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TNF, lymphotoxin (LT) and their receptors are expressed constitutively in the thymus. It
remains unclear whether these cytokines play a role in normal thymic structure or function.
We have investigated thymocyte differentiation, selection and thymic organogenesis in gene
targeted mice lacking LTc, TNF, or both (TNF/LTc-/-). The thymus was normal in
TNF/LT-/- mice with regard to cell yields and stromal architecture. Detailed analysis of t3
and y6 T cell-lineage thymocyte subsets revealed no abnormalities, implying that neither TNF
nor LT play an essential role in T cell differentiation or positive selection. The number and
distribution of thymic CD11c+ dendritic cells was also normal in the absence of both TNF and
LTc. A three-fold increase in B cell numbers was observed consistently in the TNF/LTt-/-

thymus. This phenotype was due entirely to the LTc deficiency and associated with changes
in the hemopoietic compartment, rather than the thymic stromal compartment of LT-/- mice.
Finally, specific V[8+ T cell deletion within the thymus following intrathymic injection of
staphylococcal enterotoxin B (SEB) was TNF/LT independent. Thus, despite the presence of
these cytokines and their receptors in the normal thymus, there appears no essential role for
either TNF or LT in development of organ structure or for those processes associated with T
cell repertoire selection.
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INTRODUCTION

The thymus provides the microenvironment neces-

sary for the development of T cells from lymphoid
progenitor cells as well as for selective elimination of
T cells that are potentially autoreactive. This process,

termed negative selection, inhibits maturation of
those cells expressing receptors reactive to self anti-

gens and hence promotes the maintenance of self tol-
erance (Kisielow and von Boehmer, 1995).
Intrathymic negative selection involves active elimi-

nation of cells through the induction of apoptosis

* Correspondence: Dale I. Godfrey, Department of Pathology and Immunology, Monash Medical School, Commercial Road, Prahran,
VIC. 3181, Australia. Phone: 61 3 99030761, Fax: 61 3 99030731, email: Dale.Godfrey@med.monash.edu.au

? Jonathon D. Sedgwick, DNAX Research Institute, 901 California Avenue, Palo Alto, CA. 94301, USA. Phone: 4158529196. Fax:
51961200. e-mail: jon.sedgwick@dnax.org

61



62 ADRIAN R GRECH et al.

(programmed cell death) in negatively selected cells
(Surh and Sprent, 1994). This appears to involve a

signal through the TCR of the developing thymocyte
in conjunction with second signal(s) which are as yet
poorly defined (Page et al., 1993; Page et al., 1996).

Both TNF and LT have a well documented role in
the induction of apoptosis in general, inducing pro-
grammed cell death through signalling via the p55
TNF receptor (TNFRI) and LTI3R (Satin et al., 1995;
Ware et al., 1995; Browning et al., 1996; Nagata,
1997). Several studies have demonstrated constitutive

expression of TNF in the thymus in vivo (Giroir et al.,
1992; Murphy et al., 1992; Wolf and Cohen, 1992;
Deman et al., 1996), moreover, the thymus was the

only organ in which the TNF promoter was constitu-

tively active (Giroir et al., 1992). Similarly, LTc and

LT3 are constitutively expressed in the thymus (Wolf
and Cohen, 1992; Pokholok et al., 1995), as are the
TNF receptors TNFRI (p55) and TNFRII (p75) to

which TNF and the LTc3 homotrimers bind (Ryffel et

al., 1991 Tartaglia et al., 1991; Murphy et al., 1994).
The receptor for the membrane bound LTo/13 com-

plex, LT3R, has been shown to be highly expressed in

thymic epithelial tissue (Ware et al., 1995). TNF is

produced by both immature and mature thymocyte
subsets following stimulation in vitro (Fischer et al.,
1991; Zlotnik et al., 1992). Several studies have
implicated a role for TNF in T cell differentiation
and/or proliferation, at least in vitro. TNF has been
implicated as an important stimulatory factor at sev-
eral points of T cell differentiation (Suda et al., 1990;
Suda et al., 1990; Suda and Zlotnik, 1992; Suda and
Zlotnik, 1992; Zuniga-Pflucker et al., 1995). Con-
versely, TNF leads to rapid apoptosis of immature

thymocytes in cell suspension (Hernandez-Caselles
and Stutman, 1993) and mice overexpressing TNF in
their T cells have reduced CD4+CD8+ double positive
(DP) thymocyte numbers (Probert et al., 1993). TNF
expression also coincides with the ability of fibroblast

antigen presenting cells to induce negative selection

in vitro (Page et al., 1993). Although many biological
effects of TNF appear to occur via TNFRI, TNFRII
appears to be both necessary and sufficient for at least
some aspects of TNF mediated thymocyte stimulation

(Tartaglia et al., 1991; Grell et al., 1998). LTt/3 and

TNF play an essential role as mediators of lymphoid
organ ontogeny and maintenance of lymphoid struc-

ture (De Togni et al., 1994; Pasparakis et al., 1996;
Koni et al., 1997; Korner et al., 1997; Cook et al.,
1998), at least in part through induction of B and T
cell homing chemokines (Ngo et al., 1_999).

Despite this abundance of indirect evidence sug-
gesting a role for TNF and LT in thymic T cell devel-

opment, clear support for such a role in vivo has been
elusive. Antibody blocking experiments (Sytwu et al.,
1996) have failed to indicate a role for TNF in T cell

development or negative selection in vivo. However,
such studies may be complicated by the difficulty of

completely saturating antigenic sites in the thymus,
particularly with non-saturating doses of antibody
(Gabor et al., 1997), due to the, at least partially effec-
tive, blood thymus barrier (Raviola and Karnovsky,
1972). Studies with TNFRI/RII deficient mice (Pfef-
fer et al., 1993; Page et al., 1998), or transgenic mice

expressing soluble LTI3R and TNFRI (Ettinger et al.,
1998), showed no major thymic abnormalities

although in vitro, but not in vivo negative selection,
was impaired in the absence of TNFR signalling
(Page et al., 1998). Given the constitutive expression
of TNF/LT molecules and their receptors in the thy-
mus, it is surprising that no clear role for these factors
in thymus/T cell development has been identified thus
far. However, considering that TNF and LT share
some functional characteristics, it remained possible
that redundancy in the activity of these factors, and/or

their receptors, had obscured their role in thymus/T
cell development in these studies. Specifically, signal-
ling of membrane LTt/3 via the LTR would be
maintained in TNFRI/RII deficient mice (Page et al.,
1998), while signalling via TNFRII may be main-

tained in TNFRI deficient mice (Pfeffer et al., 1993)
and transgenic mice expressing soluble LT3R and
TNFRI (Ettinger et al., 1998).
We hypothesized that TNF and/or LT, through

effects on lymphoid ontogeny or through their capac-
ity to induce apoptosis, may have an as yet unidenti-

fied function in thymic physiology/T cell

development. To test this, we used previously
described C57BL/6 mice with targeted disruption of
the TNF, TNF/LTc (Korner et al., 1997) or LTot
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(Riminton et al., 1998) genes. Mice in which the gene
for LTa is deleted lack both the secreted LTot3 and

predominant membrane LTctl32 forms of the LT
molecule, the latter by virtue of the fact that expres-
sion of the LT[3 molecule at the cell-surface fails or is

non-functional in the absence of LTc (Browning et

al., 1993). Thus, TNF/LTc-/- mice are completely LT
and TNF-deficient, and not only lack lymph nodes
and Peyer’s patches (Eugster et al., 1996) but exhibit

profound changes to the microarchitecture of the

spleen that are greater in magnitude to that seen in
mice that lack either cytokine alone ((Korner et al.,
1997; Riminton et al., 1998) and unpublished obser-

vations). We have used these mice to perform a com-

prehensive analysis of thymocyte subsets and thymic
structure. This included detailed examination of thy-
mocyte differentiation, including positive and nega-
tive selection (mediated by the superantigen SEB), as

well as non-T lineage cells (B cells, macrophages,
dendritic cells and thymic stromal cells). The results
indicated no major differences in T lineage develop-
ment relative to wild-type (WT) mice. However,
increased numbers of B cells were identified in the
TNF/LTot-/- thymus by flow cytometry and immuno-

histology and this was attributed to the absence of LT.
In summary, this study indicates that TNF and LT at

best play a dispensable or redundant role in most

aspects of intrathymic T cell development.

RESULTS

Thymic Structure is Maintained in the Absence
of TNF and LT

To determine whether the absence of both TNF and
LT affected the integrity of the thymus, TNF/LTct-/-

thymuses were examined for gross structural abnor-
malities and for microarchitectural changes. These
thymuses were macroscopically normal, comparable
to WT thymuses in terms of tissue mass and cellular-

ity. However, TNF/LTc-/- thymocyte viability, as

assessed by Trypan blue dye exclusion, was slightly
but reproducibly lower than that of WT mice

(Table I).

TABLE Thymic mass and cellularity in TNF/LTct-/- mice

Variable W7 TNF/LTot-/-a

Thymic mass (rag) 69_+2b (17) 65+5 (17)

Total thymocytes (xl0-8) 2.1+0.1 (21) 2.0+0.1 (21)

Total viable thymocytes (x10-8) 1.9_+0.1 (21) 1.7_+0.1 (21)

Non-viable thymocytes (%) 8.7_+0.6 (21) 11.8+0.8 (21)

Thymuses were removed from 6-10 week old female WT and
TNF/LTa-/- mice, weighed then disrupted to release thymocytes
which were counted and total or viable yields determined. Within
this age range, no age-related differences were observed for any
parameter examined.

a. Values are per thymus
b. Standard error of the mean
c. Number of thymuses examined
d. Viability determined by trypan blue exclusion
e. Significantly different (Mann-Whitney U test, p < 0.01)

Thymic stromal compartments were examined by
immunohistology with mAb that facilitated the identi-

fication of particular regions of the thymus. These

included molecules such as MHC class II, expressed
by the fine cortical epithelial network and more

densely expressed in the thymic medulla, and

MTS33, expressed by cortical thymocytes and iso-

lated medullary epithelial cell clusters (Godfrey et al.,

1990) both of which enabled clear distinction

between cortex and medulla (Figure 1). No differ-

ences were detected in the thymus from WT versus

TNF/LTot-/- mice. Lymphocyte markers CD4 (not
shown) and CD8 (Figure 1), both densely label the

cortex and are less frequent in the thymic medulla.

These also revealed no differences between the

TNF/LTc-/- and WT thymus. MTS 12 (not shown) and

MTS16 (Figure 1) label thymic blood vessels and

associated connective tissue lining the perivascular

space, respectively (Godfrey et al., 1990). Again, the

staining pattern with both mAb was identical in thymi
from WT and TNF/LTc-/- mice illustrating conserved

cortical/medullary compartmentalisation and normal

vascular integrity. Thymic dendritic cells, identified

by CD11 c expression (Figure 1), were confined to the

thymic medulla in both WT and TNF/LTct-/- mice.
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Major Thymocyte Subsets are Maintained
in the TNF/LTc"/ Thymus

To determine whether the absence of TNF and LTt
affected proportions of thymocyte subsets,
multi-color flow cytometric analysis of isolated cells
was performed (Figure 2). Plots of CD4 vs CD8 thy-
mocytes from WT and TNF/LTt-/- mice showed no
difference in the proportions of CD4-CDS-,
CD4+CD8+, CD4+CDS-and CD4-CD8+ populations.
tTCR (Figure2) and ?TCR expression (not
shown) of each of these subsets was also examined

revealing marginally fewer etTCR+cells within the
CD4-CDS- population in the TNF/LTt-/- thymus
(p<0.05, Mann-Whitney U-test). This was not

reflected in a loss of NKI.I+tTCR+ cells (NKT
cells) that represent a significant proportion of

cTCR+CD4-CD8 thymocytes (Levitsky et al.,
1991), as these were present in normal numbers in
TNF/LT-/- thymuses (not shown). HSA expression
was also tested as this molecule is down-regulated at a

late stage in medullary thymocyte development, well
after thymocytes reach the CD4 or CD8 single positive
(SP) stage. Again, no differences were detected
between WT and TNF/LTt-/- mice (not shown).

Proportions of Non-T-Lineage Cells in the Thymus
of TNF/LTct"/ Mice

The expression of a range of markers defining non-T
lineage cells within the heterogeneous CD4-CD8- thy-
mocyte subpopulation was examined. Equivalent
numbers of CDllc+ cells (highly enriched for den-
dritic cells) were found in both WT and TNF/LTot-/-

mice, consistent with the data of Figure 1 (not
shown). In contrast, a three-fold increase in B220+

cells and a 2-fold increase in Mac-1+ cells was
detected in CD4-CD8- thymocytes from TNF/LTot-/-

compared to WT mice (Figure 2).

Most B220+ Cells in the TNF/LTt"/" Thymus
Exhibit a Peripheral B2 Phenotype

The majority (>95%) of mature B cells found in the
blood and lymphoid tissues of mice are of the B2 type

with a well defined phenotype (Hardy and Hayakawa,
1994). Most (~90%) B220+ cells in the spleen are

IgDhigh while few express the CD5 antigen that is

characteristic of B1 cells, found particularly in the

peritoneal cavity (Kipps, 1989). In contrast, a high
proportion of B cells in the thymus are CD5+Mac-1+

(Miyama-Inaba et al., 1988). These B cells are

thought to develop within the thymus from a local

progenitor population (Mori et al., 1997). A more

detailed phenotypic analysis was performed to deter-
mine whether the increase in B220+cells within the
CD4- CD8- thymic population in TNF/LTot-/- mice

represented a selective expansion of thymic B cells
(Figure 3A). Of B220+ cells in the WT mouse, around
60% were CD5+re and around 65% IgD-ve, confirm-

ing the over-representation of this atypical subset in
the thymus. In contrast, of B220+cells in the
TNF/LTct-/-, 25% were CD5+ve and around 50%
IgD-ve. Thus, B cells in the TNF/LTc-/- thymus were
enriched for normal peripheral type B2 cells rather
than the thymic variety. This also suggested that the
more numerous Mac-1+ cells in the TNF/LTc-/- thy-
mus (Figure 2) were probably not CD5+IgD-vethymic
B cells but macrophage-lineage cells. Perivascular

lymphocytic infiltrates in the liver and lung of mice

lacking LTc have been described previously (Banks
et al., 1995). Thus, the TNF/LTc-/- thymuses were

examined histologically to determine whether the
increased thymic B cells were present as perivascular
infiltrates. This was tested by double staining thy-
muses for blood vessel-associated connective tissue

using MTS 16, which clearly identifies the outer bor-
der of perivascular spaces, and B cells using
anti-B220. The increased frequency of B cells had no

association with vasculature, but rather were localized

in the thymic parenchyma (Figure 3 B and C).

Identification of the Basis of the Increased B Cell
Numbers in TNF/LTc’/’Mice

To determine the cytokine responsible for increased B
cell numbers in the thymus of TNF/LTot-/- mice, the
proportion of B220+ thymocytes was examined from
mice deficient for either TNF (Korner et al., 1997) or

LTot alone (Riminton et al., 1998). The proportion of
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FIGURE 2 Normal T Cell Phenotype but Increased B Cell and Macrophage Incidence in the TNF/LTt-/- Thymus. Thymocytes from WT or
TNF/LTt-/- mice were triple-labeled for CD4, CD8 and a third marker and analysed flow cytometrically. Filled histograms indicate cTCR,
B220 and CD11b (Mac-1) staining of the four populations defined by CD4/CD8 labeling (regions (R) 1-4). The unfilled histograms indicate
staining of total thymocytes labeled with control hamster mAb (for cITCR) or isotype-matched control rat mAb (for B220 and CDllb).

one TNF/LT(z- -mouse. The proportion of positive cells within each region is given as theFlow cytometric data shown is from one WT and
mean percent _+ SEM of analyses from between 3 and 8 individual mice where n 8 (etITCR), n 6 (B220) and n 3 (CD lb)

CD4-CD8-B220+ cells in TNF-/- thymuses was simi-
lar to that of WT thymuses whereas B220+ cells in
LTc-/- thymuses were increased (Figure 4) and simi-
lar to that observed in the TNF/LTt-/- thymus
(Figure 2). This analysis indicated that the lack of
LTc rather than TNF was responsible for increased B
cell numbers in the TNF/LT(z-/- thymus.
To determine whether the increased B cell numbers

in the LT(z-/- thymus was due to the bone mar-

row-derived lymphoid component, or to some defect
in the thymic stromal elements in the absence of LTt,
irradiation, bone marrow chimeras were established
where either LTc-/- or WT bone marrow cells were

injected into irradiated RAG-1 -/- recipient mice and
left to enable reconstitution to occur (Figure 4).
Despite the presence of WT thymic stroma in both
cases, recipients of LTt-/- bone marrow showed
increased B cell numbers indicating that defects in the
LT-/- hematopoietic compartment underlay the dep-
osition of increased B cells in the thymus.

The Influence of TNF/LTc on Negative Selection
in vivo

The influence of TNF/LTt on intrathymic negative
selection was tested by intrathymic injection of the

superantigen SEB. SEB directly binds to members of
the VI8 TCR family on T cells and MHC-II mole-
cules on antigen presenting cells (Woodland and
Blackman, 1993). Intrathymic injection was used
because systemic treatment with SEB can lead to

non-specific deletion of thymocytes (Lin et al., 1992),
possibly due to the increased levels of TNF that fol-
lows activation of peripheral T cells. Similar,
TNF-mediated, non-specific deletion of non-TCR
transgenic DP thymocytes has been reported follow-
ing peptide-specific stimulation of i.v. adoptively
transferred TCR transgenic T cells (Martin and
Bevan, 1997). Thus, intrathymic injection of SEB
avoided the artefacts associated with systemic T cell
stimulation and the generation of levels of TNF suffi-
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cient in themselves to cause effects on thymus that
would be present in WT but reduced in TNF/LTc-/-

mice. The dose of SEB (5tg) was shown in titration
studies to effectively delete V8+ cells in WT mice

when administered into the thymus, whereas the same
dose administered i.v. did not (not shown), indicating
a local intrathymic effect. Moreover, the proportion of

V8+ splenic T cells was not affected following
intrathymic or i.v. injection of 5tg SEB (M.J. Gabor,
manuscript in preparation). The thymus was removed
20 hours following injection and thymocyte subsets
defined by CD4 and CD8 expression analysed for the
proportion of V[8 expressing cells (Figure 5). The
extent of V[8+ thymocyte deletion within CD4+CD8
and CD4-CD8+ subsets in TNF/LTc-/- mice following
SEB injection was identical to that of WT mice. SEB
treatment did not lead to a decrease in non-SEB reac-

tive V[5+ CD4 or CD8 SP thymocytes in either WT
or TNF/LTt-/- mice, their proportion increasing mar-

ginally due to a marked drop in the number of V[8+

thymocytes.

DISCUSSION

Several studies have suggested a role for TNF and LT
in thymocyte proliferation and differentiation, and in

negative selection (Suda et al., 1990; Suda et al.,
1990; Suda and Zlotnik, 1992; Suda and Zlotnik,
1992; Zuniga-Pflucker et al., 1995). However, studies

using a neutralising anti-TNF antibody, TNF-RI/RII

deficient mice, and transgenic mice expressing solu-
ble LTR or TNFRI have failed to support a role for
these factors in thymus physiology (Sytwu et al.,
1996; Ettinger et al., 1998; Page et al., 1998). It is

important to point out that despite these studies, a

detailed analysis of thymic structure and T cell devel-

opment, including intrathymic positive and negative
selection, has not been carried out in the absence of
both TNF and LT, hence their potential influence

remains unclear. In this study, we have thoroughly
examined many aspects of thymic structure, thymo-
cyte differentiation, positive and negative selection in
mice rendered genetically deficient for TNF and LT,

The thymus appeared grossly normal, with no dif-
ference in cell yield or thymic weight, and no differ-

ence in thymic architecture as defined by a range of
antibodies against thymocytes and stromal cells.
However, we observed consistently a minor albeit sig-
nificant decrease in cell viability among thymocytes
from TNF/LTt-/- mice. It is difficult to be certain

what this means, although it is possible that there is

reduced macrophage activation due to the absence of
TNF, which would slow down the clearance of dead
or dying thymocytes that constantly takes place dur-

ing T cell development (Surh and Sprent, 1994). The
absence of any gross structural abnormalities in these

thymuses contrasts with that of the spleen and lymph
nodes of these mice, where as previously reported, the

sPleens are devoid of B cell follicles and the lymph
nodes are non-existent (Banks et al., 1995; Eugster et

al., 1996; Korner et al., 1997), an effect substantially
due to the absence of LT (De Togni et al., 1994;
Banks et al., 1995; Ettinger et al., 1996; Mackay et

al., 1997). Thus, factors regulating the generation
and/or maintenance of the thymus are clearly distinct

from those controlling the peripheral lymphoid
organs.

Most thymocyte subsets were present in normal

proportions. This suggests that the transition through
early CD3/tTCR-CD4-CD8-triple negative (TN)
stages, and from the TN to the DP stage does not

absolutely depend on either TNF or LTt, despite ear-

lier studies in cell suspension culture showing a posi-
tive influence for TNF on these immature cells (Suda
et al., 1990; Suda et al., 1990; Suda and Zlotnik,
1992; Suda and Zlotnik, 1992; Zuniga-Pflucker et al.,
1995). It is possible that the functions of TNF/LT

are redundant and replaced by other factors in these

mice, but it should also be considered that the influ-

ence of TNF in the earlier studies (all based upon in

vitro experiments) does not represent a physiological
role for this factor at this stage of T cell development.
It should be pointed out that although the total
CD4-CD8- population was normal in TNF/LTc-/-

mice, the increased proportion of B cells and macro-

phages within this compartment must mean that some
other CD4-CD8- cells are correspondingly dimin-

ished. Although a small decrease was detected in the
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WT TNF’I" LT’/" WT-- RAG-l"/" LT’/’-’RAG-I"I"

23.5

B220

FIGURE 4 Increased Thymic B Cells are due to LTct Deficiency in the Lymphoid Compartment of the Thymus. Thymocytes from mice as
indicated were triple-labelled for CD4, CD8 and B220 expression. Histogram profiles represent B220 expression on CD4-CDS- thymocytes
from mice as indicated. The fourth and fifth histograms represent thymocytes from irradiated C57BL/6 RAG-14- mice that were were recon-
stituted with bone marrow cells derived from either WT or LTct-- C57BL/6 mice. Reconstituted thymuses were assessed 12 weeks later,
when engraftment was complete. Histogram profiles of WT, TNF-/- and LTcz-/- thymocytes are representative of at least 3 different mice. The
fourth histogram is derived from mouse and the fifth representative of 2 mice

frequency of cI3TCR+CD4-CD8 cells, this is unlikely
to account for the difference. As lineage marker

(Mac-l, B220, Gr-1, TER119, CD3, CD4, CD8) neg-
ative cells, representing real thymocyte precursors
(Godfrey and Zlotnik, 1993) were not directly investi-

gated it is possible that these cells were also reduced.
However, if this was the case it had no apparent
downstream effects on subsequent T cell subsets.

The increased presence of B cells in the thymus
due to LT deficiency was an unexpected result. This

may be due to dysregulated control over the point at

which thymocytes lose their multilineage potential,
believed to occur between the CD44+CD25 and
CD44+CD25+ TN stages (Godfrey and Zlotnik,
1993), leading to an increase in B cell differentiation

from early thymocyte precursors. However, thymic B
cells are normally considered to be B1 type cells

(CD5+), whereas the increased B cells detected in the

present study more closely resembled conventional

B2 type cells, as found in spleen and lymph nodes
(Miyama-Inaba et al., 1988). An alternative possibil-
ity therefore is that LTt is important in controlling
the trafficking or proliferation of peripheral B cells
that have found their way to the thymus. A more mun-

dane explanation is that the three-fold increase in cir-

culating leukocytes seen in LTt-/- mice (Banks et al.,
1995; Riminton et al., 1998) may simply lead to a

spill-over of B cells (and monocytes, Figure 2) into

the thymus. Perivascular accumulations of lym-
phocytes are seen in some tissues in LTt-/- mice

(Banks et al., 1995). Notably however, the B cells
were not localized to the perivascular space, but

deeper within the tissue (Figure 3). In the absence of a

clearer understanding of the ontogeny and regulation
of B cells in the thymus, it is difficult to speculate any
further on the basis of the B cell increase in LTt-/-

mice.

Our studies have also shown that positive selection

is not associated with TNF/LTc signalling, as post
selection CD4+CD8 and CD4-CD8+ thymocytes
were present in normal proportions. This is not a con-

tentious issue, as these factors have never been asso-

ciated with positive selection. A more equivocal
problem is the role of TNF and LT in intrathymic neg-
ative selection, with evidence for (Hernan-
dez-Caselles and Stutman, 1993; Page et al., 1996;
Page et al., 1998) and against (Sytwu et al., 1996;
Page et al., 1998) a role for TNF in this process, and
no direct evidence either way for LT. The results pre-
sented in this manuscript are the most definitive to

date, as negative selection has been studied in an in

vivo thymic microenvironment which is structurally
normal, yet completely deficient in both TNF and
membrane LTet or secreted LTt3. These results
show that negative selection induced by the superanti-
gen SEB, was clearly TCR-mediated and completely
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Cells Mice Treatment

CD4+8- WT PBS

w’r SEB

TNF/LTx’/" PBS

TNF/I..T’/" SEB

CD8+4" WT PBS

WT SEB

TNF/LTx’/" PBS

Thymus Spleen
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’"i !’"
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TNF/LT4- SEB
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FIGURE 5 Intrathymic SEB Induces Specific T Cell Deletion in TNF/LTc-/- Mice. Groups of three WT and TNF/LTc-/- mice were anesthe-
tized, the thymus exposed surgically and injected with either PBS or 5gg SEB in PBS (10tl), then the incision closed with a single surgical
staple. Twenty hours later, mice were killed and tissues obtained for analysis. Cells were triple-labeled for CD4, CD8 and either VI38 (mAb
F23.1 8.1, 8.2, 8.3) or VI35 (mAb MR9-4) and analysed by flow cytometry. Bars represent the percentage (mean SEM, where appropri-
ate) of VI38 or VI35 cells within the CD4+CD8 or CD8+CD4 thymocyte populations. The data shown here represents the outcome of a
single experiment in which all mice were injected with the same SEB preparation on the same day and then all mice sacrificed and cell phe-
notype examined together en the following day. A second study in which groups of two mice were examined produced a qualitatively identi-
cal outcome but with a marginally reduced magnitude of SEB-induced deletion (PBS-injected thymus essentially as per this figure.
SEB-injected thymus, CD4+CD8-VI38 mean of 13%. CD4-CD8+V38 mean of 7%). Representative spleen data derived from a single
experiment is shown. N.D. not done

independent of these factors. Although superantigens
such as SEB do not bind to the same part of the T cell
receptor as conventional antigen (Woodland and
Blackman, 1993), they do require costimulatory sig-
nals such as CD28 for the activation of peripheral T
cells, suggesting a similar interaction between devel-

oping thymocytes and thymic antigen presenting cells
involved in deletion. Clearly, it is technically very dif-

ficult to measure negative selection in response to a

conventional antigen in non-TCR transgenic mice,
and TCR transgenic TNF/LTt-/- C57BL/6 mice were

not available. Furthermore, analysis of negative selec-
tion in such mice would require at least two mouse

lines including an MHC class I and MHC class
II-restricted TCR transgene to study selection of both
CD4 and CD8 T cells.

Our results clearly demonstrated the rapid deletion
of many SEB-reactive thymocytes within 20 hours of

exposure to this superantigen. This included both less

mature DP thymocytes (not shown) but was more

apparent in the CD4 and CD8 SP thymocyte subsets,
due to the significantly higher levels of TCR expres-
sion in this compartment. Although early studies had
suggested that most negative selection occurs at the
DP stage rather than the SP stage of T cell develop-
ment (Kisielow and von Boehmer, 1990), this is

clearly not absolute (Surh and Sprent, 1994; Kishim-

oto and Sprent, 1997; Kishimoto et al., 1998). The
reason why some SP thymocytes survived this dele-
tion following SEB encounter is uncertain, although it

may reflect variations in the level of maturity among
these cells, such that the most mature ones are resist-
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ant to deletion, as previously reported following
anti-CD3 and SEB challenge in vivo (Kishimoto and

Sprent, 1997; Kishimoto et al., 1998).
Taken together, this study provides the most defini-

tive results to date of the role of TNF and LT in

thymic function, clearly showing that both cytokines
are dispensable for most aspects of intrathymic T cell

differentiation, including early thymocyte differentia-

tion, positive and negative selection and maintenance

of thymic structure. However, the results indicate

minor roles for these factors, including maintenance

of cell viability in the thymus, and possibly a role for
LTc in the generation or maintenance of B cell num-
bers in the thymus.

MATERIALS AND METHODS

Animals

Specific pathogen free WT female C57BL/6 and
C57BL/6 RAG-1 -/- (Spanopoulou et al., 1994) mice
were purchased from the Animal Resources Centre,
Perth, Australia. C57BL/6-strain TNF- /-, LTct-/-, and
TNF/LTc-/- mice were generated by direct targeting of
C57BL/6 embryonic stem cells at the Centenary Insti-

tute, Sydney, Australia as described (Korner et al., 1997;
Riminton et al., 1998). Mice were housed under specific
pathogen free conditions in the Centenary Institute Ani-
mal Facility and used at 6-10 weeks of age.

Cell Suspensions

Tissues were removed and gently ground between the
frosted ends of microscope slides in PBS containing
5% FCS and 0.02% Na-Azide. Cells were washed by
pelleting and resuspending in the same buffer. Cell
numbers and viability were determined using a hemo-
cytometer and Trypan blue (Sigma Chemical Co.
Castle Hill, NSW, Australia) dye exclusion.

Flow Cytometry

Lymphocyte cell suspensions were stained with fluo-
rescent antibodies to mouse markers: anti-CD4-phy-

coerythrin (PE) or allophycocyanin (clone RM4-5;
Pharmingen, San Diego, CA. USA); anti-CD4-FITC
or tricolor (clone CT-CD4; Caltag Laboratories, Burl-

ingame, CA. USA); anti CD8-FITC or tricolor (clone
CT-CD8; Caltag Laboratories); anti-c13TCR-FITC or

PE (clone H57-597; Pharmingen); anti-ySTCR-FITC
(clone GL3; Pharmingen); anti-HSA-PE (clone
M1/69; Pharmingen); anti NKI.I-PE (clone PK136;
Pharmingen); anti Mac-I-PE (clone M1/70; Pharmin-

gen); anti B220-PE (clone RA3-6B2; Caltag Labora-

tories); anti-CD5-biotin (clone 53-7.8; a gift of Dr.
Paul Lalor, Walter and Eliza Hall Institute, Mel-
bourne, Australia, grown and conjugated in house at

Centenary Institute) detected using streptavi-
din-FITC (Pharmingen); anti-CD 11 c (clone N4.18;
grown in house at Centenary Institute, courtesy of Dr.
Deborah Strickland) detected using goat anti-hamster

Ig-FITC (Caltag Laboratories); anti-IgD (clone AF6-
122.2; courtesy of Dr. Paul Lalor, grown in house at

Centenary Institute), detected using goat anti-rat

Ig-FITC (Caltag); anti-V[38 (clone F23.1; grown in

house at Centenary Institute) detected using sheep
anti-mouse Ig-FITC (Sigma Chemical Co);

anti-V135-FITC (clone MR9-4). Isotype controls
included rat IgG2b-FITC (clone R35-95; Pharmin-

gen); rat IgG2a (clone R35-38; Pharmingen); poly-
clonal hamster Ig-FITC (Caltag Laboratories).
Fluorescence data was obtained using a FACScanTM

(Becton Dickinson, San Jose CA. USA) or FACStar
PlusTM (Becton Dickinson) and analysed using CEL-
LQuest 3.0 softwareTM (Becton Dickinson).

Immunohistochemistry

Six gm cryosections were labelled with unconjugated
rat anti-mouse antibodies including anti-CD4 (clone
GK1.5); anti-CD8 (clone 53-6.7); anti-Mac-1 (clone
M1/70); anti-B220 (clone 5H-3, grown in-house at

Centenary Institute); anti MHC class II (I-Ab) (clone
Tib 120); anti-thymic stromal cell markers MTS 12,
MTS 16, MTS 35 (courtesy of Dr. Richard Boyd,
Monash University). These unconjugated antibodies

were detected using rabbit anti-rat-Ig-horseradish per-
oxidase (HRP) (DAKO, Australia). Other antibodies
used included: hamster anti-mouse CDllc (clone
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N4.18) detected using goat anti-hamster Ig-biotin;
and anti-B220-biotin (5H-3, Centenary Institute).
Biotinylated antibodies were detected using streptavi-
din-HRP or streptavidin alkaline phosphatase (AP)
(DAKO). Negative control antibodies included rat

IgG2a (clone R35-95; Pharmingen), rat IgG2b (clone
YKIX) (grown in house at Centenary Institute), and
hamster IgG (clone UC8-4b3; Pharmingen). Single
and two color immunohistological procedures were as

described (Sedgwick et al., 1993).

Intrathymic Injections with SEB

Mice were anesthetized by i.p. injection of (0.75mg)
ketamine hydrochloride (Ketapex, Apex Laboratories

Pty. Ltd. St. Marys, NSW, Australia) and (0.35 mg)
Xylazine (Rompun, Bayer Ltd. Pymble, NSW. Aus-
tralia). Once anesthetized, the thoracic cavity was

opened via a small midline incision, and 5 gg of SEB
(Sigma) in 10 gl of PBS, or PBS alone, was injected
intrathymically. The incision was closed using a sin-

gle surgical staple and the mice injected with 0.02 mg
Buprenorphine analgesic (Temgesic, Reckitt & Col-
man Products Ltd. Hu,ll, UK) and allowed to recover
in a warm environment. Mice were killed 20 hours
after treatment and tissues harvested.

Generation of Radiation Bone Marrow Chimeras

C57BL/6 RAG-1 -/- mice were lethally irradiated (550
rad of y-radiation day -2 and day 0) and on day 0,
injected i.v. with 2 x 107 bone marrow cells derived

from either WT or LTt-/- C57BL/6 mice. Thymuses
of mice were assessed 12 weeks later, when engraft-
ment was complete (Riminton et al., 1998).
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