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Abstract

Objective: The diagnosis of multiple sclerosis (MS) at disease onset is some-

times masqueraded by other diagnostic options resembling MS clinically or

radiologically (NonMS). In the present study we utilized findings of large-scale

Genome-Wide Association Studies (GWAS) to develop a blood gene expres-

sion-based classification tool to assist in diagnosis during the first demyelinating

event. Methods: We have merged knowledge of 110 MS susceptibility genes

gained from MS GWAS studies together with our experimental results of differ-

ential blood gene expression profiling between 80 MS and 31 NonMS patients.

Multiple classification algorithms were applied to this cohort to construct a

diagnostic classifier that correctly distinguished between MS and NonMS

patients. Accuracy of the classifier was tested on an additional independent

group of 146 patients including 121 MS and 25 NonMS patients. Results: We

have constructed a 42 gene-transcript expression-based MS diagnostic classifier.

The overall accuracy of the classifier, as tested on an independent patient

population consisting of diagnostically challenging cases including NonMS

patients with positive MRI findings, achieved a correct classification rate of

76.0 � 3.5%. Interpretation: The presented diagnostic classification tool com-

plements the existing diagnostic McDonald criteria by assisting in the accurate

exclusion of other neurological diseases at presentation of the first demyelinat-

ing event suggestive of MS.

Introduction

The diagnosis of multiple sclerosis (MS) is a challenging

procedure and is currently based on the 2010 McDonald

criteria requiring evidence of disease dissemination in time

(DIT), dissemination in space (DIS) and “no better expla-

nation” for symptoms.1 At first demyelinating symptom-

atology, clinical, imaging and laboratory findings may be

similar between MS and other diseases that mimic MS

(NonMS) including infectious, neoplastic, metabolic,

vascular or idiopathic inflammatory demyelinating dis-

eases.2–4 Therefore, a need exists to find accurate biomar-

kers and to develop a tool that can assist in the exclusion of

NonMS diseases.

High throughput technology measuring simultaneous

expression of thousands of genes or proteins has been

shown to be potentially useful for diagnosis of MS.5–7

However, it is challenging to find biomarkers that not

only have immunological and inflammatory properties,

but are also specifically associated with MS pathogenesis.

Large-scale genome-wide association studies (GWAS)

examining single-nucleotide polymorphisms (SNP’s)

encompassing thousands of patients have been conducted

and have established 110 MS-related SNP’s,8–11 that con-

tribute to MS susceptibility and pathophysiology. It has

been previously demonstrated that SNPs could affect

expression of nearby genes.12 Therefore, we have merged

our findings of gene expression of MS susceptible loci

genes with other highly differentially expressed genes

(DEGs) between MS and NonMS patients to develop a

blood gene expression-based diagnostic classification tool.

This multi-gene classifier was tested on an independent

cohort of patients during the first neurological event

suggestive of MS demonstrating high accuracy and there-

fore could improve the diagnostic process in challenging

cases.
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Methods

Patients

We analyzed blood samples of patients selected according

to the following criteria: (1) Age 18–60 years; (2) Free of

steroid treatment for at least 30 days; (3) Patients with

the first clinical demyelinating event suggestive of MS that

upon presentation fulfilled DIT or DIS according to 2010

McDonald’s criteria. After follow-up period of 5 years

these patients were further divided into two groups: (a)

patients that converted to relapsing remitting MS (RRMS)

(Clinically Isolated Syndromes, CIS group); (b) patients

that did not convert to MS and after extensive work-up a

better explanation for the clinical and imaging findings

was established (NonMS group). (4) Patients that at the

time of sampling fulfilled McDonald 2010 criteria for

RRMS and served for classifier training and testing.

Standard protocol approvals and patients
consent

The study was approved by Sheba Medical Center Institu-

tional Review and Ethical Board and all patients gave

written informed consent. Demographic and clinical data

were retrieved from Sheba Multiple Sclerosis Center com-

puterized database.

Study design

Patient data set (n = 257) was divided into two sub-

groups: training set (n = 111) and test set (n = 146). The

training set was used to construct blood gene expression-

based classifier, while the independent test set allowed for

subsequent testing of the classifier performance. Multiple

classification algorithms implemented in Partek software

(St. Louis, Missouri, USA) were applied to the training

set subgroups to construct classifiers that can correctly

distinguish between MS and NonMS patients. The classi-

fier with the best performance on the training set was

validated on the test set.

An additional internal cross-validation was performed

by testing the classifier consistency on a subgroup of

patients that were resampled within 0.8 � 0.2 years from

the initial blood sampling. The study flow chart is dem-

onstrated in Figure 1.

Microarray preparation

Total RNA from patients frozen peripheral blood mono-

nuclear cells (PBMC) was extracted using Trizol (Invitro-

gen, Carlsbad, California, USA) and Phase-Look-Gel

columns (Eppendorf, Hamburg, Germany) including a

DNase digestion step. RNA quality was determined by

BioRad Experion (Hercules, California, USA) automatic

electrophoresis station. cDNA was synthesized from 3 lg
total RNA using the One-Cycle cDNA Synthesis Kit, and

in vitro transcription was performed with the GeneChip

IVT Labeling Kit (Affymetrix, Inc., Santa Clara, CA). The

biotin-labeled IVT-RNA was hybridized to HGU133A-2

arrays containing ~22,000 gene transcripts corresponding

to 14,500 well-annotated human genes, washed in a Gene-

Chip Fluidics Station 450 and scanned on GeneArray-TM

scanner (G2500A; Hewlett Packard Palo Alto, California,

USA) according to standard Affymetrix Inc. protocol.

Data pretreatment, normalization, and
statistical analysis

Following scanning of the arrays, the microarray raw data

were initially normalized by R Bioconductor Packages13

as follows: (1) all arrays were normalized serially using a

single sample microarray normalization approach

designed for personal medicine workflows (SCAN Nor-

malization)14; (2) an empirical bayes approach was used

to address batch effect in the data as implemented in

Combat SVA package.15,16

Figure 1. Flowchart of study design. Samples from 257 patients

including 137 patients at first demyelinating event and 120 RRMS

patients were subjected to gene expression microarray analysis and

randomly divided into a training set (n = 111) and test set (147).

training set was used for diagnostic classifier generation and then

classifier performance was validated on independent test set.

Resampling (n = 43) was done to demonstrate classifier consistency.
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Partek Genomics Software (www.partek.com) was used

for data analysis. All genes related to clinical and demo-

graphical confounders such as age, gender, immunomodu-

latory treatment with P < 0.01 were excluded from further

analysis. Next, to select candidate biomarkers for the classi-

fier we performed comparison gene expression analysis

between MS and NonMS patients in the training set. Genes

selected were comprised of: (1) DEGs within the entire

transcriptome with P value <0.05 after Bonferroni correc-

tion for multiple comparisons and (2) DEGs with P

value<0.05 from 207 gene transcripts corresponding to 110

loci found to be associated with MS in published GWAS

(GWAS DEG).9,10,17,18 These genes were then used to build

a support vector machine (SVM) classifier. The SVM was

configured as cost based, with costs varied from 1 to 1001

in intervals of 100. The tolerance (termination criterion)

was set at 0.001. The kernel for the SVM was a polynomial

function, with gamma equal to the inverse of the number of

evaluated probes. The optimal SVM was derived by shrink-

ing centroids and 10-fold cross-validation. Principal Com-

ponent Analysis (PCA) was used for visualization of results.

Functional analysis of genes included in
diagnostic classifier

Biological functional analysis of the classifier genes was

performed by Ingenuity Pathway Analysis (IPA) software

(www.ingenuity.com) that links gene products with bio-

logical processes, molecular function and cellular compo-

nents. Right-tailed Fisher’s exact test was used to calculate

a P value determining the probability that each biological

function assigned to gene data set is not due to random

chance. The P values obtained from Fisher’s analysis were

applied for Benjamini-Hochberg False Discovery Rate

(FDR) multiple testing corrections to keep the overall

error rate at P < 0.05.

Results

Patients

Blood samples were obtained from 137 patients that

presented with symptomatology suggestive of MS at

disease onset; 81 were diagnosed with CIS and 56 were

diagnosed as NonMS patients. The CIS group included 50

females and 31 males, mean � SE age 31.9 � 1.2 years,

the NonMS group included 43 females and 13 males,

mean � SE age 41.9 � 1.5 years.

The group of 120 RRMS patients that served for the

classifier training and testing included 80 females and 40

males, mean � SE age 37.3 � 1.0 years, disease duration

5.6 � 0.5 years and Expanded Disability Status Scale

(EDSS) 2.1 � 0.1.

Demographic and clinical variables of the study

patients in relation to experimental training set and test

set groups are presented in Table 1.

MS diagnostic classifier generation

The diagnostic classifier was generated based on the train-

ing set of samples from 111 patients including 80 MS and

31 NonMS. Gene expression analysis performed on these

groups identified 29 DEG’s with P < 0.05 after Bonferroni

correction and 49 GWAS DEGs, resulting in 78 candidate

genes for generating the diagnostic classifier. These 78

candidate biomarkers were used to construct and opti-

mize classification accuracy of various SVMs. The most

accurate SVM classifier used expression intensity of 42

gene – transcripts (Table S1) to correctly classify patients

in the training set with a total correct rate of 94.6%, hav-

ing a sensitivity of 95.0 � 2.4% and a specificity of

94.0 � 4.4%. Within the 42 transcripts chosen for the

classifier, 18 were based on SNP’s reported in the GWAS

studies. PCA of the training set based on these 42 tran-

scripts is shown in Figure 2.

Verification: classifier testing on the
independent test set

The MS diagnostic classifier performance was verified on

an independent test set, consisting of samples obtained

from CIS (n = 58), RRMS (n = 63) and NonMS (n = 25)

patients. First, the ability of the diagnostic classifier was

tested in the group of RRMS patients and NonMS

patients, demonstrating overall correct classification rate

of 77.3 � 4.5%, sensitivity of 78.0 � 5.2% and specificity

76.0 � 8.5% for the diagnosis of MS patients. Although

RRMS patients already have an established diagnosis, this

step was done to prove classifier ability to identify MS

specific expression signature. Next, to assess clinical appli-

cability, the classifier was applied to diagnostically rele-

vant cohort of CIS and NonMS patients at the time of

Table 1. Demographical and clinical characteristics of patients.

Group N Age average F (M) EDSS

Training set CIS 23 31.6 � 1.4* 16 (7) 1.4 � 0.3

RRMS 57 36.0 � 1.4* 36 (12) 2.1 � 0.2

NonMS 31 41.6 � 2.3 24 (7) NR

Total 111 36.6 � 0.1 76 (35) NR

Test set CIS 58 32.2 � 1.4* 23 (35) 1.4 � 0.1

RRMS 63 38.4 � 1.4* 43 (20) 2.2 � 0.2

NonMS 25 42.3 � 1.7 19 (6) NR

Total 146 36.6 � 0.9 97 (49) NR

RRMS, relapsing remitting multiple sclerosis; NR, not relevant.

*P < 0.05 as compare to NonMS group.
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the first demyelinating event (n = 83). In this cohort the

classifier demonstrated an overall accuracy of 74.7 �
4.8%, sensitivity 74.0 � 5.7%, and specificity 76.0 �
8.5% for the diagnosis of MS. The overall accuracy of the

classifier on the entire test set of independent patients

(n = 146) was 76.0 � 3.5%, Table 2.

Further analysis of classifier performance showed

dependence of the classification accuracy on the initial

clinical disability score of patients. Thus, including only

patients with abnormal neurological findings (EDSS > 0)

at the time of sampling, improved the classifier sensitivity

to 78.0 � 5.2% in the CIS patient group, and to

80.4 � 4.0% overall (Table 2).

An additional internal cross-validation test of the classi-

fier validity was done by analysis of repeated samples.

Consistency of the classifier to reproduce the same classi-

fication was tested in 43 patient samples retaken after an

average time of 0.8 � 0.2 years from the initial sampling.

Twenty samples were retested from the test set group,

and 23 samples were retested from the training set group.

Consistency of the results was overall 81.4%. In the test

set the consistency of results was 85.0% and in the train-

ing set the consistency was 78.0%.

As could be seen from Table 1, in the training and test

set the age of MS and NonMS patients was significantly

different. To analyze the effect of age on classifier perfor-

mance we examined the 42 gene-transcripts classifier per-

formance in age-matched subgroups. This analysis

demonstrated that, overall classifier ability to diagnose

MS and NonMS patients was not affected by age. This is

shown by the similar range of correct classification of

81.4 � 7.5%, 72.2 � 7.5%, 72.7 � 6.7%, and 78.4 �
6.7% in the respective age subgroups <25, 25–35, 35–45,
and >45 years.

To assess the predictive contribution added by GWAS

DEGs to DEG’s we constructed two additional classifiers,

the first based solely on GWAS DEGs genes and another

based only on DEG’s. Both classifiers performed inferiorly

to the 42 gene-transcript classifier, with the GWAS DEGs

classifier achieving an accuracy rate of 59.0 � 4.6% with

sensitivity 55.0 � 5.2% and specificity 72.0 � 9.0% and

the only DEG’s classifier demonstrating an accuracy of

76.0 � 3.9% with sensitivity of 83.0 � 3.9% but low level

of specificity 53.0 � 10.0%.

Functional analysis of diagnostic classifier
genes

Functional analysis of the classifier genes showed enrich-

ment of genes associated with different mechanisms of

cell movement and migration (P value 3.21E-03 to 1.54E-

05), immune cell trafficking including lymphocytes migra-

tion (P = 1.54E-05), cell movement of T lymphocytes

(P = 6.79E-05), transmigration of T lymphocytes (P =
1.97E-04) and adhesion of immune cells (P = 1.49E-03),

Table S2. These findings were further consistent with gene

expression network analysis in which the classifier genes

were shown to organize in four functional networks,

including cell-mediated immune response and immune

cell trafficking, similarly to the results of the enrichment

analysis, Table S3. Additionally, the classifier genes were

found to be upstream regulators of other molecules,

including CXCR4 and JAK2 regulating CDH1. Further-

more, these regulators were related not only to

Figure 2. Principal component analysis (PCA) based on 42 gene-

transcripts of the diagnostic classifier. This difference between MS

and NonMS patients from training set is presented. Each dot

represents patient sample principal components derived from

expression of 42 diagnostic classifier gene-transcripts. The distance

between any pair of points is related to the similarity between the

two observations in high-dimensional (3D) space. Blue dots represent

NonMS patients, Red dots represent MS patients.

Table 2. Summary of MS diagnostic classifier performance.

Groups compared Total accuracy Sensitivity Specificity

Test set CIS (n = 58) vs. NonMS (n = 25) 74.7 � 4.8% 74.0 � 5.7% 76.0 � 8.5%

Test set CIS EDSS > 0 (n = 45) vs. NonMS (n = 25) 77.1 � 5.0% 78.0 � 6.2% 76.0 � 8.5%

Test set RRMS (n = 63) vs. NonMS (n = 25) 77.3 � 4.5% 78.0 � 5.2% 76.0 � 8.5%

Test set all MS (n = 121) vs. NonMS (n = 25) 76.0 � 3.5% 76.0 � 3.9% 76.0 � 8.5%

Test set all MS EDSS > 0 (n = 103) vs. NonMS (n = 25) 78.9 � 3.6% 80.0 � 4.0% 76.0 � 8.5%

RRMS, relapsing remitting multiple sclerosis.

274 ª 2015 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals, Inc on behalf of American Neurological Association.

Optimizing Multiple Sclerosis Diagnosis G. Michael et al.



downstream molecules, but they also could be intercon-

nected between themselves, Figure 3.

Discussion

In this study, we present an innovative approach whereby

we developed a blood gene expression-based diagnostic

tool proved to be useful for excluding MS mimicking

diseases in the early stage of the diagnostic process. For this

purpose we have merged knowledge of MS susceptibility

genes gained from MS GWAS studies together with our

experimental results of differential gene expression profil-

ing between MS and NonMS patients. This multimodal

approach allowed us to utilize data acquired from very

large scale studies to focus on a narrow list of candidate bi-

omarkers that contribute to the pathological mechanisms

operating in MS. While certain genetic associations have

been consistently shown to contribute to the etiology of

MS,11 the link between genome variability and disease phe-

notypes still remain poorly understood. To the best of our

knowledge our study is the first to demonstrate the associa-

tion between genomic variability and differential gene

expression phenotypes of MS and other neurological dis-

eases that mimic MS. SNP’s may influence gene expression

in several ways, including modulating transcription factor-

binding sites, changing amino sequence of stop codons,

affecting splicing patterns, altering proteins by changing

single amino acids and modulating micro-RNA-binding

sites activity.12,19 Although examining the specific mecha-

nism by which each SNP affects its corresponding gene

expression is beyond the scope of this study, overall we

have shown significant differential expression of 49 MS

susceptible loci associated transcripts, from which 18 were

included in our diagnostic classifier.

Currently, the McDonald criteria used for MS diagnosis

have specificity over 90% with sensitivity of 77% and accu-

racy of 86%.20–23 Notably, these high accuracy levels were

achieved in multicenter trials conducted in tertiary MS cen-

ters, after exclusion of patients with other neurological dis-

eases.1,22,24 Therefore, the relevance of the high accuracy of

McDonald criteria has been questioned with regard to every-

day clinical practice in which NonMS patients are not

excluded prior to application of the criteria.22 A study exam-

ining the diagnostic performance of DIS criteria in such a

cohort of difficult cases mimicking MS, showed that the sen-

sitivity of the diagnosis decreased to 64%.22

Our diagnostic classifier was able to successfully discrim-

inate between CIS converting to MS and NonMS patients

during the early disease stage with sensitivity of 74.0% and

specificity of 76.0%, therefore having potential use for clini-

cal practice. This diagnostic classifier may assist to reach the

correct diagnosis in patients with suspected MS at an early

stage. Importantly, the accuracy rate of the classifier was

tested on population that consisted of diagnostically chal-

lenging cases of NonMS patients having positive findings

on MRI and fulfilling McDonald criteria for DIT or DIS.

Furthermore, the EDSS-dependent improvement of the

classifier performance to reach a sensitivity of 78.0%, sug-

gests that the expression of genes involved correlate with

patients’ neurological findings. This suggests that genes

included in the classifier represent disease activity profile

rather than the constitutive gene expression profile of MS

disease as we have previously reported.25,26

Functional enrichment analysis of the genes included in

the classifier identified genes and functions with signifi-

cant role in MS pathophysiology. The most significantly

enriched functions are related to immune cell trafficking

and adhesion. Specifically, the regulatory network includ-

ing CXCR4, a master regulator having a known role as a

stimulator of T- and B-cell proliferation and migration

through the endothelium.27–30 CXCR4 connects to the

downstream CD6 gene encoding the SRCR domain and

binding site for activated cell adhesion molecules, and

further continues the process of T-cell activation. It is of

note that both CXCR4 and CD6 are associated with MS

susceptibility loci. This process involving immune cells

activation, proliferation, and adhesion appears to play a

central role in the classifier network. Two additional

important genes in the network include MALT1 and

Figure 3. Functional regulatory network of classifier genes. Classifier

gene network reconstructed based on literature-known relationships

according to IPA software database. Each node in the regulation tree

represents a regulating gene, arrows indicate literature confirmed

regulatory interactions. Over-expressed genes are depicted in red,

down-expressed in green.
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NME2. MALT1 is known to be involved in B- and T-cell

receptor signaling, CD28 signaling in T Helper Cells and

regulation of IL-2 Expression in Activated and Anergic T

Lymphocytes.31,32 MALT1 also enhances BCL10-induced

activation of NFKB and BCL10 cleavage leading to T-cell

antigen receptor-induced integrin adhesion.33 NME2 is

known to be involved in targeted activation of cell adhe-

sion sites upon integrin engagement34 and is critical to

the potassium channel KCa3.1 stability and the activation

of CD4 + T cells.35

Molecular profiling technology, and specifically gene

expression for diagnostic or prognostic purposes has been

successfully applied in a number of different scenarios

including Alzheimer, breast and lung cancer.36–39 These

diagnostic assays were developed using established gene

expression analysis approaches. The novelty of our study,

however, is that we also apply knowledge gained in

GWAS studies that although instrumental in understand-

ing underlying genetics and pathogenesis of disease, have

been somewhat limited in their clinical applicability in

day to day practice.

Some limitations may apply to this work. First,

although independent test and training sets were estab-

lished for classification, all patients included in study were

enrolled from a single MS center. Additional verification

in a multi-center study design could better establish the

clinical applicability of our findings. Second, the sample

size was uneven between patient groups, with a relatively

smaller sample size for the NonMS cohort. This issue

should also be addressed in future studies.

In this study, we have focused on diagnostically chal-

lenging patients representing a true diagnostic dilemma,

and present a novel MS diagnostic tool that can be used

at the early disease stage to assist in accurate diagnostic

decision making.
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