13 / 20

https://doi.org/10.1371/journal.ppat.1008931


the pathway, providing granularity in the type, magnitude, and metabolic costs associated with

a response. Alternatively, the cell may activate peptide signaling to prepare itself for the induc-

tion of downstream pathways upon encountering suitable conditions.

Antibiotic resistance is a global public health concern; hence, there is an urgent need to

develop effective anti-infectives. Nonantibiotic anti-infectives are expected to reduce the emer-

gence of antibiotic resistance. Different strategies being used to develop compounds that will

disrupt cell–cell communication include inhibition of signal production, signal degradation,

or blocking signal transduction [116,117]. The use of chemical compounds has been shown to

disrupt Rgg/SHP signaling and consequently biofilm development in S. pyogenes and some

other streptococcal species [118]. In pneumococcus, the use of competitive analogs to CSP has

been shown to inhibit competence development and horizontal gene transfer [119]. Further,

anti-infectives in the form of soluble LMIP that target PhrA peptides decreased pneumococ-

cus-mediated morbidity in mice [45]. How the different anti-infectives influence bacterial fit-

ness and contribute to resistance development remains to be tested. The diversity of cell–cell

communication systems in pneumococcus provides numerous opportunities to explore the

different possibilities. The study of community level phenotype of S. pneumoniae provides

opportunities for developing novel anti-infectives targeting peptide-mediated systems as well

as the pathways modulated by these systems.

Supporting information

S1 Table. Protein sequences for the pneumococcal peptides described in this article.
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