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Purpose: To propose a deep-learning�based method to differentiate arteries from veins in montaged
widefield OCT angiography (OCTA).

Design: Cross-sectional study.
Participants: A total of 232participants, including 109participantswithdiabetic retinopathy (DR), 64participants

with branch retinal vein occlusion (BRVO), 27 participants with diabetes but without DR, and 32 healthy participants.
Methods: We propose a convolutional neural network (CAVnet) to classify retinal blood vessels on montaged

widefield OCTA en face images as arteries and veins. A total of 240 retinal angiograms from 88 eyes were used to
train CAVnet, and 302 retinal angiograms from 144 eyes were used for testing. This method takes the OCTA
images as input and outputs the segmentation results with arteries and veins down to the level of precapillary
arterioles and postcapillary venules. The network also identifies their intersections. We evaluated the agreement
(in pixels) between segmentation results and the manually graded ground truth using sensitivity, specificity,
F1-score, and Intersection over Union (IoU). Measurements of arterial and venous caliber or tortuosity are made
on our algorithm’s output of healthy and diseased eyes.

Main Outcome Measures: Classification of arteries and veins, arterial and venous caliber, and arterial and
venous tortuosity.

Results: For classification and identification of arteries, the algorithm achieved average sensitivity of 95.3%,
specificity of 99.6%, F1 score of 94.2%, and IoU of 89.3%. For veins, the algorithm achieved average sensitivity
of 94.4%, specificity of 99.7%, F1 score of 94.1%, and IoU of 89.2%. We also achieved an average sensitivity of
76.3% in identifying intersection points. The results show CAVnet has high accuracy on differentiating arteries
and veins in DR and BRVO cases. These classification results are robust across 2 instruments and multiple scan
volume sizes. Outputs of CAVnet were used to measure arterial and venous caliber or tortuosity, and pixel-wise
caliber and tortuosity maps were generated. Differences between healthy and diseased eyes were demonstrated,
indicating potential clinical utility.

Conclusions: The CAVnet can classify arteries and veins and their branches with high accuracy and is
potentially useful in the analysis of vessel type-specific features on diseases such as branch retinal artery oc-
clusion and BRVO. Ophthalmology Science 2022;2:100149 ª 2022 by the American Academy of Ophthalmology.
This is an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Supplemental material available at www.ophthalmologyscience.org.
OCT angiography (OCTA) is a powerful imaging modality
for noninvasive, 3-dimensional, and detailed assessment of
retinal vasculature.1,2 Numerous studies have demonstrated
the utility of OCTA in retinal diseases. For example,
nonperfusion area is a key biomarker in the evaluation of
diabetic retinopathy (DR),3e6 and accurate identification
and segmentation of choroidal neovascularization in the
outer retinal angiogram is helpful for the diagnosis and
management of neovascular age-related macular
degeneration.7

One challenge with OCTA technology is distinguishing
arteries from veins. Correctly identifying the vessels can be
ª 2022 by the American Academy of Ophthalmology
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/). Published by Elsevier Inc.
critical in understanding certain diseases. For example,
retinal arteriolar narrowing is associated with hypertension
and DR,8,9 venous beading is a feature of moderate to severe
DR,10 and different types of retinal vascular occlusion
(artery or vein) would have vessel-specific dilation or
constriction.11,12 Classifying arteries and veins may enable
improved disease characterization by specifically
evaluating the vessel for pathologic changes; however,
manual segmentation of arteries and veins not only
requires specific expertise but is also time-consuming.
Automation of this task is indispensable if specific charac-
terization for arteries and veins is to be practical.
1https://doi.org/10.1016/j.xops.2022.100149
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A number of algorithms have been proposed to classify
arteries and veins using OCTA. However, limitations in
each approach still call for improvement. Alam et al13,14

proposed using fundus photography or structural OCT
features to guide the classification of arteries and veins in
OCTA images. These algorithms based on OCTA need
other imaging modalities or structural OCT to help
classify arteries and veins, which in turn may introduce
more errors by fusing multiple types of images. Xu et al15

differentiated veins from arteries in OCTA by identifying
deep capillary plexus vortices. Although they described a
method for distinguishing retinal arteries from veins on
OCTA, it is not an automated approach. Ishibazawa et al16

evaluated the accuracy and reliability in differentiating
retinal arteries from veins using widefield OCTA.
Although their study showed that readers can correctly
classify large arteries and veins using only widefield
OCTA in healthy eyes and eyes with severe DR, trained
graders were required for the task. Kim et al17 proposed
differentiating arteries from veins in OCT and OCTA of
the mouse retina, and their method manually performed
artery and vein classification using vascular morphology
and blood flow signatures. This means the approach will
not scale well for clinical application.

More recently, deep learning has been used to aid OCTA
image enhancement and segmentation of vascular features.18

Alam et al19 also proposed a deep-learning approach to ar-
tery/vein classification on OCTA. However, their approach
focused on just the macular region and required structural
OCT input, which increased computation requirements.
Furthermore, the requirement for structural OCT input means
that graders should review structural information as well as
angiographic if a scan requires verification, increasing the
amount of time needed to determine if correction is required.
Their results also include a significant number of anatomi-
cally inaccurate spurs where vessel walls should be smooth.

We propose an end-to-end convolutional neural network,
the Classification of Artery and Vein Network (CAVnet),
that can classify arteries and veins in montaged widefield
OCTA covering a 6 � 17-mm field of view and subimages
in the same area. In this algorithm, the classification is
purely based on OCTA input, and the vessel types are
stratified starting from peripapillary major retinal arteries/
veins to precapillary branches. In this study, we also char-
acterize the caliber and tortuosity of arteries and veins of
healthy and eyes with retinopathy.

Methods

Data Acquisition

The study was approved by an Institutional Review Board/Ethics
Committee of Oregon Health & Science University, and informed
consent was collected from all participants, in compliance with the
Declaration of Helsinki. In this study, 27 healthy controls, 27 eyes
from diabetic eyes without DR, 109 participants diagnosed with
DR (52 with mild to moderate nonproliferative diabetic retinopathy
[NPDR], 57 with severe NPDR and proliferative diabetic reti-
nopathy [PDR]), and 64 participants diagnosed with branch retinal
vein occlusion (BRVO) were enrolled. One eye from each partic-
ipant underwent 6 � 6-mm volumetric scans centered at the macula
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and the immediate areas nasal and temporal to the macular scan
using a 70-kHz AngioVue OCTA system (RTVue-XR Avanti;
Optovue, Inc.) with a central wavelength of 840 nm. In this scan
pattern, 2 repeated B-scans were obtained at each of 400 raster
positions and each B-scan containing 400 A-lines. Additionally, 5
healthy eyes were scanned using a 120-kHz AngioVue OCTA
system (Solix, Optovue, Inc.). The eyes were scanned using 9 � 9-
mm scan patterns. The details of the acquired data are presented in
Table 1. Two repeated B-scans were taken at each of the 600 raster
positions, and each B-scan consisted of 600 A-lines. The split-
spectrum amplitude-decorrelation angiography algorithm was
used to generate the OCTA data from both instruments.1 Retinal
layer boundaries were segmented by a guided bidirectional graph
search algorithm.20 Inner retinal angiograms were generated by
maximum projection of the OCTA signal in a slab from the
internal limiting membrane to the outer plexiform layer.

Convolutional Neural Network Architecture

The structure of CAVnet is illustrated in Figure 1 (more details are
avalible in Supplemental Fig S1, Tables S1, S2, and Appendix).
En face OCT angiograms projected from the retina were input to
the network to segment arteries and veins. The CAVnet adopted a
U-net�like architecture that is composed of an encoder and a
decoder. The encoder includes 4 down-sampling layers to reduce
the image resolution and 5 sub-modules to extract features at
different scales. Each sub-module fused features extracted by a
convolution layer and atrous convolutional layer with different
receptive fields. The features with different receptive fields and at
different scales provide the network with contextual and global in-
formation. The decoder consists of 4 sub-modules and deconvolu-
tional upsampling layers. The resolution is sequentially increased
through the up-sampling operation until it is consistent with the
resolution of the input image. The network also uses a skip
connection to connect the up-sampling result with the output of the
sub-modulewith the same resolution in the encoder as the input of the
next sub-module in the decoder. Except for the last convolutional
layer, batch normalization and a LeakyRelu activation function are
used after each convolutional layer. A softmax activation function is
used for multiple classifications in the last convolutional layer.

Training

Subjects and Ground Truth Generation. The datasets included the
retinal angiograms of eyes without DR (either healthy or diabetes
mellitus without DR), eyes from patients with DR, and eyes with
BRVO. For each eye without DR and eye with DR, volumetric OCT
and OCTA scans from the nasal, macula, and temporal were ac-
quired. For each eye with BRVO, volumetric OCT and OCTA scans
from the macula were collected. A total of 29 scans with poor
quality were excluded, yielding a total of 537 retinal angiograms. A
total of 240 angiograms from 88 eyes were used for training, and
302 angiograms from 144 eyes were used for testing. No eyes were
shared in the training and testing of the model; the number of eyes is
shown in Table 1. To make a reliable and accurate quantitative
comparison of the test results, we set the number of eyes from DR
with different severity to be the same in the test dataset. In the
training phase, the angiograms from 3 regions were fed into
CAVnet, separately. For predictions, the input can be independent
angiograms from these 3 regions or widefield angiograms, which
include nasal, macular, or temporal scans. Although a previous
study has confirmed that en face OCTA allows for accurate and
reliable artery and vein identification,16 we still used fundus
photographs as a guide to delineate accurate ground truth for
training. First, we enhanced the OCT angiogram quality using a
deep-learning�based capillary reconstruction algorithm21 (Fig 2B),



Table 1. Datasets

Dataset for Convolutional Network

Disease Nasal Macula Temporal Eyes

Training Dataset No DR Healthy Control 10 10 10 10
Diabetes without DR 19 19 19 19

DR Mild to Moderate NPDR 27 22 22 27
Severe NPDR or PDR 32 28 22 32

Test Dataset No DR Healthy Control 17 17 17 17
Diabetes without DR 8 8 8 8

DR Mild to Moderate NPDR 25 25 25 25
Severe NPDR or PDR 25 25 25 25

BRVO Dataset
Disease Scans Eyes
BRVO 64 64

9 � 9-mm Scans from Solix
Disease Scans Eyes
Healthy Control 13 5

BRVO ¼ branch retinal vein occlusion; DR ¼ diabetic retinopathy; NPDR ¼ nonproliferative diabetic retinopathy; PDR ¼ proliferative diabetic
retinopathy.
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which is only used for ground truth delineating. Then, 2 certified
graders (G.P. and D.P.) manually delineated arteries and veins on
enhanced OCTA images according to the corresponding fundus
photographs (Fig 2D, E). The third certified grader (M.G.)
reviewed and corrected the delineated ground truth maps. In color
fundus photographs and OCTA (Fig 2A, D, E), various
characteristics can help to differentiate arteries from veins: (1)
Arteries have higher reflectance than veins; (2) the central light
reflex is wider in arteries and smaller in veins; (3) arteries are
smaller in caliber than adjacent veins; (4) normally, arteries and
veins alternate as each vein drains the capillary bed perfused by
adjacent arteries;15,22 (5) arteries do not cross other arteries and
veins do not cross other veins;16 (6) there are obvious capillary-
free zones near the retinal arteries in OCTA images.23,24 These
properties provide graders with sufficient information to accurately
delineate the ground truth.

Training Parameters. During training, we used a combination
of dice and categorical cross-entropy (CE) loss as the loss function.
The dice coefficient D is used to measure the overlap of the 2
segmentations
Figure 1. Classification of artery and vein network (CAVnet) architecture. A, T
a U-net�like structure. The different colored rectangles represent operations w
atrous convolutional layer is represented by r. The segmentation results output
D ¼ 2jYXY 0j
jYj þ jY 0j (1)

where Y is the ground truth and Y 0 is the predicted image,
jYXY 0j is the cardinality of intersection of the Y and Y 0, and jY j
and jY 0j represent the number of elements in Y and Y 0, respectively.
D is a value between 0 and 1, and with 0 indicating no overlap and
1 a perfect overlap.

The CE loss

CE ¼ �
X

i

yilogy
0
i (2)

is usually used for multiple classifications,25 where yi is the
ground truth of the ith category. y0i is the output results of the ith

category. CE is a value between 0 and positive infinity, and
close to 0 when the predicted image is approaching the ground
truth. The loss function is then defined as

L ¼ ð1�DÞ þ CE: (3)

The combination of dice loss and CE helped with category
imbalance in the training data.26
he input, consisting of an OCT angiogram of the inner retina. CAVnet has
ith different parameters. The stride is represented by s. The dilation of the
by CAVnet distinguishes between arteries and veins (B).
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Figure 2. Ground truth generation. A, Three angiograms of separate regions (nasal, macular, and temporal) are montaged to produce a widefield image. B,
The enhanced angiograms with low noise intensity, good connectivity, and strong contrast. C, The manually delineated ground truth. Arteries are colored in
red, green represents veins, and blue is intersection points. Optic disc (D) and macular fundus (E) photographs corresponding to OCT angiography
(OCTA), with arteries and veins indicated by red and green arrows. The original en face images of OCTA and fundus photographs serve as guides to
delineate the accurate ground truth.
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We used 400 � 400-pixel 6 � 6-mm images to train CAVnet.
Several data augmentation methods were used to expand the
training dataset: Each batch of images is randomly flipped hori-
zontally, vertically, and transposed before being fed into the
network for iterative training. Considering both convergence time
and hardware limitations, the training batch size was set to 2. We
used an Adam optimizer27 with an initial learning rate of 0.001 to
optimize the loss. The learning rate was reduced by a factor of 0.1
when the loss did not decline after 10 epochs. The minimum
learning rate is 1 � 10�8. When the loss does not change more
than 1 � 10�5 in 20 epochs, training will stop. The CAVnet was
implemented using Python 3.7 with Keras (Tensorflow-backend)
on a PC with a 64G RAM and Intel i7 CPU, and 2 NVIDIA
GeForce GTX1080Ti graphics cards. For more details of hyper-
parameter settings, please refer to https://github.com/octangio/
CAVnet.
Results

Performance Evaluation

To assess the performance of our algorithm, we sepa-
rately evaluated arteries, veins, and intersection point
accuracy on the test dataset. The pixel-wise sensitivity
(Eq. (4)), specificity (Eq. (5)), F1 score (Eq. (6)), and
Intersection over Union (IoU) (Eq. (7)) between the
segmentation results and the ground truth were
evaluated as follows:
4

Sensitivity ¼ TP
TPþ FN

(4)

Specifivity ¼ TN
TNþ FP

(5)

F1� score ¼ 2� TP
2� TPþ FPþ FN

(6)

IoU ¼ TP
TPþ FPþ FN

(7)

Where TP is true-positive, TN is true-negative, FN is
false-negative, FP is false-positive. Our algorithm ach-
ieved high performance with each of these metrics for ar-
tery and vein classification (Table 2), but artery/vein
intersection points were only partially accurate. For
determining whether intersection points output by the
network are the ones manually graded, we dilated the
network output using a 3 � 3 disk-shaped structuring
element. This helps to define the match between output and
ground truth by confirming the location correlation. We
speculate on this performance gap in the discussion.

For qualitative verification of these results, we montaged
nasal, macular, and temporal angiograms into a widefield

https://github.com/octangio/CAVnet
https://github.com/octangio/CAVnet


Table 2. Artery and Vein Segmentation Performance on Test Dataset (N of scan ¼ 225)

Sensitivity (%) Specificity (%) F1-score (%) IoU (%)

Artery 95.3 � 4.1 99.6 � 0.3 94.2 � 4.1 89.3 � 7.0
Vein 94.4 � 5.0 99.7 � 0.3 94.1 � 4.3 89.2 � 7.2
Intersection Points 76.3 � 18.6 1.0 � 0.0 85.2 � 13.2 76.3 � 18.6

IoU ¼ Intersection over Union.
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angiogram covering a 6 � 17-mm field of view (Fig 3). The
predicted results are highly consistent with the ground truth
whether on healthy eyes (Fig 3A1�A3) or on eyes with DR
(Fig 3B1�B3). As the image shows, CAVnet classified
arteries and veins down to the level of precapillary
arterioles and postcapillary venules.

The CAVnet may misclassify part of an artery to a vein
or vice versa (Fig 4A, B) when some features are
ambiguous. Other potentially troublesome regions include
artery-vein intersections (Fig 4C, D).

Caliber of Arteries and Veins

We calculated the caliber of arteries and veins on the test
dataset using CAVnet’s output. The caliber of the blood
Figure 3. The performance of the classification of artery and vein network (CA
with severe proliferative diabetic retinopathy (PDR) (B1�B3). Row 1: retina an
truth of classification of arteries and veins. Row 3: prediction from CAVnet.
vessels was defined as the ratio of vascular area and vascular
length that were acquired from a binarized and skeletonized
artery-vein OCTA map, respectively. To calculate vessel
caliber, we consider each foreground pixel as well as the 7
adjoining pixels along the skeletonized artery-vein OCTA
map in each direction (15 pixels total) and calculate the ratio
of the vessel area to the vessel length. Then the caliber value
was mapped to the binarized artery-vein OCTA map (Fig
5A�C). The caliber was calculated in the 6 � 6-mm an-
giograms excluding a 2-mm diameter circle centered on the
optic disc. Caliber changes can be observed on the caliber
map of angiograms in Figure 5A�C. The minimal caliber
that CAVnet can detect is 1 pixel (15 mm). For statistical
analysis of these results, we treated each eye as a single
observation. We performed the Kolmogorov�Smirnov
Vnet) classification demonstrated by a healthy eye (A1�A3) and an eye
giograms montaged by nasal, macular, and temporal scans. Row 2: ground
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Figure 4. Examples of misclassification. A, C, The input of the classification of artery and vein network (CAVnet). B, D, The segmentation results
produced by CAVnet. The yellow arrows show segmentation errors in the output images. Mis-segmentation may be caused when CAVnet overfits the
“artery-vein-alternation rule” or when the capillary-free zone near arteries is unobvious. Artery-vein crossings may also make the algorithm generate
misclassifications; however, note that in most places the algorithm correctly interpreted crossing vessels.
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test, which indicated that neither the arterial nor venous
caliber in nasal, macular, and temporal areas was normally
distributed. For each area, a nonparametric Kruskal�Wallis
test was applied to suggest if there is a difference between at
least 1 pair of groups. Then, to find out which pairs of
groups have a difference, post hoc tests with Bonferroni
correction were performed on each pair of groups. We found
that there is no significant difference in the arterial caliber
between eyes without DR and eyes with mild to moderate
Figure 5. Caliber map of the montaged widefield angiograms from a diabetic e
nonproliferative diabetic retinopathy (NPDR) (B), and an eye with severe PD
groups at 3 scan locations. Kruskal�Wallis test (P1) was first applied to suggest i
test with Bonferroni correction (P2) was applied to multiple pairs comparison.

6

NPDR in the 3 areas (Fig 5D) (nasal, P ¼ 1.00; macula,
P ¼ 0.99; temporal, P ¼ 1.00); however, compared with
eyes without DR or eyes with mild to moderate NPDR,
the arterial caliber of eyes with either severe NPDR or
PDR was significantly reduced (Fig 5D). There is no
significant difference in venous caliber between eyes
without DR and eyes with DR in the optic disc area
(P ¼ 0.34, Kruskal�Wallis test). Compared with eyes
without DR, venous caliber in eyes with mild to moderate
ye without diabetic retinopathy (DR) (A), an eye with mild to moderate
R (C); boxplots of arterial (D) and venous (E) caliber compared among 3
f there is a difference between at least 1 pair of groups, and then a post hoc



Figure 6. Comparison of caliber between arteries and veins in healthy eyes. A, Caliber map from a healthy eye. B, Boxplot showing artery and vein caliber
at 3 locations in healthy eyes. Mann�Whitney U test (P3) was applied to compare if there is a difference between artery and vein caliber at 3 locations.
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NPDR had no significant difference in the macular
(P ¼ 0.24) and temporal (P ¼ 1.00) areas; however, venous
caliber in eyes with either severe NPDR or PDR was smaller
in the macular region (P ¼ 0.003) (Fig 5E). Compared with
eyes with mild to moderate NPDR, venous caliber in eyes
with either severe NPDR or PDR was also greatly reduced
in the temporal area (P ¼ 0.01) (Fig 5E). We also used a
Mann�Whitney U test to compare the caliber of arteries
and veins in 17 healthy eyes from test dataset. The caliber of
arteries (mean � standard deviation, 69.6 � 25.3 mm) is
much smaller than that of veins (82.6 � 31.0 mm)
(P ¼ 0.003) at the nasal location. Arterial (48.2 � 2.2 mm)
and venous (51.3 � 3.5 mm) caliber (P ¼ 0.006) are also
different at temporal locations (Fig 6B), but this difference
disappears in the macula (P ¼ 0.92). In addition, we
Figure 7. Measurements of arterial and venous caliber at the nasal location. A, B
a diameter of 1.7 mm to 3.4 mm centered on the optic disc (yellow circles). The c
caliber of arteries.
calculated the caliber of major peripapillary arteries and
veins (radiated from optic nerve head) in the nasal scans
(Fig 7). The caliber of the major veins (113.7 � 20.2 mm)
is much larger than that of the major arteries (100.2 �
16.1 mm, P ¼ 0.001, Mann�Whitney U test). This result
corresponds to the previous findings that major vein caliber
(120.9 � 27.2 mm) is larger than that of the major arteries
(103.3 � 22.2 mm, P < 0.001) by Falavarjani et al28 using a
manual measurement method.

Tortuosity

We also calculated the tortuosity of arteries and veins using
CAVnet’s output. For each foreground pixel in the skele-
tonized artery-vein map, we use the 100 adjoining pixels to
, The caliber (mm) of arteries and veins was measured in the ring area with
yan values indicate the caliber of the veins. The yellow values represent the
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either side (201 pixels total) to calculate the tortuosity. The
tortuosity value was mapped to the binarized artery-vein
OCTA map (Fig 8A�C). The tortuosity was calculated in
the 6 � 6-mm angiograms excluding a 2-mm diameter
circle centered on the optic disc. We adopted the same
statistic test method from the last section for tortuosity
comparisons. Although vessels with large tortuosity values
were highlighted in the maps, the tortuosity had no signif-
icant changes in eyes with mild to moderate NPDR
compared with eyes without DR for either arteries or veins
(Fig 8D, E). Compared with eyes without DR or eyes with
mild to moderate NPDR, the mean tortuosity also had no
significant changes in eyes with either severe NPDR or
PDR (Fig 8D, E). No significant difference was found in
the mean tortuosity of arteries compared with veins at
nasal, macular, or temporal locations in healthy eyes (Fig
9), which is consistent with previous measurements.29

Performance on Scans from Eyes with Other
Retinal Vascular Diseases

Retinal venous occlusion is the second most common
retinal vascular disease after DR30 and is a disease that
shows different pathology on arteries and veins,
respectively. We applied our algorithm to macular scans
from 64 eyes with BRVO (Fig 10A1). We also
calculated performance metrics such as sensitivity or F1
score for CAVnet’s output on these data. The results
showed high classification accuracy on these eyes (Fig
Figure 8. Tortuosity map of the montaged widefield angiograms from a diabetic
nonproliferative diabetic retinopathy (NPDR) (B), and an eye with severe pro
indicate the higher tortuosity of the vessel. D, E, Comparison of tortuosity betw
tortuosity of eyes with DR compared with eyes without DR was found, as evalu
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10B1) (Table 3). We also calculated vessel caliber (Fig
10C1) and the tortuosity (Fig 10D1) for this data set.
Results from 17 healthy eyes from the test dataset and
64 eyes with BRVO in the macular center area showed
that the caliber of arteries and veins in eyes with
BRVO both greatly reduced compared with healthy
eyes (P < 0.001, Mann�Whitney U test) (Fig 11A). A
previous study using revised ParreHubbard formulas
also showed that there were significant differences in
mean central retinal arterial diameter and venous diameter
between the control group and the BRVO group (P <
0.05).31 The tortuosity of veins significantly increased (P
< 0.001, Mann�Whitney U test), and the tortuosity of
arteries had no significant change (P ¼ 0.18,
Mann�Whitney U test) (Fig 11B), which is consistent
with previously reported work showing increased
venous tortuosity in eyes with BRVO by observing the
number of tortuous vessels.32
Performance on Scans from Different Devices
and Larger Field-of-View Scans

In addition to testing data from an AngioVue device, we
also tested our algorithm on larger field-of-view 9 � 9-mm
angiograms from a Solix instrument (Fig 12). The predicted
artery and vein maps also appear to be correct, indicating
performance did not noticeably degrade on different
devices (Table 4).
eye without diabetic retinopathy (DR) (A), an eye with mild to moderate
liferative diabetic retinopathy (PDR) (C). Brighter colors (green arrows)
een eyes without DR and eyes with DR. No significant difference in mean
ated by the Kruskal�Wallis test (P1).



Figure 9. A, Tortuosity map from a healthy eye. B, Comparison of mean tortuosity between arteries and veins in healthy eyes. There is no significant
difference between arterial and venous tortuosity in healthy eyes, as evaluated by the Mann�Whitney U test (P3).
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Discussion

The U-Net is a popular architecture developed for biomed-
ical image segmentation that can learn to segment features
using relatively small datasets while maintaining feature
resolution through the use of skip connections. There are
many applications of U-Nets in biomedical image segmen-
tation, which show reliable and highly accurate results.33,34

A U-net�like architecture we adopted in this study is an
end-to-end fully convolutional network that includes an
encoder and a decoder. The CAVnet can automatically and
accurately classify arteries and veins in montaged widefield
OCT angiograms, and includes several innovations. Among
these advantages is the input data set. Although arteries and
veins can be distinguished by morphologic (i.e., caliber) and
anatomic (i.e., the alternating artery-vein rule) features
available in OCTA images, such an identification is often
Figure 10. The classification of artery and vein network (CAVnet) output in a
control (bottom row). A, Macular angiograms. B, CAVnet output for (A). C, V
on scans from eyes with BRVO. The changes in arterial and venous caliber can
obvious in the tortuosity map.
difficult and therefore time-consuming for human graders.
For this reason, artery/vein differentiation in OCTA images
has usually been supplemented with other imaging modal-
ities, for example, oximetry.13,35 However, combinations of
multiple imaging modalities introduce a large burden into
clinical practice and so should be avoided if a result can
be achieved using just a single imaging technique. Our
network achieves artery/vein differentiation using only a
single OCT angiogram as input.

For prediction, the input to CAVnet could be indepen-
dent angiograms from nasal, macular, and temporal regions,
which can save computing budget. Widefield images can
also function as input. Postprocessing on the CAVnet output
can also stratify vessels with caliber ranging from major
peripapillary vessels (w225 mm) to pericapillary levels
(w15 mm). By identifying vessels at multiple orders and
scales, CAVnet can provide more comprehensive
n eye with branch retinal vein occlusion (BRVO) (top row) and a healthy
essel caliber map. D, Tortuosity map. The prediction showed high accuracy
be observed in the caliber map. The high tortuosity of veins in BRVO is
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Table 3. Artery and Vein Segmentation Performance on Eyes Diagnosed with Branch Retinal Vein Occlusion (N of Scan ¼ 64)

Sensitivity (%) Specificity (%) F1-score (%) IoU (%)

Artery 97.4 � 2.7 99.6 � 6.0 94.5 � 3.6 89.9 � 6.4
Vein 92.2 � 0.1 99.9 � 0.1 94.6 � 3.8 90.0 � 6.6
Intersection Points 93.7 � 8.9 1.0 � 0.0 96.5 � 5.2 93.7 � 8.9

IoU ¼ Intersection over Union.
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information concerning retinal circulation, which could be
helpful for assessing disease. Lastly, we believe that artery/
vein classification is broadly useful for OCTA image anal-
ysis. Because arteries and veins are not routinely differen-
tiated, disparate effects on each by various diseases may go
undetected, even though such information could be used to
improve diagnosis. Furthermore, from a basic research
perspective, artery/vein classification could aid in-
vestigations of pathophysiology.

We used several metrics to assess the algorithm’s per-
formance, including sensitivity, specificity, F1-score, and
IoU. We found that our network performed strongly in each
of these categories, with each of sensitivity, specificity, and
F1-score approaching or exceeding 95% accuracy. Perfor-
mance gauged by IoU was slightly lower (w90% accu-
racy), but some of the inaccuracy in this metric may
represent anatomically meaningless disparities resulting
from single-pixel width translocations between the ground
truth and the network output. In each case, performance
was essentially equivalent for performing artery or vein
segmentation, indicating no bias toward one vessel type or
the other in output. We also investigated network appli-
cability by characterizing CAVnet’s output on different
image sizes, noting no obvious performance dropoff.36

Moreover, our results did not generate inaccurate spurs,
which are not encountered anatomically. Finally, we also
investigated CAVnet’s performance across multiple
diseases (including a spectrum of DR severity) and
healthy eyes, and across multiple devices. Our results
Figure 11. Comparison of the mean arterial and venous caliber and tortuosity o
the macular center area. A, Comparison of caliber. B, Comparison of tortuosi
tortuosity deviate significantly from a healthy distribution in BRVO eyes. Comp
in eyes with BRVO. The tortuosity of veins significantly increased.
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indicate that CAVnet’s performance was resilient to these
different contexts.

Caliber and tortuosity are both important quantitative
indicators of diabetes mellitus, cardiovascular disease, hy-
pertension, and atherosclerosis;37e42 however, because ar-
tery/vein differentiation is not usually performed in OCTA
images, these quantities are usually not calculated separately
for the different vessel types in OCTA imaging. However,
our results indicate that pathophysiologic differences be-
tween these vessel types in disease are detectable by OCTA.
Compared with eyes without DR (either healthy or diabetes
mellitus without DR), the caliber of arteries is significantly
reduced in eyes with either severe NPDR or PDR. We found
that the caliber of veins is also reduced in the macular area,
relative to eyes without DR. The reason may be that the
basal membrane of arteries and veins in DR cases is thicker
than in healthy controls; consequently, the functional
vascular lumen imaged by OCTA is smaller, with greater
changes in arteries than in veins.37,43 Likewise, compared
with healthy eyes, the arterial and venous caliber of eyes
with BRVO significantly decreased in the central macula.
As a previous study has demonstrated, a decrease in
retinal arterial and venous diameters was seen in eyes with
BRVO.31 We could also detect variation in vessel caliber
based on region. In healthy eyes, the caliber of veins
(82.6 � 31.0 mm) is larger than that of arteries (69.6 �
25.3 mm) at the nasal location (P ¼ 0.003). There is also
a detectable difference in arterial (48.2 � 2.2 mm) and
venous (51.3 � 3.5 mm) caliber in the temporal area
f 17 healthy eyes and 64 eyes with branch retinal vein occlusion (BRVO) in
ty. Mann�Whitney U test (P3) was used to compare whether caliber and
ared with healthy eyes, the caliber of arteries and veins both greatly reduced



Figure 12. The classification of artery and vein network (CAVnet) outputs for larger-field-of-view scans. A, 9 � 9-mm angiogram of the retina. B, Ground
truth. C, Predicted result by CAVnet for A. The results show high accuracy on 9 � 9-mm scans.
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(P ¼ 0.006). At the macula, however, there was no
significant difference in artery and vein caliber. In the
macula, we would expect differences between artery and
vein caliber to diminish, because the size of the higher-
order vessels prevalent in this region approaches the capil-
lary limit. In addition, we also calculated the caliber of
major vessels at the nasal location in healthy eyes. The mean
caliber of the major veins (113.7 � 20.2 mm) is larger than
that of the largest arteries (100.2 � 16.1 mm) at the nasal
location (P ¼ 0.001); these findings are similar to histo-
logical results.28 These results on healthy eyes can be taken
as a further indication of the validity of CAVnet’s output,
because they concur with known retinal vascular
physiology.

Unlike vessel caliber, our network’s output produces
arteries with tortuosity that is not significantly different than
veins in healthy eyes. This result and the tortuosity values
we measure are similar to those of a prior study.29,44 The
arterial or venous tortuosity of eyes with DR has no great
difference compared with that of eyes without DR. The
lack of difference in tortuosity could be a result of large
inherent variation in the population. The tortuosity of
veins significantly increased in eyes with BRVO
compared with healthy eyes, which is in line with clinical
observations.45

Study Limitations

There are some limitations in CAVnet. First, CAVnet may
generate false segmentation in some specific conditions. For
example, CAVnet may misclassify part of an artery to a vein
or vice versa, which may be because CAVnet over-learned
the “artery-vein-alternation rule” or over-relies on the con-
spicuous capillary-free zone near arteries (which could be
mimicked by shadow artifacts). Likewise, the sensitivity for
arteries is slightly higher than that of veins due to the same
Table 4. Artery and Vein Segmentation Performance

Sensitivity (%) Speci

Artery 91.3 � 0.2 99.
Vein 87.0 � 4.0 99.
Intersection Points 91.0 � 10.2 1.

IoU ¼ Intersection over Union.
obvious capillary-free zone near the retinal arteries in OCTA
images, which would enable vessels to be more readily
distinguished from the background. We were also unable to
obtain helpful interpretable results within the 2-mm diam-
eter circle centered on the optic disc because this area in-
cludes intricate vessel morphologies different than the rest
of the retina. In this region, CAVnet had lower classification
performance (sensitivity, 73.9% � 12.2%; F1-score, 80.5%
� 10.1%; IoU, 68.5% � 12.9%) than other areas. The
CAVnet generates incorrect artery-vein intersection seg-
mentations at a higher rate than vein or artery mis-
segmentations. This may be caused by the small number
of samples of intersections in the training set. Furthermore,
compared with arteries and veins, the number of pixels in an
intersection is small even after the dilation we applied to the
output. This means that a single misplaced pixel can lead to
a large deterioration in performance metrics because it will
represent a greater part of the sample. This is especially
apparent in the IoU metric, which tends to penalize indi-
vidual classification errors more than the F1-score (similar
to L1 vs. L2 loss). We think these facts probably largely
explain the performance decline for intersection points.
However, it should be noted that although these perfor-
mance metrics were less satisfactory, they largely represent
clinically irrelevant, small differences in the location of a
small number of pixels.

Conclusions

We proposed an end-to-end convolutional neural network
that classifies arteries and veins: CAVnet. The CAVnet
not only classified arteries and veins down to the level of
precapillary arterioles and postcapillary venules but also
detected the intersection of arteries (or arterioles) and
veins (or venules). The CAVnet has a high performance
on 9 � 9-mm Scans from Solix (N of Scan ¼ 13)

ficity (%) F1-score (%) IoU (%)

7 � 0.2 92.6 � 2.2 86.4 � 3.7
9 � 0.0 92.1 � 2.4 85.5 � 4.0
0 � 0.0 94.9 � 6.1 91.0 � 10.2
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for differentiating arteries and veins, even in severe DR
and BRVO cases. Measurements of arterial and venous
caliber or tortuosity can potentially help with the diag-
nosis of DR and BRVO; our method is capable of
extracting these measurements with high accuracy.
12
Finally, CAVnet also performs well on widefield images,
an important capability in OCTA as bleeding edge
research continues to push toward larger fields of view.
We believe that this method can have applications in both
the clinic and basic research.
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