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Transient receptor potential channel 1 (TRPC1) is widely expressed throughout the
nervous system, while its biological role remains unclear. In this study, we showed
that TRPC1 deletion caused striatal neuronal loss and significantly increased TUNEL-
positive and 8-hydroxy-2′-deoxyguanosine (8-OHdG) staining in the striatum. Proteomic
analysis by two-dimensional fluorescence difference gel electrophoresis (2D-DIGE)
coupled with mass spectrometry (MS) revealed a total of 51 differentially expressed
proteins (26 increased and 25 decreased) in the stratum of TRPC1 knockout
(TRPC1−/−) mice compared to that of wild type (WT) mice. Bioinformatics analysis
showed these dysregulated proteins included: oxidative stress-related proteins, synaptic
proteins, endoplasmic reticulum (ER) stress-related proteins and apoptosis-related
proteins. STRING analysis showed these differential proteins have a well-established
interaction network. Based on the proteomic data, we revealed by Western-blot
analysis that TRPC1 deletion caused ER stress as evidenced by the dysregulation
of GRP78 and PERK activation-related signaling pathway, and elevated oxidative
stress as suggested by increased 8-OHdG staining, increased NADH dehydrogenase
(ubiquinone) flavoprotein 2 (NDUV2) and decreased protein deglycase (DJ-1), two
oxidative stress-related proteins. In addition, we also demonstrated that TRPC1 deletion
led to significantly increased apoptosis in striatum with concurrent decrease in both
14–3–3Z and dynamin-1 (D2 dopamine (DA) receptor binding), two apoptosis-related
proteins. Taken together, we concluded that TRPC1 deletion might cause striatal
neuronal apoptosis by disturbing multiple biological processes (i.e., ER stress, oxidative
stress and apoptosis-related signaling). These data suggest that TRPC1 may be a key
player in the regulation of striatal cellular survival and death.
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INTRODUCTION

Transient receptor potential (TRP) channels function as cation-conducting protein sensors that
respond to physical (temperature, pressure, pH, voltage) and chemical (proteins, lipids, metals)
inputs, and thereby trigger signal transduction events. They are composed of six subfamilies: the
TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPP (polycystin), TRPML (mucolipin)
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and TRPA (ankyrin; Gees et al., 2010). Most of the known
functions of TRP proteins are conserved from protists, worms,
and flies to humans (Montell, 2005; Damann et al., 2008).
TRP proteins play important roles in the regulation of
calcium signaling and are activated not only by G protein-
coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs)
but also by chemo-, thermo- and mechanical stimulation
(Venkatachalam and Montell, 2007). Dysregulated TRP proteins
are connected with a large number of disorders, including
neurodegenerative diseases. Although functions of a variety of
TRP proteins have been studied extensively, understanding of
how TRP proteins function in specific tissues, including brain
tissue, is still limited.

TRP channels are widely expressed in the central nervous
system (CNS) and the TRPC protein profiles change during
embryonic CNS development (Strübing et al., 2003; Zeng et al.,
2016). TRPCs play pivotal roles in the control of cell proliferation
and differentiation through regulation of gene expression and
membrane dynamics (Zeng et al., 2016). Among the TRPC
proteins, transient receptor potential channel 1 (TRPC1) is
one of the most extensively studied TRPC channels in CNS
tissue. TRPC1 protected neuronal cells against neurotoxins and
apoptosis of dopaminergic SH-SY5Y cells induced by 1-methyl-
4-phenylpyridinium ion (MPP+; Selvaraj et al., 2009; Arshad
et al., 2014; Wang et al., 2016). In addition, TRPC1 knockout
mice (TRPC1−/−) exhibited loss of dopaminergic neurons
in substantia nigra, which occurs in the pathogenesis of
neurodegenerative diseases (Selvaraj et al., 2012). The striatum,
a critical part of the motor and reward systems, showed
neuronal damage under decreased TRPC1 expression (Hong
et al., 2015). Previously, we demonstrated that the deletion
of mouse TRPC1 caused spatial memory impairment and
dysregulation of protein expression in the hippocampus (Xing
et al., 2016). However, the potential effect on neuronal survival
in specific brain regions such as the striatum, and the underlying
mechanisms remain to be elucidated.

Consistent with previous reports (Selvaraj et al., 2009,
2012), we found significant neuronal loss and apoptosis in
the striatum of TRPC1−/− vs. wild type (WT) mice. We
use immunofluorescent staining, two-dimensional fluorescence
difference gel electrophoresis (2D-DIGE), coupled with mass
spectrometry (MS) and bioinformatics analysis, to investigate the
change of neuronal survival/apoptosis in striatum of TRPC1−/−

mice to illuminate molecular mechanisms underlying the role of
TRPC1.

MATERIALS AND METHODS

Animals
The TRPC1−/− mice were obtained from Prof. Lutz Birnbaumer
(NIEHS, US) and the WT mice were purchased from Vital River
Laboratory Animal Technology Co. Ltd (Beijing, China). A total
of 22 mice (8 months old) were used in this study. Animals had
free access to food and water, and were maintained in a room
with stable humidity (50%–60%) and controlled temperature
(23–25◦C) on a 12-h light/12-h dark cycle.

Animal treatment and care were performed in accordance
with the Principles of Laboratory Animal Care (NIH publication
No. 85-23, revised in 1985) and the Regulations for Animal
Care and Use from the Committee of the Experimental Animal
Center at Shenzhen Center for Disease Control and Prevention
in Shenzhen, Guangdong Province, China. This animal study
was approved by Shenzhen Center for Disease Control and
Prevention Ethics Committee. Efforts were made to minimize
animal suffering and reduce the number of mice used for
experiments.

Sample Preparation
Mice were anesthetized with 4% chloral hydrate, the thorax and
heart exposed, and the animal perfused via the left ventricle with
0.9% NaCl to remove circulating blood. The brain was excised,
fixed by immersion in 4% (w/v) paraformaldehyde fixative
in 0.1 M phosphate buffer solution (pH = 7.4). Afterwards,
the complete rat brain was removed and stored in 4% (w/v)
paraformaldehyde fixative for 24 h at 4◦C, then dehydrated and
embedded in paraffin. Coronal sections 5 µm thick from areas of
interest were prepared for analysis.

TUNEL Assay
For the measurement of apoptosis, the TUNEL assay was
measured by the DeadEndTM Fluorometric TUNEL System
(Promega, Fitchburg, WI, USA) as described in the instruction
manual. Briefly, brain sections were deparaffinized, and stepwise
hydrated in decreasing concentrations of ethanol (100%, 95%,
85%, 70%, and 50%), each for 3 min. The tissue was then
immersed in 0.85% NaCl for 5 min, washed with 1× PBS for
5 min, fixed in 4% paraformaldehyde for 15 min, and washed
twice with PBS for 5 min each time. One hundred microliter of
20 µg/ml proteinase K solution was added into each sample and
incubated for 8 min at RT. Then the tissues were equilibrated
for 5 min, and 50 µl of TdT reaction mix solution added and
tissues incubated for 60 min at 37◦C in a humidified chamber
in the dark. The reaction was stopped by immersing the tissues
in 2× saline sodium citrate (SSC) (saline sodium citrate) for
15 min. Finally, the tissues were stained with 4′,6-diamidino-
2-phenylindole (DAPI) for 3 min, and examined with a light
microscope (Olympus 1× 51, Tokyo, Japan).

Immunofluorescent Staining
For immunofluorescence, 5 µm-thick coronal cryostat sections
were rinsed in PBS after dewaxing and rehydration, and then
immersed in 0.01 M citrate buffer (pH 6.0) at 95–100◦C
for 5 min. The treated sections were blocked for 60 min
in blocking buffer solution (0.1% TritonTM X-100/1× PBS
5% normal serum). Anti-8-hydroxyguanosine (goat polyclonal,
diluted 1:200, Abcam, Cambridge, UK, ab10802) and anti-
NeuN (rabbit monoclonal, diluted 1:300, Abcam, ab177487)
were used and processed at 4◦C overnight. After washing with
PBST, all secondary antibodies were incubated for 1 h at RT
in the dark. ThermoFisher Scientific (Waltham, MA, USA)
Alexa Fluor 488 donkey anti-goat (Invitrogen) and Alexa Fluor
488 goat anti-rabbit (Invitrogen) were used for the recognition of
primary antibodies, respectively. After incubation, the sections

Frontiers in Aging Neuroscience | www.frontiersin.org 2 March 2018 | Volume 10 | Article 72

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Wang et al. Striatal Apoptosis by TRPC1 Deletion

were washed with PBST and then stained with DAPI (Beyotime
Institute of Biotechnology, Haimen, China) for 5 min to reveal
the nuclei. The images were observed with a laser scanning
confocal microscope (Leica, Wetzlar, Germany).

Protein Sample Preparation for 2D DIGE
The brain samples were suspended in DIGE-specific lysis buffer
(7 M urea, 2 M thiourea, 30 mM Tris-HCl, 4% CHAPS, pH
8.5), ultrasonicated for 3 min in cycles of 4 s on and 6 s off at
45% power via a Fisher 550 Sonic Dismembrator (Pittsburgh,
PA, USA), and then placed on ice for 30 min. The mixture was
centrifuged subsequently at 20,000 g for 60 min at 4◦C, followed
by ultrafiltration at 14,000 g under the same conditions for
30 min to remove salt and other impurities. Finally, the protein
solutions were collected and determined by 2-D Quant Kit (GE
Healthcare Life Sciences, Pittsburgh, PA, USA) in accordance
with the manufacturer’s protocol.

DIGE Labeling of Striatum Proteins
Each CyDye stock at room temperature was resuspended
in anhydrous N,N-dimethylformamide (DMF), 99.8% (Sigma-
Aldrich (Merck) 227056) to achieve a final dye concentration
of 1 nmol/µL. The working solutions (200 pmol/µL) of each
CyDye used for protein labeling were obtained by diluting the
CyDye stock solutions with DMF. After protein quantification,
brain protein samples from TRPC1−/− mice and WT mice were
diluted to 5 µg/µL. Equal amounts of all samples (25 µg) were
mixed to compose a pooled internal standard, and labeled with
200 pmol Cy2 (GE Healthcare, 25–8008–62). The other protein
samples (25 µg of each sample) were labeled with 200 pmol
Cy3 (GE Healthcare, 25–8008–61) or Cy5 (GE Healthcare,
25–8008–62). All the labeled protein samples were incubated
on ice for 30 min. The reaction was quenched subsequently by
adding 1 µL of 10 mM lysine (Sigma, L5626) for 10 min. All
labeling operations were performed in darkness. Then, the Cy2-,
Cy3-, and Cy5-labeled samples were mixed, and 80µL of 2× lysis
buffer (8M urea, 2%CHAPS, 0.2%DTT, 2% (v/v) IPG buffer, pH
3–11 NL, 0.002% bromophenol blue) was added to each sample.
The rehydration buffer was then added to make the total volume
of the sample up to 450 µL.

2D-DIGE
The first dimension was conducted with the Ettan IPGphor
Isoelectric Focusing (IEF) System (GE Healthcare, Pittsburgh,
PA, USA). Equal amounts of labeled samples (75 µg) were
applied to Immobiline DryStrips (24 cm, pH 3–11 NL) with 2 mL
of mineral oil (covered to reduce solvent evaporation). Proteins
were taken up onto strips with rehydration at 50 V for 18 h,
followed by IEF at 300 V for 12 h, focusing at 500 V for 2 h,
step 1000 V for 2 h, gradient 8000 V for 8 h, step 8000 V for
8 h. The room temperature was kept at 18◦C. After IEF, each
strip was equilibrated with 15 ml of reducing equilibration buffer
(6 M urea, 75 mM Tris-HCl buffer (pH 8.8), 30% (v/v) glycerol,
2% (w/v) SDS, and 1% (w/v) DTT) for 15 min. Subsequently,
strips were re-equilibrated in another buffer (6 M urea, 75 mM
Tris-HCl buffer (pH 8.8), 30% (v/v) glycerol, 2% (w/v) SDS,
and 4.5% (w/v) IAA) for 15 min. Every gel was covered with

2 ml of 0.5% (w/v) ultralow melting point agarose sealing
solution (25 mM Tris, 192 mM glycine, 0.1% SDS, 0.5% (w/v)
agarose, 0.002% (w/v) bromophenol blue). Each equilibrated
strip was then loaded on the top of a 12.5% SDS-PAGE gel.
Protein separation in the second dimension was run on an Ettan
DALTsix Electrophoresis System (GE Healthcare, USA) using
the following conditions: 1 W/gel for 1 h, 11 W/gel for 5 h at
18◦C in the dark. Following the second dimension, the DIGE
gels were immediately scanned using a Typhoon TRIO Variable
Mode Imager (GE Healthcare, USA).

Image Analysis
Gel images were analyzed with the DeCyder software package
(Version 6.5, GE Healthcare, USA) following the manufacturer’s
protocol. The normalized spot density between the replicate
groups was further compared and protein spots found to be
statistically significant (P < 0.05) identified for analysis.

In-Gel Digestion
The gels were first stained with Coomassie blue solution (0.12%
Coomassie Brilliant Blue G-250, 10% phosphoric acid, 20%
ethanol, 10% ammonia sulfate). Spots of interest identified
through Decyder software analysis were manually excised
from preparative Coomassie blue-stained gel using Eppendorf
micropipettes. Gel pieces were destained with 50% acetonitrile
(ACN) and 100% ACN, followed by digestion overnight at 37◦C
with trypsin (Promega Corp., WI, USA) in 15 µL digestion
buffer. The tryptic peptides were used for MALDI-TOF-MS/MS
analysis.

Mass Spectrometry
The protein spots were analyzed by MALDI-TOF-MS/MS (AB
SCIEX MALDI-TOF/TOF 5800 MS, Foster City, CA, USA).
Briefly, a total of 0.6 µL of peptide extract was crystallized with
1 µL 10 mg/mL α-cyano-4-hydroxycinnamic acid (CHCA) in
0.1% TFA, 50% ACN directly on the target and dried at room
temperature. The spectra were externally calibrated. Information
on mice brain proteins was retrieved from the SwissProt
databases (Matrix Science, UK) with MASCOT. The search was
performed in the Mus musculus database and conducted with a
tolerance on mass measurement of 100 ppm in MS mode and
0.3 Da in MS/MS mode. Protein molecular weight (MW) and
a fixed carbamidomethyl modification were taken into account
when evaluating protein identification.

Bioinformatics Analysis
Gene ontology (GO) enrichment analysis of the deregulated
proteins was performed using DAVID online software following
the instructions provided1. For the protein-protein interaction
prediction analysis, we used STRING database version 10.0,
which was embedded in Cytoscape (3.4.0) with a medium
confidence threshold 0.4.

Western-Blot Analysis
Each sample from the above groups was extracted with 400 ml
RIPA lysis buffer (Beyotime, Haimen, Jiangsu, China) with

1https://david.ncifcrf.gov/

Frontiers in Aging Neuroscience | www.frontiersin.org 3 March 2018 | Volume 10 | Article 72

https://david.ncifcrf.gov/
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Wang et al. Striatal Apoptosis by TRPC1 Deletion

FIGURE 1 | Transient receptor potential channel 1 (TRPC1) deletion caused neuronal loss and apoptosis in striatum. (A) Representative immunofluorescent images
from the striatum of TRPC1 knockout (TRPC1−/−) and wild type (WT) mice; (B) The number of NeuN-positive cells in striatum. (C) Representative TUNEL staining
images from the striatum in TRPC1−/− mice and WT mice. (D) The number of apoptotic cells in striatum. The data were expressed as mean ± SEM and statistical
analysis between two independent groups was performed by t-test. ∗P < 0.05, vs. WT mice. n = 3 for each group. Scale bar = 100 µm.

protease and phosphatase inhibitor cocktail (Thermo Scientific,
Waltham, MA, USA). BCA protein assay kit (Thermo Scientific,
USA) was used to determine protein concentration. Equal
amounts of proteins were separated by 10% SDS-PAGE gels
and then transferred onto PVDF membranes. Membranes
containing the transferred proteins were blocked for 1.5 h
in 5% skim milk in TBST. Primary antibodies, anti-GRP78
(1:1000, Santa Cruz, sc-376768), anti-protein deglycase (DJ-
1) (1:10,000, Abcam, ab76008), anti-dynamin-1 (1:1000,
Abcam, ab52611), anti-14–3–3Z (1:1000, Abcam, ab155037),
anti-NDUFV2 (1:10,000, Abcam, ab183715), anti-PERK (1:1000,
CST, 3192S), anti-p-PERK (1:1000, CST, 3179S), anti-eIF2α
(1:1000, Santa Cruz, sc-133132), anti-p-eIF2α (1:1000, CST,
3597S), and anti-CHOP (1:1000, CST, 2895S) were then added
and incubated on ice overnight. After washing with TBST,
membranes were incubated with anti-rabbit or anti-mouse
IgG HRPs (Thermo Fisher Scientific, 1:3000) for 50 min
at room temperature. Then the membranes were washed
with TBST and treated with enhanced chemiluminescence
(ECL) reagents from an ECL kit (Pierce, Thermo Scientific).
Blots were detected on a phosphorimager and analyzed

according to ImageQuant 1D software (GE Healthcare,
USA).

Statistical Analysis
Data were expressed as the mean ± SEM and analyzed with
SPSS 20.0 statistical software (SPSS Inc., Chicago, IL, USA) and
GraphPad Prism 7.0 (GraphPad Software, Inc., La Jolla, CA,
USA) Statistical analysis among two independent groups was
performed by t-test. Significant difference of each group was set
at P < 0.05.

RESULTS

The Absence of TRPC1 Caused Neuronal
Loss and Apoptosis in Mouse Striatum
Significant loss of NeuN-positive cells (a neuron-specific
marker) was observed in the striatum of TRPC1−/− mice
relative to the WT mice (P < 0.01; Figures 1A,B). These
data indicate that TRPC1 is required for the survival
of neurons in striatum, as previously shown for the
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FIGURE 2 | A representative two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) gel image of corpus striatum proteins from TRPC1−/− and WT
mice. (A) Representative image of striatal proteins from TRPC1−/− mouse brain labeled with Cy5 dye. (B) Representative image of a 2D-DIGE gel showing
Cy3-labeled striatal proteins from WT mice. (C) Representative image of a 2D-DIGE gel showing Cy2-labeled proteins as internal standards. (D) A merged image of
the 2D-DIGE gel displaying Cy2-, Cy3- and Cy5-labeled proteins. (E) Grayscale 2D-DIGE gel image showing 51 differentially expressed protein spots identified by
MALDI-TOF-MS/MS (black numbers with white square) in the striatum of TRPC1−/− mice relative to that of WT mice.

hippocampus (REF, Xing et al., 2016). TUNEL staining
revealed that TUNEL-positive cells were significantly
increased in striatum of TRPC1−/− vs. WT mice (P < 0.05;
Figures 1C,D), indicating that an apoptotic mechanism
is involved in the loss of striatal neurons in TRPC1−/−

mice.

Identification of Differentially Expressed
Striatal Proteins in TRPC1−/− vs. WT Mice
Protein profile changes in the striatum of TRPC1−/− vs. WT
mice were explored with 2D-DIGE and MALDI-TOF-MS/MS.
Representative 2D-DIGE gel images of the striatal proteins from
TRPC1−/− mice and the WT mice are shown in Figure 2.

Frontiers in Aging Neuroscience | www.frontiersin.org 5 March 2018 | Volume 10 | Article 72

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Wang et al. Striatal Apoptosis by TRPC1 Deletion

FIGURE 3 | Identification of differentially expressed striatal proteins and bioinformatics analysis in TRPC1−/− vs. WT mice. (A) A total of 51 identified differentially
expressed striatal proteins included oxidative stress-related proteins, synapse-related proteins, apoptosis-related proteins, metabolism-related proteins and others
classified according to their protein functions. (B) Protein-protein interaction network among striatal proteins in TRPC1−/− vs. WT mice; proteins are presented as
nodes with colors: increased proteins are shown in red while decreased proteins are shown in green. (C) Gene ontology (GO) analysis for differentially expressed
striatal proteins in TRPC1−/− vs. WT mice.

The spots with a fold-change greater than 1.1 and a P-
value ≤ 0.05 between TRPC1−/− mice and WT mice were
classified as differentially expressed protein spots (n = 51)
for analysis by MALDI-TOF-MS/MS. Among these 51 protein
spots, 26 were increased and 25 were decreased in TRPC1−/−

mice compared with that in WT mice. The proteins were
listed and classified functionally into oxidative stress-related
proteins, synapse-related proteins, apoptosis-related proteins,
and metabolism-related proteins according to their established
protein functions (Figure 3A).

Bioinformatics Analysis of Differentially
Expressed Proteins
Protein-protein interaction analysis was performed using
STRING 10.0 software embedded in Cytoscape 3.5.1. Most
of the proteins showed close protein-protein interactions
with the other differentially expressed proteins. Only six
identified proteins (EFHD2, MBP, GLO1, CPLX2, TPPP and
ES1) showed no interaction with the others. Heat shock
family proteins HSPA8 and HSPA5, enolase-1 (alpha) (ENO1),
phosphoglycerate mutase 1 (PGAM1) and triosephosphate
isomerase 1 (TPI1) were shown to be the core proteins in

the network (Figure 3B), indicating these proteins could be
the key striatal proteins affected by the genetic absence of
TRPC1.

All differentially expressed proteins were uploaded to DAVID
software for GO analysis. All the enriched items are shown
by the percentage and P-value and the top 10 enriched
items in biological process, cellular components and molecular
functions were shown (Figure 3C). Biological processes were
most enriched for ATP metabolic process, protein folding
and glycolytic process. For the cellular component, myelin
sheath, extracellular exosome and mitochondria were the top
three enriched items. Protein kinase binding, cadherin binding
involved in cell-cell adhesion, and MHC class I protein
binding, were the most enriched items among molecular
functions.

TRPC1 Deletion Caused Oxidative Stress
in Striatum
In the proteomic study, we found differentially expressed
proteins were closely related with mitochondria and ATP
metabolism, suggesting that oxidative stress may be involved in
the increased apoptosis the striatum of mice lacking TRPC1.
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FIGURE 4 | TRPC1 deletion caused DNA oxidative damage in striatum and
verification of oxidative stress-related proteins by Western-blot analysis.
(A) Immunofluorescent images of 8-hydroxy-2′-deoxyguanosine (8-OHdG)
staining of TRPC1−/− and WT mice striatum. (B,C) Relative intensity of protein
deglycase (DJ-1) in striatum. (B,D) Relative intensity of NADH dehydrogenase
(ubiquinone) flavoprotein 2 (NDUV2) in striatum. Data expressed as
mean ± SEM. Statistical analysis between two independent groups was
performed by t-test. ∗P < 0.05, vs. WT mice. n = 3 per group.
Scale bar = 100 µm.

To reveal the potential influence of TRPC1 on oxidative stress
in striatum, we performed an immunofluorescence staining
of striatum using an antibody to 8-hydroxy-2′-deoxyguanosine
(8-OHdG), a stable and integral marker of DNA oxidative
damage. Oxidative damage in cellular DNA was significantly
increased in striatum of TRPC1−/− mice compared to that of
WT mice (P < 0.05; Figure 4A). Furthermore, by Western-blot
analysis, two proteins, mitochondrial NADH dehydrogenase
(ubiquinone) flavoprotein 2 (NDUV2) and DJ-1 (also known
as Parkinson disease protein 7), of a total of 11 oxidative
stress-related proteins identified by proteomic analysis, were
validated respectively to be decreased and increased in the

striatum of TRPC1−/− mice compared with that of the WT mice
(Figures 4B–D).

Validation of Apoptosis-Related Proteins
Western-blot analysis was used to further validate the expression
of some apoptosis-related proteins identified by proteomic
analysis. Apoptosis-related protein 14-3-3 Z was significantly
decreased while dynamin-1 (D2 dopamine (DA) receptor
binding, apoptosis-related protein) was increased in the striatum
of TRPC1−/− mice relative to WT mice (Figure 5).

ER Stress Was Induced in Striatum by
TRPC1 Deletion
Since proteomic analysis showed that endoplasmic reticulum
(ER) stress-related proteins HSPA8 and HSPA5 were induced
in the striatum by TRPC1 deletion (see above), we asked
whether ER stress-related signaling pathways were also activated.
Western-blot analysis showed significant decrease of GRP78, a
key chaperone protein involved in ER stress in the striatum
of TRPC1−/− mice. Furthermore, we found that the ER
stress signaling molecules p-PERK, p-eIF2α and CHOP were
significantly increased in striatum of TRPC1−/− mice (Figure 6).
These data indicated that TRPC1 deletion triggered ER stress in
the mouse striatum.

DISCUSSION

TRPC1 is consistently associated with store-operated calcium
(Ca2+) entry (SOCE), an important regulatory mechanism
for Ca2+ homeostasis, which is closely related to neuronal
development and differentiation (Inglefield et al., 2001;

FIGURE 5 | Validation of differentially expressed apoptosis-related proteins by
Western-blot analysis. (A,B) Relative intensity of dynamin-1. (A,C) Relative
intensity of 14–3–3Z protein. Data expressed as mean ± SEM and statistical
analysis between two independent groups was performed by t-test.
∗P < 0.05, vs. WT mice. n = 3 for each group.
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FIGURE 6 | Validation of differentially expressed endoplasmic reticulum (ER)
stress-related proteins in striatum by Western-blot analysis. (A,B) The relative
intensity of GRP78. (A,C) The relative intensity of p-PERK/PERK. (A,D) The
relative intensity of p-eIF2α/eIF2α. (A,E) The relative intensity of CHOP. Data
expressed as mean ± SEM and statistical analysis between two independent
groups was performed by t-test. ∗∗P < 0.01 and ∗P < 0.05, vs. the WT mice.
n = 3 for each group.

Wu et al., 2004). Ca2+ signaling is of vital importance
for multiple physiological processes, including neuronal
development/differentiation/maturation, neurosecretion and
exocytosis (Bollimuntha et al., 2017; Chen et al., 2017).

TRPC1 is a subunit of heteromeric channel complexes that
function in the regulation of Ca2+ permeability (Storch et al.,
2012). TRPC1 and the rest of its family members are nonselective
cation-permeable channels (Gees et al., 2010). Activation of
TRPC is linked with the activation of plasma membrane-
associated GPCRs or RTKs, which induce the hydrolysis of
phosphatidylinositol 4,5-bisphosphate (PIP2) into IP3, and
finally cause the deletion of ER Ca2+ stores (Bollimuntha
et al., 2017). Neurotoxin-induced ER stress is also regulated
by TRPC1 mediated AKT/mTOR signaling in dopaminergic

neurons (Selvaraj et al., 2012). TRPC1 is also involved in the
suppression of Cav1.3 activity through the stromal interacting
molecule-1 (STIM1) to protect the dopaminergic neurons (Sun
et al., 2017). However, the potential mechanism underlying
TRPC1-mediated neuronal loss/apoptosis, such as the striatal
neuronal apoptosis we observed here, is not clear.

High-throughput proteomic analysis is an efficient approach
to gain insight into pathophysiological mechanisms of
dysfunction and diseases. In this study, using 2D-DIGE coupled
with MS, we revealed a total of 51 differentially expressed
proteins (26 increased and 25 decreased) in the striatum
of TRPC1−/− mice compared with WT mice. Bioinformatics
analysis revealed that these dysregulated proteins were associated
with ER stress, glycolytic process, oxidative stress and apoptosis.

ER Stress and Apoptosis
Protein synthesis and folding is thought to be a pivotal ER
function. Various conditions can lead to ER stress (Mori,
2000) which engages the unfolded protein response (UPR), an
adaptive signal transduction pathway (Tabas and Ron, 2011; Hetz
et al., 2015). Three UPR sensors activating transcription factor
6 (ATF6α), protein kinase RNA-like ER kinase (PERK) and
endoribonuclease inositol-requiring enzyme 1-alpha (IRE1α)
are important for the protein folding process through ER
(Tirasophon et al., 1998; Harding et al., 1999; Haze et al.,
1999). All three sensors are maintained in an inactive state
with the ER chaperone, GRP78. Upon accumulation of unfolded
proteins, three sensors are released and activate, triggering the
UPR, a pro-survival response that can restore ER function.
However, if protein aggregation is persistent, signaling will
switch from pro-survival to pro-apoptosis. TRPC1 is involved
in the regulation of Ca2+ homeostasis and the inhibition of
UPR, which contribute to the survival of neurons (Selvaraj et al.,
2012). Release of PERK fromGRP78 leads to kinase dimerization
and autophosphorylation (Szegezdi et al., 2006). Activated PERK
phosphorylates eukaryotic initiation factor 2 (eIF2) and leads
to the induction of CHOP, also called GADD153 or DDIT-3
as transcription factor, which is important for the regulation
of apoptosis and cell death pathway. The downregulation of
GRP78 by small interfering RNAs resulted in exacerbating
neurotoxicity of alpha-synuclein (α-syn) in nigral DA neurons
(Salganik et al., 2015) Silencing of TRPC1 or STIM1 can raise
neurotoxin-induced loss of SOCE, the associated increase in
ER Ca2+ levels and the resultant UPR (Selvaraj et al., 2012).
Taken together, we speculated that striatal neuronal loss caused
by TRPC1 deletion is possibly related to an increase in ER
Ca2+ levels and the resultant UPR through down-regulation of
GRP78. Furthermore, we found that phosphorylation of PERK
and eIF2α was increased in the absence of TRPC1 in striatum
and the increase of CHOP through Western-blot analysis. These
results indicated that the p-PERK/p-eIF2α mediated CHOP
pathway participates in the ER stress event in the absence of
TRPC1.

Oxidative Stress and Apoptosis
Oxidative stress, caused by oxidative disturbance, can induce
apoptosis via both mitochondria-dependent and independent
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FIGURE 7 | TRPC1 deletion-induced caused striatal neuronal apoptosis is attributed to the dysregulation of proteins related to the biological/pathogenic processes,
ER stress, oxidative stress and apoptosis-related signaling.

pathways (Sinha et al., 2013). In the proteomic studies, we
found that various oxidative stress-related and apoptosis-related
proteins were dysregulated in the absence of TRPC1. Protein
DJ-1, a multi-function factor for transcription and molecular
chaperone, is upregulated in oxidative stress or active astrocytes
(Kahle et al., 2009; Yanagida et al., 2009). There are also
studies demonstrating that the upregulation of DJ-1 protects
neurons from oxidative stress (Zhou and Freed, 2005; Billia
et al., 2013). We found that DJ-1 was increased in the striatum
of TRPC1−/− mice, which suggests that a mitochondria-
independent antioxidant pathway is activated. NDUV2 is one of
the core subunits of mitochondrial Complex I, gene mutation of
which causes functional loss of NDUV2, which is linked with
various diseases, including neurodegenerative disease (Mimaki
et al., 2012). We found NDUV2 was decreased in striatum
of the TRPC1−/− mouse. These results suggest that both
the mitochondria-dependent and -independent pathways may
be involved in the oxidative stress pathway. Furthermore,
the staining of 8-OHdG, a stable and integral marker of
DNA oxidative damage, intuitively reflects the influence of
TRPC1 KO on oxidative stress in striatum. TRPC1 stimulated
neuronal stem cell proliferation in the manner of basic fibroblast
growth factor/fibroblast growth factor receptor-1 ((bFGF/FGFR-

1)-induced Ca2+ influx (Fiorio Pla et al., 2005). Our data
indicate that the increased reactive oxygen species (ROS)
production, Ca2+ entry and glutathione (GSH) depletion,
may lead to apoptotic cell death in the absence of TRPC1.
Additionally, in the bioinformatics analysis, the differentially
expressed proteins in TRPC1−/− vs. WT were mostly enriched
in ATP metabolic process, thereby revealing a link between
TRPC1 and oxidative stress. Thus, TRPC1 plays a role in
the induction of oxidative stress and apoptosis in striatal
cells.

Apoptosis-Related Signaling Molecules
and Apoptosis
The neuron-specific protein dynamin-1 is a multidomain
GTPase that plays a pivotal role in the fission stage of synaptic
vesicle recycling and vesicle trafficking. DYN1 is also required
for the maturation of apoptotic cells engulfed into endosomes
(Kinchen et al., 2008). DYN1 can translocate Fas protein from
the Golgi apparatus to the cell surface and enable it to bind
with its ligand (FasL), and then induce extrinsic apoptosis
and caspase-dependent cell death (Ivanov et al., 2006). The
overexpression of 70-kDa inducible Hsp (Hsp70) attenuated
Fas-mediated apoptotic death and induced downregulation of
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dynamin-1 (Kim et al., 2016). In our study, we also found
significant striatal neuronal apoptosis and increase of dynamin-1
with TRPC1 deletion, indicating that dynamin-1 is involved in
apoptosis associated with deletion of the gene encoding TRPC1.

CONCLUSION

We showed that deletion of the gene encoding TRPC1 causes
striatal neuronal loss and apoptosis associated with significant
changes in protein expression. These dysregulated proteins were
mainly involved in biological/pathological processes relating
to ER stress, oxidative stress and apoptosis. Taken together,
we conclude that TRPC1 deletion causes striatal neuronal
loss/apoptosis by disturbing multiple biological processes,
including ER function, oxidative stress, and apoptosis-related
signaling (Figure 7). These data suggest that TRPC1 is a
key player in the regulation of striatal cellular survival and
death.
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