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Abstract
In the last few years, diabetes mellitus and obesity revealed to be one of the
fastest-growing chronic diseases in youth in the United States. The number of
new diabetes cases is dramatically increasing, and, for the moment, effective
therapy does not exist. Experts believe that one of the causes of this increase
is the decline in exercise behavior. The California Education Code requires local
educational agencies (LEAs) to administer the FITNESSGRAM, the Physical Fit-
ness Test (PFT), to Californian students of public schools. This test evaluates six
fitness areas, and experts defined that a passing result on all six areas of the test
represents a fitness level that offers some protection against the diseases associ-
ated with physical inactivity. We consider 2015–2016 data provided by the Cali-
fornia Department of Education (CDE): for each Californian county (𝑚 = 57),
we aim at estimating the county-level proportion of students with a score equal
to six. To account for the heterogeneity of the phenomenon and the presence
of outlying counties, we extend the standard area-level model by specifying the
random effects as a symmetric 𝛼-stable (S𝛼S) distribution that can accommo-
date different types of outlying observations. The model can accurately estimate
the county-level proportion of students with a score equal to six. Results high-
light some interesting relationships with social and economic situations in each
county. The performance of the proposed model is also investigated through an
extensive simulation study.

KEYWORDS
area-level model, California FITNESSGRAM, hierarchical Bayesian model, small area estima-
tion, stable distribution

1 INTRODUCTION

Childhood obesity continues to be one of the most significant health threats to kids and teens across developed countries.
In the United States, approximately one in five youth ages 6–19 are obese, according to a recent study (Ogden et al., 2016).
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Childhood overweight and obesity are associated with a plethora of metabolic and clinical constraints, which result in
a higher risk for the development of cardiovascular complications and metabolic disease, particularly insulin resistance
and type 2 diabetes. Thus, prevention and control for childhood overweight and obesity are urgently needed. Obesity is
due to a long-term imbalance between energy intake and energy expenditure: physical activity accounts for 5–35% of total
energy expenditure in children and has been regarded as a critical component in obesity prevention (Galuska et al., 2018;
Metcalf et al., 2011). However, with social development and changes in people’s lifestyles, children and adolescents do
not spend enough time on physical activities. The national Youth Risk Behavior Surveillance (YRBS) alerted that in 2011
only 28.7% of nationwide students in the United States were physically active for a total of at least 60 min per day on each
of the 7 days before the survey (Eaton et al., 2012). Therefore, the American government deems it necessary to explore
effective and feasible strategies to promote childhood physical activity as the best tool for counteracting the diffusion of
obesity in the USA. Schools and all educational institutes play a vital role in the dissemination of the culture of physical
activities. California Education Code Section 60800 requires local educational agencies (LEAs) to administer the Physi-
cal Fitness Test (PFT) annually to students in grades five, seven, and nine. The designated PFT is the FITNESSGRAM.
The test evaluates six fitness areas: Aerobic Capacity, Body Composition, Muscle Strength, Endurance and Flexibility,
Trunk Extensor Strength and Flexibility, Upper Body Strength and Endurance, and Flexibility. The test is scored based
on criterion-referenced standards to evaluate fitness. A passing result in all six areas (6/6) of the test represents a fitness
level that offers some protection against the diseases associated with physical inactivity (California Department of Edu-
cation, 2015). In this paper, we consider data for 2015–2016 provided by the California Department of Education (CDE),
and we propose a small area model for estimating the county-level proportion of students with a score equal to six. In
order to accommodate counties variability, we extend the standard area-level model by specifying for the random effects
a symmetric 𝛼-stable (S𝛼S) distribution that can capture different types of outlying observations.
The paper is organized as follows. In Section 2, we review the primary literature contribution about the choice of the

random effect in small area models when outlying observations are involved. Methodological preliminaries about the S𝛼S
distribution are given in Section 3. The Fay–Herriot (FH) model based on S𝛼S for the random effects is introduced in
Section 4, and the computational issues related to the model estimation are outlined in Section 5. A simulation study,
described in Section 6, is designed to compare the different prior distributions for the random effects in the FH model,
highlighting the competitiveness of the proposed model. In Section 7, data about the proportion of athletic students in
California are analyzed. The paper concludes with some discussion in Section 8.

2 RANDOM EFFECTS IN AREA-LEVELMODEL

Due to the increasing demand for small area statistics, small area estimation (SAE) is becoming one of the most interest-
ing topics for survey statisticians. Direct design-based estimates for small areas usually suffer from significant standard
errors due to insufficient or no survey data. Consequently, model-based estimation of small area means is receiving much
attention in statistical literature where the goal is to extract information from sources other than the survey (see Molina
and Rao, 2015, for a complete review).
The SAE models are mixed-effects models involving random area-specific effects to carry strength to the direct design-

based estimates through auxiliary information. The random effects play a crucial role in these models: the bias of model-
based small area predictors reduces by adding random effects, but, at the same time, such random effects increase the
variability of the predictions, leading, in some cases, to very large confidence intervals (Fay & Graubard, 2001). Therefore,
the presence or not of random effects and their specification in the model are issues in the current debate. Because of its
simplicity and interpretability, the most well-known area-level model is the FH model (Fay & Herriot, 1979), where the
random terms are assumed to be normally distributed with common variance. This assumption is very restrictive, mainly
when outliers are detected in the data; hence several alternative models dealing with more flexible specifications of the
random effects distribution have been proposed in the literature. In this paper, we discuss in detail the choice of random
effect distribution in a Bayesian framework. We contribute to the open debate about the choice of the “optimal” prior
distribution for the random effect. In Sinharay and Stern (2003), the authors explained that the distribution of the random
effect significantly affects the small area estimates; however, they also showed that violations of the assumptions about
the random effects are challenging to be detected using posterior-predictive checks unless the sampling variance is small
compared to the population variance. Several extensions of the FH model have been proposed in the literature to make
it more robust and flexible. In Bell and Huang (2006), the authors modeled the random effects through a 𝑡 distribution
to deal with outliers in the data. They explained that using a 𝑡 distribution with few degrees of freedom can decrease
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the impact of outliers on the estimation process. In Fabrizi and Trivisano (2010), the authors examine two extensions of
the FH model in which the random effects are assumed to be distributed according to either an exponential power dis-
tribution (Box & Tiao, 1973) or a skewed exponential power distribution. The authors concluded that the two proposed
distributions are two robust alternatives and perform adequately even when normality holds, provided that the number
of areas is not too small. Although the skewed exponential power distribution is more flexible with respect to the expo-
nential power distribution, the authors concluded that the two distributions’ predictive performance is not dramatically
different. They suggested that practitioners use the latter distribution since the parameters have a direct interpretation
and its theoretical properties have been extensively explored. A generalized semiparametric approach has been recently
proposed in Polettini (2017): the normality assumption for the random effect is replaced by a Dirichlet process that allows
accommodating outlying observations. Moreover, design-variances are hierarchically modeled according to a chi-square
distribution, embedding in the model the uncertainty on the variances that are often estimated from the same survey
data.
Datta and Lahiri (1995) observed that the random effect distribution could not be the same for all areas, especially in the

presence of areas where the phenomenon of interest behaves very differently from the other areas. Indeed, they propose
to specify different prior distributions for different areas: for the outlying areas, they suggest using a Cauchy distribution
while, for the remaining areas, they suggest an appropriate scalemixture of the normal distribution, whose tails are lighter
than the Cauchy tails. However, they assume to knowwhich areas are outlying and concluded that their method is appro-
priate when one or more outliers are found in the data. In Datta et al. (2011), whether or not the presence of the random
effects in SAE is necessary is discussed. As alreadymentioned, random effects reduce the bias of the estimates but increase
their variability. When the model is misspecified, and the random effects are not necessary, the predictions’ variability is
artificially increased with severe consequences on all inferential procedures. To check whether the random effects have to
be included in the model, they introduced a test where the null hypothesis is that the common random effect variance is
zero. As explained by Torkashvand et al. (2017), “Datta et al. (2011) concluded that including random effects in the model
decreases the rate of convergence to the true values of area parameters.” The decrease is significant, especially when the
sample size is large. They also pointed out that “dropping the random effects can lead to a more accurate point and/or
interval estimators, although the flexibility and adaptivity of the area-level (also called Fay-Herriot) model might be lost.”
Hence, this approach’s main drawback is that the random effect will be omitted from all areas, whereas it might be nec-
essary to keep it for some areas. Then, Datta and Mandal (2015) moved to a Bayesian approach and started approaching
random effect inclusion as a model selection problem. They proposed to adopt a spike and slab prior distribution, defined
as amixture of a pointmass at zero and a zero-mean normal distribution. The spike component describes the probability of
a particular random effect in themodel to be zero, and then a regression estimate is adequate for that area; the slab compo-
nent describes nonnegligible random effects when the regressionmodel as such is not adequate. Using a similar rationale,
Tang et al. (2018), introduce global–local shrinkage priors for the random effects. These priors allow area-specific variance
components for random effects. In areas where random effects are not needed, the variance component is shrunk toward
zero; when random effects are needed, the variance component is larger than 0, and it increases with the role that the
random effects play in each area. The proposedmodel is especially advantageous when the number of small areas is large,
and the areas are very inhomogeneous for the phenomenon of interest. The global–local shrinkage priors employ two
levels of parameters for the variances of normally distributed random effects. The first level consists of the local shrinkage
parameters, which are area-specific, while the second level involves the global shrinkage parameter specification, which is
the same for all random effects. The global shrinkage parameter captures the overall/global random effect, while the local
parameter captures the area-specific random effect. The capability to model the global and local aspects of the random
effects is mainly due to the prior distribution’s tail. Indeed, the authors state, “If it is appropriately heavy-tailed, both small
and large random effects can be well-captured.” However, all the aforementioned prior distributions do not account for
different types of outlying observations. Atypical observations (outliers) may roughly be divided into two types: mild and
gross (Ritter, 2015). A commonly used rule says that a data point is an outlier if it is more than 𝑘 times the interquartile
range above the third quartile or below the first quartile. An outlier is defined as mild for 𝑘 ∈ [1.5; 3) while it is gross
when 𝑘 ≥ 3. Grossly atypical observations are more difficult to predict than mildly atypical observations, and random
effects models are often chose to manage outlying observations, while the goodness of the predictions strongly depends
on the distribution of the random effects. Indeed, the standard FHmodel fails in predicting gross outliers. In this work, we
propose to expand FH models by replacing the Gaussian distribution there adopted with the S𝛼S distribution that, being
more flexible than the Gaussian, makes the model more robust to outliers effects.
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F IGURE 1 Left panel: examples of 𝛼-stable distributions: A. 𝛼 = 0.5, 𝛽 = −0.8, 𝛾 = 1, 𝛿 = 0, B. 𝛼 = 0.5, 𝛽 = 0, 𝛾 = 1∕
√
2, 𝛿 = 0, C.

𝛼 = 1.1, 𝛽 = 0, 𝛾 = 1∕
√
2, 𝛿 = 0, D. 𝛼 = 2, 𝛽 = 0, 𝛾 = 1∕

√
2, 𝛿 = 0. Right panel: boxplots of the data generated from different simulation

scenarios

3 THE 𝜶-STABLE DISTRIBUTION

Stable (or 𝛼-stable) distributions are a rich class of probability distributions that allow skewness and heavy tails. This class
of distributions enjoys many interesting mathematical properties. Initially introduced by Lévy (1925) in his study of sums
of independent identically distributed terms, they received little practical attention until the results in Mandelbrot (1961,
1963a), who introduced a simple algorithm for estimating the parameters. He referred to such distributions as “stable
Paretian distributions”: in particular, he used those maximally skewed in the positive direction with 1 < 𝛼 < 2 as “Pareto-
Lévy distributions,” which he regarded as better descriptions of stock and commodity prices than normal distributions
(Mandelbrot, 1963b). The univariate 𝛼-stable distribution is a four-parameter family, with an index of stability (also called
tail index or characteristic exponent) 𝛼 ∈ (0, 2], skewness 𝛽 ∈ [−1, 1], scale 𝛾 > 0, and location 𝛿 ∈ ℝ. In the following,
we denote a stable random variable with aforementioned parameters as𝑋 ∼ 𝑆(𝛼, 𝛽, 𝛾, 𝛿). The positive stable distributions
have 𝛽 = 1 and 𝛼 < 1 while the S𝛼S distributions around 𝛿 have 𝛽 = 0. The S𝛼S distribution is a generalization of the
Gaussian distribution having one additional parameter, 𝛼 ∈ (0, 2], governing the tails weight. The Gaussian distribution
is obtained, as a special case, when 𝛼 = 2, while other symmetric distributions with heavier tails are obtained as 𝛼 departs
from 2. As an example, the Cauchy distribution is obtained for 𝛼 = 1. The left panel of Figure 1 shows the density of the
𝛼-stable distribution for different parameters’ different choices. For a more comprehensive discussion about the 𝛼-stable
distribution, the interested reader can refer to Nolan (2016) and Samorodnitsky and Taqqu (1994).
In general, the variance of the S𝛼S distribution diverges to infinity when 𝛼 < 2 (Nolan, 2016), and this allows themodels

based on the S𝛼S distribution to be more robust when gross outliers are found in the data. Moreover, S𝛼S satisfies the
generalized central limit theorem which states that the only possible nontrivial limit of normalized sums of independent
identically distributed terms is stable. Given that the random effects are likely to be the sum of many small terms (maybe
with a large variance), a stable model might appropriately describe such effects. The S𝛼S distribution has scale mixtures
of normals (SMiN) property. SMiN represents the symmetric stable distribution in conditionally Gaussian form. This
property allows standard procedures based on theGaussian distribution to be reused directly in statistical inferences about
models with S𝛼S terms. On the other hand, SMiN induces variances of the random effects to be expressed as the product
of two levels of parameters, leading to a new type of global–local prior as introduced by Tang et al. (2018). However,
since these distributions do not have a closed form for their densities functions, numerical methods must be used to
employ them in modeling, and their properties are studied according to their characteristic functions. There exists many
parameterizations of the stable laws characteristic functions (Nolan, 2016), the basic one being

𝜑(𝑤; 𝛼, 𝛽, 𝛾, 𝛿) = exp (𝑖𝑤𝛿 − |𝛾𝑤|𝛼(1 − 𝑖𝛽 sign(𝑤)Φ)), (1)
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where sign(.) is the sign function and

Φ =

⎧⎪⎨⎪⎩
tan

(𝜋𝛼
2

)
𝛼 ≠ 1

−
2

𝜋
log |𝑤| 𝛼 = 1.

However, (1) shows discontinuities in the parameters when 𝛼 = 1. In Nolan (2016), a simple form for the characteristic
function of the S𝛼S distribution is derived as well as some useful algebraic properties. In particular, they introduced the
1-parameterization defined as

𝜙(𝑤) =

⎧⎪⎪⎨⎪⎪⎩
𝑒
−|𝑤𝛾|𝛼[1−𝑖sign(𝑤)𝛽 tan(𝜋𝛼

2

)]
+𝑖𝜇𝑤

𝛼 ≠ 1,

𝑒
−|𝑤𝛾|[1+𝑖 2

𝜋
sign(𝑤)𝛽 log(|𝑤|)]+𝑖𝜇𝑤

𝛼 = 1.

(2)

From Equation (2), it can be easily shown that 𝑆(2, 0, 𝛾√
2
, 𝜇) is the Gaussian distribution with mean 𝜇 and variance 𝛾2.

4 BASIC AREA-LEVELMODELWITH S𝜶S RANDOM EFFECTS

The FH model (Fay & Herriot, 1979) is defined as follows:

𝑦𝑖 = 𝒙𝑇
𝑖
𝜷 + 𝑣𝑖 + 𝑒𝑖, 𝑖 = 1, … ,𝑚, (3)

where 𝑦𝑖 is the direct estimate for small area 𝑖, 𝒙𝑖 is the 𝑝-dimensional vector of covariates, 𝜷 = (𝛽1 … , 𝛽𝑘)
𝑇 is a 𝑝-

dimensional vector of regression coefficients, and 𝑚 is the number of small areas. The error vector 𝒆 = (𝑒1, … , 𝑒𝑚)
𝑇

and the random effect vector 𝒗 = (𝑣1, … , 𝑣𝑚)
𝑇 are assumed to be independent. The elements of 𝒆 are independent with

𝑒𝑖 ∼ 𝑁(0, 𝜓𝑖), where 𝜓𝑖s are typically assumed to be known. When only estimates of the sampling variance are available,
a model shrinking both means and variances should be considered. In particular, Maiti et al. (2014) noticed that when
the sampling variances are estimated quantities, these are subject to substantial errors because they are often based on
equivalent sample sizes as the direct estimates are being calculated. Indeed, they proposed to extend the FH model in
order to account the uncertainty of (sampling variance) estimation into the overall SAE strategy. They estimate the model
parameters according to an empirical Bayes approach. This idea has been then extended by Sugasawa et al. (2017), who
propose a Bayesian hierarchical model for the sample variance and discuss different prior choices.
With respect to the area effects, the FHmodel assumes that 𝑣𝑖s are independent and identically distributed (i.i.d) random

variables with 𝑁(0, 𝜎2𝑣). Such an assumption makes the FH model not suitable in the presence of outliers. We proposed a
robustification of the FH model for the presence of atypical observations by modeling the random effects 𝑣𝑖 with the S𝛼S
distribution. In the following, the proposed model will be denoted as Fay-Herriot 𝛼-stable (FH𝛼S) model. The S𝛼S distri-
bution allows capturing outlying observation since over the commonly used robustified small area models. The proposed
FH𝛼S model is as follows:

𝑦𝑖 = 𝒙𝑇
𝑖
𝜷 + 𝑣𝑖 + 𝑒𝑖, 𝑖 = 1, … ,𝑚, (4)

where 𝑣𝑖
𝑖.𝑖.𝑑
∼ 𝑆(𝛼, 0, 𝛾1, 0) and 𝑒𝑖

𝑖𝑛𝑑.
∼ 𝑁(0, 𝜓𝑖). The ultimate goal of the proposed model is that it predicts the small area

parameter (mean) 𝜃𝑖 = 𝒙𝑇
𝑖
𝜷 + 𝑣𝑖 with a higher precision than competing approaches.

Following Molina and Rao (2015), the proposed model can be written in the following Bayesian hierarchical way:

∙ 𝑦𝑖|𝑣𝑖, 𝜷, 𝛾1, 𝛼 ∼ 𝑁(𝒙𝑇
𝑖
𝜷 + 𝑣𝑖, 𝜓𝑖),

∙ 𝑣𝑖|𝜷, 𝛾1, 𝛼 ∼ 𝑆(𝛼, 0, 𝛾1, 0),
∙ 𝜷 ∼ 𝑁(𝛍𝛽, Σ𝛽); 𝜋(𝛼) ∝

1

2
; 𝛾1 ∼ 𝜋1(.),
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where 𝜋1(.) is a density function with positive support adopted as prior distribution for 𝛾1.
For the regression parameters 𝜷, we assume “flat” prior by specifying a multivariate normal distribution with large

variances. Without loosing of generality, we assume 𝛍𝛽 = 0 and Σ𝛽 = diag(105). Adopting the same approach as Salas-
Gonzalez et al. (2010), Lombardi (2007), and Tsionas (1999), we choose a Uniform distribution in the interval (0, 2] for the
tail index 𝛼. Since the closed form of 𝑆(𝛼, 0, 𝛾1, 0) is not available, the model as it stands, is hard to be estimated: the joint
posterior distribution cannot be computed analytically but also the derivation of full conditional distributions is a complex
task. From a computational point of view, it is then convenient to reparameterize the model using the SMiN property of
S𝛼S distribution (Samorodnitsky & Taqqu, 1994), more precisely:

Definition 1. Suppose 𝑍 is a zero-mean Gaussian random variable with variance 𝜎2 and 𝑃 ∼ 𝑆(
𝛼

2
, 1, (cos(

𝜋𝛼

4
))

2

𝛼 , 0) is a

positive stable random variable, independent of 𝑍 then the random variable 𝑋 = 𝜇 +
√
𝑃𝑍 is S(𝛼, 0, 𝜎√

2
, 𝜇), where 𝜇 is

a constant.
According to Definition 1, the model can be reparameterized as follows:

∙ 𝑦𝑖|𝑣𝑖, 𝜷, 𝛾1, 𝛼 ∼ 𝑁(𝒙𝑇
𝑖
𝜷 + 𝑣𝑖, 𝜓𝑖),

∙ 𝑣𝑖|𝜆𝑖, 𝛽, 𝛾1, 𝛼 ∼ 𝑁(0, 𝜆𝑖𝛾); 𝜷 ∼ 𝑁(𝛍𝛽, Σ𝛽),

∙ 𝜆𝑖|𝛼 ∼ 𝑆(
𝛼

2
, 1, (cos(

𝛼𝜋

2
))

2

𝛼 , 0); 𝜋(𝛼) ∝ 1

2
; 𝛾 ∼ 𝐼𝐺(𝑎, 𝑏),

where 𝛾 = 2𝛾2
1
and 𝐼𝐺(𝑎, 𝑏) denote inverse Gamma distribution with known shape and scale parameters 𝑎 and 𝑏, respec-

tively. Notice that this structure of the random effects is a particular type of the global–local shrinkage prior for the random
effects (Tang et al., 2018). The variance parameters of the random effects are area-specific. For each small area, they are
expressed as the product of a global parameter 𝛾 and a local parameter 𝜆𝑖: the former captures the overall random effects
while the latter brings extra variability to the random effects compared to the FHmodel. According to the Bayes’ theorem,
the posterior distribution is given by

𝜋(𝒗, 𝜷, 𝛾, 𝛼, 𝝀|𝒚) = 𝜋(𝒚|𝒗, 𝜷, 𝛾, 𝛼, 𝝀)𝜋(𝒗|𝜷, 𝛾, 𝛼, 𝝀)𝜋(𝝀|𝛼)𝜋(𝛼)𝜋(𝜷)𝜋(𝛾), (5)

where 𝒚 = (𝑦1, … , 𝑦𝑚)
𝑇 is the observations vector and 𝝀 = (𝜆1, … , 𝜆𝑚)

𝑇 is the vector of latent local random effects. Given
the complexity of the posterior distribution (5), numerical methods, and Monte Carlo Markov Chain (MCMC) algorithm
should be applied in order to sample from it. In particular, we use a combination of theGibbs sampling, rejection sampling,
and Metropolis–Hastings algorithm. Our proposal is developed under a fully Bayesian approach.

5 COMPUTATIONAL DETAILS

The estimation of the proposed model is tricky and cannot be rephrased in the standard MCMC framework. It requires
the application of different sampling algorithms to sample efficiently from the joint posterior distribution. In particular,
Gibbs sampling can be involved for 𝜷, 𝛾, and 𝑣𝑖 (𝑖 = 1, … ,𝑚), since full conditional distributions can be derived in closed
form. For the other parameters, 𝝀 and 𝛼, rejection sampling and Metropolis–Hastings algorithm will be used.

5.1 Updating 𝜷, 𝒗, and 𝜸

Parameters 𝜷, 𝒗, and 𝛾 are updated through Gibbs sampling algorithm according to the following full conditional distri-
butions:

1. 𝜋(𝜷|𝒗, 𝛾, 𝛼, 𝝀, 𝒚) ∼ 𝑁((𝑿Σ−1𝑿𝑇 + Σ−1
𝛽
)−1(𝑿Σ−1(𝒚 − 𝒗)), (𝑿Σ−1𝑿𝑇 + Σ−1

𝛽
)−1)

2. 𝜋(𝑣𝑖|𝜷, 𝛾, 𝛼, 𝝀, 𝒚) ∼ 𝑁(𝛿𝑖(𝑦𝑖 − 𝒙𝑇
𝑖
𝜷), 𝛿𝑖𝜓𝑖)

3. 𝜋(𝛾−1|𝒗, 𝛼, 𝝀, 𝜷, 𝒚) ∼ 𝐺(
𝑚

2
+ 𝑎,

∑
𝑖

𝑣2
𝑖

2𝜆𝑖
+ 𝑏),

where Σ = diag(𝜓1, … , 𝜓𝑚) and 𝛿𝑖 =
𝜆𝑖𝛾

𝜆𝑖𝛾+𝜓𝑖
for 𝑖 = 1, … ,𝑚.
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5.2 Updating the vector of local parameters 𝝀

The posterior distribution of 𝝀 is defined as

𝜋(𝝀|𝒗, 𝛾, 𝛼, 𝜷, 𝒚) ∝ 𝜋(𝒗|𝜷, 𝛾, 𝛼, 𝝀)𝜋(𝝀|𝛼).
Since 𝜋(𝝀|𝛼) does not have a closed form, we use rejection sampling for updating 𝜆𝑖 (𝑖 = 1, … ,𝑚). Following Godsill and
Kuruoglu (1999) and Zarei and Mohammdpour (2020), the posterior distribution can be expressed as

𝜋(𝝀|𝒗, 𝛾, 𝛼, 𝜷, 𝒚) = 𝑚∏
𝑖=1

𝜋(𝜆𝑖|𝑣𝑖, 𝛾, 𝛼, 𝜷, 𝑦𝑖) ∝ 𝑚∏
𝑖=1

𝑁(𝑣𝑖|0, 𝜆𝑖𝛾)𝑓𝛼

2

(𝜆𝑖),

where 𝑁(𝑣𝑖|0, 𝜆𝑖𝛾) denotes the probability density function of a normal distribution with zero mean and variance equals
to 𝜆𝑖𝛾 and 𝑓𝛼

2

(.) is the density function of the positive stable random variable. It is readily seen that the likelihood forms
a valid rejection function as it is bounded from above:

𝑁(𝑣𝑖|0, 𝜆𝑖𝛾) ≤ 1√
2𝜋𝑣2

𝑖

exp

(
−
1

2

)
.

A suitable rejection sampler is:

1. Draw a sample, 𝜆∗
𝑖
, from the positive stable distribution with the tail index 𝛼∕2.

2. Draw a sample, 𝑢, from the 𝑈(0, 1√
2𝜋𝑣2

𝑖

exp(
−1

2
)).

3. If 𝑢 < 𝑁(𝑣𝑖|0, 𝜆𝑖𝛾) accept 𝜆∗𝑖 , otherwise go to 1.
5.3 Updating the tail index 𝜶

Since𝜋(𝛼|𝒗, 𝛾, 𝝀, 𝜷, 𝒚) ∝ 𝜋(𝝀|𝛼)𝜋(𝛼) and𝜋(𝝀|𝛼) = ∏𝑚

𝑖=1
𝜋(𝜆𝑖|𝛼) does not have a closed form, the parameter𝛼 is estimated

using the Metropolis–Hastings algorithm. For each 𝜆𝑖 , we choose the Uniform distribution centered on the current state
of the chain, denoted by cand, as proposal distribution, that is, 𝑞(𝜆𝑖|𝛼) ∼ 𝑈(𝑐𝑎𝑛𝑑 − 0.15, 𝑐𝑎𝑛𝑑 + 0.15). Since the Uniform
distribution is symmetric, the acceptance probability in the each iteration is

min

{
1,

∏𝑚

𝑖=1
𝜋(𝜆𝑖|𝛼𝑛𝑒𝑤)∏𝑚

𝑖=1
𝜋(𝜆𝑖|𝛼(𝑡))

}
. (6)

6 SIMULATION

In this section, we compare the proposed model’s performance with the direct estimates, the standard FHmodel, and the
following competing models:

1. Themodel proposed in Datta andMandal (2015) (hereafter denoted as DMmodel). In such amodel, the random effects
are modeled with spike-and-slab distributions, that is, a mixture of a point mass at zero and a zero-mean normal
distribution;

2. The models proposed in Tang et al. (2018), where the random effects follow a global–local prior distribution. We con-
sider twopossible specifications of global and local parameters: (A) The global parameter ismodeled as InverseGamma,
and prior distributions for the local parameters set to be normal-Gamma (hereafter denoted as GL-NG). (B) The global
parameter is modeled as Inverse Gamma and Laplace distribution (hereafter denoted as GL-LA) as prior distributions
for the local parameters.
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3. The model in which the random effect follows a Student’s 𝑡 distribution with 𝑘 degrees of freedom, 𝑣𝑖 ∼ 𝑡𝑘 and 𝑘 is
modeled as a discrete uniform distribution ranging in the interval 0–50 (hereafter denoted as 𝑡 model);

4. Themodel proposed in Fabrizi andTrivisano (2010), where the randomeffects follow an exponential power distribution
(hereafter denoted EP).

The data generation settings are adopted from Chakraborty et al. (2016) and Tang et al. (2018). For comparability with
the real data applications, the number of small areas, 𝑚, is set to 20, 50, and 100. For each choice of 𝑚, we generated
data from the model (3) with different specifications of the random effects allowing for different outlying behavior of the
observed data. Scenario 1 is the standard FH model with normally distributed random effects, 𝑣𝑖 ∼ 𝑁(0, 1). More weight
to values on the tails is given in Scenario 2, where the random effects are distributed as a Student 𝑡 distribution with 3
degrees of freedom, 𝑣𝑖 ∼ 𝑡3 (here after 𝑡 model). In this setting, Tang et al. (2018) showed that the best fitting model is
those with global–local prior for the random effects (GL-LA or GL-NG). In Scenario 3, the model generating the data is
the proposed model, 𝑣𝑖 ∼ 𝑆(1.1, 0,

1√
2
, 0). To investigate the performance of the models when data are generated from

a probability distribution that cannot be reconnected to one of the distributions mentioned above, in Scenario 4, we
generate data from an FH model with random effects distributed as a Pareto distribution with scale and shape param-
eters, respectively, equal to 5 and 2, 𝑣𝑖 ∼ 𝑃𝑎𝑟𝑒𝑡𝑜(5, 2). Figure 1, right panel, and Figure 1 in the Supplementary Materials
present the data’s effect when random effects are distributed according to the scenarios above. They show that the data
distribution is strongly affected by the distribution of the random effects. When random effects are generated from 𝑡3,
the outliers are mild, while when the random effects are generated according to Scenario 3 and 4, the resulting data are
skewed with the gross outlying observations. With the Pareto distribution in Scenario 4, we allow the generation of very
large values for the random effects, occasionally inducing very large outliers. The design matrix 𝑋 includes a column
of ones and one explanatory variable sampled from 𝑁(10, 2). The coefficient vector 𝛽 is fixed at (20, 1)𝑇 . Errors’ vari-
ances, 𝜓𝑖 , are chosen from the set {0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5}, and each value in the set is allocated to the same
number of small areas. The hyperparameters of all prior distributions are set to be noninformative. In Scenario 3, we fix
𝛼 = 1.1.
Performance in estimating small area means 𝜃𝑖 = 𝒙𝑇

𝑖
𝜷 + 𝑣𝑖 are studied according to the following deviance measures:

average absolute deviation (AAD), average squared deviation (ASD), average absolute relative deviation (ARB), average
squared relative deviation (ASRB), defined as follows:

𝐴𝐴𝐷 =
1

𝑚

𝑚∑
𝑖=1

|�̂�𝑖 − 𝜃𝑖|, 𝐴𝑆𝐷 =
1

𝑚

𝑚∑
𝑖=1

(�̂�𝑖 − 𝜃𝑖)
2,

𝐴𝑅𝐵 =
1

𝑚

𝑚∑
𝑖=1

|(�̂�𝑖 − 𝜃𝑖)∕𝜃𝑖|, 𝐴𝑆𝑅𝐵 =
1

𝑚

𝑚∑
𝑖=1

(�̂�𝑖 − 𝜃𝑖)
2∕𝜃2

𝑖
.

We also consider the empirical coverage rate (hereafter CR) of 95% credible interval of 𝜃𝑖 . In practice, it is not possible
to know the underlying true model, and the true value of 𝜃𝑖 is unknown, so how to choose an appropriate prior for the
random effects based on the data is an important task. We use deviance information criterion (DIC; Spiegelhalter et al.,
2002) for evaluation of goodness of fit. The following tables show the results of simulations in different scenarios, averaged
over the 50 data sets.
Table 1 shows the deviance measures when the random effects are generated under Scenario 1, 2, and 3. As expected,

the FH model has the best overall performance; moreover, DM and FH𝛼S perform very similarly, and the deviance
measures are not substantially different from those of the FH model. That is not a surprising result since DM model
essentially is based on the normal distribution, and FH𝛼S covers the normal distribution as a special case (𝛼 = 2).
Notice that, especially when the number of areas is small (𝑚 = 20), the Student 𝑡 model performs similarly and,
in some cases, even better than the FH model. That is in agreement with the conclusions in Fabrizi and Trivisano
(2010).
In 𝑡-student setting, the deviance measures show that the best fitting model is, as expected, the 𝑡 model. However,

when the number of small area increases, the GL-NG model and the FH𝛼S perform very similarly to the model gener-
ating the data. When the data are generated from a model with random effects distributed according to the S𝛼S distri-
bution, results confirm that the proposed model outperforms the competing models. Results also highlight that when
𝑚 is small, the DM model performs better than the other models, while the GL-NG model performs better for large 𝑚.
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TABLE 1 Models performances according to average absolute deviation (AAD), average squared deviation (ASD), average absolute
relative deviation (ARB), average squared relative deviation (ASRB), deviance information criterion (DIC) and coverage rate (CR)

𝒎 𝒎

Criteria Estimate 20 50 100 Criteria Estimate 20 50 100
Scenario 1

FH𝛼S 0.799 0.708 0.705 FH𝛼S 1.032 0.818 0.802
FH 0.780 0.690 0.701 FH 0.972 0.768 0.783

ADD DM 0.764 0.702 0.714 ASD DM 0.925 0.795 0.818
GL-NG 0.791 0.720 0.723 GL-NG 1.002 0.838 0.848
GL-LA 0.795 0.714 0.717 GL-LA 1.001 0.826 0.829
T 0.741 0.691 0.781 T 0.883 0.799 0.731
EP 1.07 1.039 0.990 EP 1.864 1.743 1.624
Direct 1.270 1.275 1.270 Direct 2.759 2.768 2.747
FH𝛼S 0.0268 0.0239 0.0237 FH𝛼S 0.0012 0.0009 0.0009
FH 0.0262 0.0231 0.0234 FH 0.0011 0.0009 0.0009

ARB DM 0.0255 0.0235 0.0239 ASRB DM 0.0010 0.0009 0.0009
GL-NG 0.0266 0.0242 0.0243 GL-NG 0.0011 0.0009 0.0010
GL-LA 0.0266 0.0240 0.0239 GL-LA 0.0011 0.0009 0.0009
T 0.0256 0.0232 0.0288 T 0.0010 0.0009 0.0008
EP 0.0362 0.0349 0.0331 EP 0.0002 0.0006 0.0003
Direct 0.0428 0.0427 0.0426 Direct 0.0032 0.0031 0.0031
FH𝛼S 81.67 201.54 400.54 FH𝛼S 0.97 0.96 0.94
FH 81.68 201.82 400.17 FH 0.97 0.95 0.94

DIC DM 82.17 202.62 403.45 CR DM 0.88 0.87 0.90
GL-NG 82.97 204.05 403.89 GL-NG 0.82 0.81 0.84
GL-LA 82.72 203.38 402.85 GL-LA 0.82 0.83 0.88
T 81.74 201.83 402.30 T 0.95 0.96 0.98
EP 87.684 216.827 433.32 EP 0.90 0.98 0.96

Scenario 2
Criteria Estimate 20 50 100 Criteria Estimate 20 50 100

FH𝛼S 0.923 0.876 0.826 FH𝛼S 1.473 1.289 1.165
FH 0.929 0.911 0.875 FH 1.517 1.431 1.359

ADD DM 0.945 0.875 0.839 ASD DM 1.597 1.354 1.245
GL-NG 0.978 0.870 0.825 GL-NG 1.687 1.289 1.182
GL-LA 0.985 0.874 0.827 GL-LA 1.715 1.304 1.188
T 0.891 0.841 0.801 T 1.416 1.233 1.127
EP 1.075 1.074 1.025 EP 1.969 1.934 1.729
Direct 1.254 1.329 1.267 Direct 2.684 2.958 2.753
FH𝛼S 0.0312 0.0296 0.0278 FH𝛼S 0.0017 0.0015 0.0014
FH 0.0313 0.0307 0.0300 FH 0.0017 0.0018 0.0030

ARB DM 0.0318 0.0295 0.0284 ASRB DM 0.0018 0.0017 0.0015
GL-NG 0.0329 0.0293 0.0278 GL-NG 0.0019 0.0015 0.0014
GL-LA 0.0332 0.0295 0.0280 GL-LA 0.0020 0.0016 0.0014
T 0.0401 0.0280 0.0270 T 0.0010 0.0014 0.0013
EP 0.0363 0.0363 0.0346 EP 0.0010 0.0080 0.0030
Direct 0.0421 0.0446 0.0425 Direct 0.0030 0.0034 0.0031
FH𝛼S 83.93 209.78 414.89 FH𝛼S 0.95 0.95 0.94
FH 84.46 212.35 421.29 FH 0.94 0.95 0.93

(Continues)
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TABLE 1 (Continued)

𝒎 𝒎

Criteria Estimate 20 50 100 Criteria Estimate 20 50 100
DIC DM 85.10 211.44 419.54 CR DM 0.84 0.88 0.89

GL-NG 85.61 209.96 415.85 GL-NG 0.80 0.91 0.93
GL-LA 85.54 210.47 415.50 GL-LA 0.80 0.92 0.94
T 83.14 209.87 415.32 T 0.99 0.96 0.97
EP 88.415 219.64 437.77 EP 0.99 0.94 0.94

Scenario 3
Criteria Estimate 20 50 100 Criteria Estimate 20 50 100

FH1.1S 0.956 0.887 0.843 FH1.1S 1.663 1.451 1.346
FH𝛼S 0.933 0.888 0.846 FH𝛼S 1.507 1.424 1.367
FH 1.091 1.082 1.190 FH 2.094 2.056 2.488

ADD DM 0.962 0.918 0.889 ASD DM 1.726 1.653 1.587
GL-NG 0.976 0.921 0.927 GL-NG 1.745 1.510 1.571
GL-LA 1.012 0.965 0.997 GL-LA 1.866 1.643 1.764
T 0.965 0.910 0.876 T 1.582 1.524 1.433
EP 1.159 1.146 1.102 EP 2.272 2.220 2.061
Direct 1.268 1.248 1.281 Direct 2.785 2.640 2.840
FH1.1S 0.0330 0.0301 0.0324 FH1.1S 0.0023 0.0018 0.0023
FH𝛼S 0.0326 0.0310 0.0294 FH𝛼S 0.0026 0.0030 0.0024
FH 0.0382 0.0370 0.0446 FH 0.0037 0.0029 0.1403

ARB DM 0.0336 0.0314 0.0330 ASRB DM 0.0032 0.0025 0.0075
GL-NG 0.0341 0.0315 0.0326 GL-NG 0.0029 0.0023 0.0039
GL-LA 0.0354 0.0329 0.0352 GL-LA 0.0032 0.0024 0.0065
T 0.0332 0.0320 0.0285 T 0.0017 0.0332 0.0098
EP 0.0388 0.0414 0.0373 EP 0.0015 0.0002 0.0002
Direct 0.0434 0.0425 0.0455 Direct 0.0036 0.0042 0.0206
FH1.1S 85.50 209.17 419.80 FH1.1S 0.95 0.95 0.95
FH𝛼S 85.19 212.32 422.77 FH𝛼S 0.96 0.96 0.95
FH 88.93 223.17 456.87 FH 0.95 0.95 0.94

DIC DM 86.94 214.88 438.31 CR DM 0.85 0.78 0.60
GL-NG 86.62 212.91 427.44 GL-NG 0.93 0.96 0.97
GL-LA 87.70 215.92 433.65 GL-LA 0.92 0.96 0.96
T 85.39 210.97 442.15 T 0.90 0.96 0.96
EP 89.45 223.046 447.00 EP 0.96 0.96 0.96

Note: All performance diagnostics are reported under Scenario 1, 2, and 3 as described in Section 6. Bold numbers highlight the best performance for each setting.

Also, in this case, the 𝑡 model performs well when the number of small areas is small. To further investigate the per-
formance of FH𝛼S in Scenario 3, we add a comparison with an S𝛼S model in which 𝛼 is known (𝐹𝐻1.1𝑆): whether
the tail index is known or unknown, the proposed model behaves better than the others, as confirmed by the results in
Table 1. That means that the tail index is accurately estimated, and its knowledge leads only to a slight improvement of the
estimates.
When the data are generated from amodel that cannot be reconnected to one of themodels under comparison, Scenario

4, the proposed model’s robustness to the competing ones emerges. Indeed, Table 2 shows that for all values of𝑚, FH𝛼S
has the best overall performance according to deviance measures and DIC, followed by GL models. This result is quite
expected since when data are generated from a Pareto distribution, we faced gross and mild outliers that can be flexibly
accommodated by the S𝛼S distribution.
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TABLE 2 Comparison of different models performances when data are simulated under Scenario 4, 𝑣𝑖 ∼ Pareto(5, 2)

𝒎 𝒎

Criteria Estimate 20 50 100 Criteria Estimate 20 50 100
FH𝛼S 1.114 1.071 1.064 FH𝛼S 2.196 1.998 1.958
FH 1.202 1.211 1.232 FH 2.574 2.482 2.542

ADD DM 1.202 1.118 1.135 ASD DM 2.523 2.176 2.242
GL-NG 1.124 1.091 1.088 GL-NG 2.243 2.033 2.016
GL-LA 1.150 1.125 1.127 GL-LA 2.348 2.152 2.132
T 1.197 1.095 1.113 T 2.278 2.053 2.135
ExpPow 1.198 1.209 1.205 ExpPow 2.426 2.509 2.454
Direct 1.242 1.262 1.271 Direct 2.726 2.716 2.697
FH𝛼S 0.0284 0.0272 0.0271 FH𝛼S 0.0014 0.0012 0.0012
FH 0.0307 0.0310 0.0317 FH 0.0017 0.0016 0.0016

ARB DM 0.0304 0.0283 0.0289 ASRB DM 0.0016 0.0014 0.0014
GL-NG 0.0286 0.0278 0.0279 GL-NG 0.0014 0.0013 0.0013
GL-LA 0.0293 0.0287 0.0289 GL-LA 0.0015 0.0014 0.0014
T 0.0290 0.0285 0.0280 T 0.0012 0.0012 0.0013
ExpPow 0.0300 0.0276 0.0310 ExpPow 0.0016 0.0013 0.0013
Direct 0.0321 0.0326 0.0331 Direct 0.0018 0.0018 0.0018
FH𝛼S 89.66 220.77 437.32 FH𝛼S 0.95 0.95 0.94
FH 91.48 229.73 460.02 FH 0.95 0.94 0.95

DIC DM 92.43 227.37 451.97 CR DM 0.87 0.78 0.74
GL-NG 90.40 222.34 441.12 GL-NG 0.95 0.95 0.95
GL-LA 90.56 224.18 445.22 GL-LA 0.96 0.95 0.95
T 90.62 225.82 444.778 T 0.94 0.95 0.92
ExpPow 91.12 227.51 454.270 ExpPow 0.90 0.94 0.95

Note: Model performances are measured according to average absolute deviation (AAD), average squared deviation (ASD), average absolute relative deviation
(ARB), average squared relative deviation (ASRB), deviance information criterion (DIC), and coverage rate (CR).

7 REAL DATA ANALYSIS: ESTIMATING THE PROPORTION OF ATHLETIC
STUDENTS IN CALIFORNIA

In the last decades, diabetes mellitus and obesity revealed to be among the most common chronic diseases in youth in
the United States. The number of new diabetes cases among youth increased from 3% type 2 cases in 1990 to 45% type
2 cases in 2005. Experts ascribed this significant change to the increase in obesity and a decline in exercise behaviors
(Price et al., 2013). This phenomenon dramatically affected the United Stated, but it is particularly severe in California,
where 38.8% of low-income children and adolescents aged 2–19 years, in 2010, were overweight or obese. To study in more
detail the diffusion of this phenomenon and determine more specialized political actions, California Education Code
Section 60800 requires LEAs to administer the FITNESSGRAM, a PFT, to Californian students. The FITNESSGRAM is a
comprehensive, health-related physical fitness battery developed by The Cooper Institute, whose primary goal is to help
students establish lifetime habits of regular physical activity. Public school students in grades five, seven, and nine are
required to take the PFT, whether or not they are enrolled in a physical education class or participate in a block schedule.
These students include those enrolled in LEAs such as elementary, high, and unified school districts, county offices of
education, and charter schools. LEAs must also test all students in alternate programs, including, but not limited to,
continuation schools, independent study, community day schools, county community schools, and nonpublic schools.
The test evaluates six fitness areas: Aerobic Capacity, Body Composition, Muscle Strength, Endurance and Flexibility,
Trunk Extensor Strength and Flexibility, Upper Body Strength and Endurance, and Flexibility. The test is scored based on
criterion-referenced standards to evaluate fitness. Experts defined that a passing result on all six areas of the test represents
a fitness level that offers some protection against the diseases associatedwith physical inactivity (California Department of
Education, 2015).We consider 2015–2016 data provided by the CDE (http://www.cde.ca.gov/ta/tg/pf/pftresearch.asp). The

http://www.cde.ca.gov/ta/tg/pf/pftresearch.asp


1320 ZAREI et al.

F IGURE 2 PFT data: histogram on left panel and boxplot on the right panel of the proportion of Californian students with a score equal
to six

survey is based on a stratified sample where strata correspond to three grades (5th, 7th, 9th), seven race/ethnicity groups
(AIAN, AfricanAm, Asian, Latino, Multiple, NHOPI, White), three school types (all schools, noncharter, charter). The
direct estimates 𝑦𝑖 , that is, the proportion of children that obtain a result 6/6 on the FITNESSGRAM and the design-based
variance estimate 𝜓𝑖 are directly available on the CDE website. The direct estimators are Horvitz–Thompson means, and
the design-based variances have been computed with Taylor linearization approximations. We refer to the CDE website
for more details about the sampling procedure.
The sample size (𝑚 = 57) and the proportion of athletic students allow us to use a Gaussian model, although 𝑦𝑖 is the

mean of binary variables indicating whether a sampled student shows a score equal to six. The 𝑦𝑖s range from 18.18 to 57.36
with a median of 31.14, while standard errors range from 2.24 to 9.6 with a median of 5.374.
As a second data source, we consider the 2015 ACS data available on the Census web page. In particular, for each county

in the California state, we collect the following information: percent of under 18 population, percent of the Hispanic
population, percent of the White population, percent of the Black population, percent of the population with Bachelor
or higher school degree, the median income, and the percent of persons in poverty . All these variables have been used
as covariates in the small area model. We also considered many other variables related to the county’s urban/rural status
and various characteristics of the population, such as percent of the population with a disability and the mean time spent
for reaching the workplace. They did not contribute much when adjusting for the other seven covariates included in
the model.
Figure 2 shows the histogram and the direct estimator’s boxplot, that is, the proportion of Californian students with a

score equal to six. The distribution seems to be quite asymmetric, with few potential outlying observations suggesting a
more flexible model like the one proposed in the previous sections.
The proposed model has been compared to the aforementioned competing model: the DIC of the proposed model

resulted, respectively, equal to 303.35, while for the FH, DM, GL-NG, and GL-LA resulted, respectively, equal to 305.00,
306.69, 303.78, and 303.84. The proposed model fits the data better than other models, followed by the Normal Gamma
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F IGURE 3 Posterior distribution of the model
parameters: proposed model and competing models

(GL-NG) model and the GL-LA. This result agrees with the simulation study according to which, when data show largely
outlying observations, like those generated (see Table 2), the proposed model, GL-NG, and GL-LA models perform very
similarly, especially when the number of areas is moderate. In Figure 3, we report the estimates of the model parameters
for the proposed model and the two most competing models. According to all models, students’ proportion with a score
equal to six is positively influenced by the percentage of the White population and the percentage of persons with a high
cultural level in the county. On the other hand, such a proportion is negatively influenced by the Hispanic population’s
percentage and the poverty level. These results agree with the current literature asserting that youth of color and those
of low socioeconomic status are disproportionally impacted by diabetes and obesity (Price et al., 2013). Figure 4 shows
the small area mean’s posterior distribution for the proposed model and the GL-NG model. A very similar plot can be
done considering the GL-LA model. The figure highlights the presence of two counties, Marin and Tuolumne show an
outlying proportion of students with a score equal to six. Marin’s county is well known to be one of the richest counties
in the United States, showing the highest pro-capita mean income. Toulomne county has one of the most recognized and
well-administered scholastic systems in the USA. Indeed, schools in that county have an average ranking in the 7 over
10, having one of the highest concentrations of top-ranked public schools in California. The proposed model correctly
identifies these two outlying counties while the competing model underestimates them.
In order to investigate the robustness of the model with respect to the presence of the outlying counties, following

Arima et al. (2014), we performed a leave-one-out cross-validation: we computed the cross-validation error according to
the following formula: 𝐶𝑉 =

1

𝑚

∑𝑚

𝑖=1
(�̂�𝑖 − �̂�

(−1)
𝑖

)2, where �̂�𝑖 is the posterior small area mean of the 𝑖th area and �̂�
(−1)
𝑖

is the
posterior small area mean when the 𝑖th observation in removed. Figure 3 in the SupplementaryMaterials shows the small
area’s posterior distribution means for the proposed model (light blue boxes) and for the proposed model fitted removing
the two outlying counties (gray boxes). No significant differences might be grasped. Indeed, when the two counties are
removed, the cross-validation error is equal to 0.02, confirming the robustness of the proposed model.

8 CONCLUSIONS

In this paper, we present an extension of the FH model based on the S𝛼S distribution (FH𝛼S). We act in a fully Bayesian
framework to handle large outliers inducing high variability in the random effects. Our proposal can be stated as a hierar-
chical Bayesian model, and it can be seen as a particular type of the global–local shrinkage prior proposed by Tang et al.
(2018). In our model, the random effects’ variance parameters are area-specific, and a global parameter 𝛾 takes care of the
global effects. Our approach’s flexibility gives his best performances when large outliers are present: we prove this numer-
ically through several simulated examples. We also apply the proposed model to a real data set regarding the physical
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F IGURE 4 Posterior distribution of the small area means of the proposed model (upper panel) and the GL-NG model (lower panel). Red
points correspond to the direct estimates

activity of the Californian students. We estimate the county-level proportion of Californian students who obtain a score
equal to six to the PFT). Results show that the level of physical activity is significantly related to the county’s cultural and
economic level, confirming the disparity and heterogeneity among different Californian counties. In real data analysis,
ourmodel outperforms its competitors and returns precise and reliable estimates. Here we develop all the necessary detail
for implementing the model (the R code is available upon request to the first author).
The FH𝛼Smodel is more realistic than the Gaussian FHmodel and has better performance than shrinkage exponential

and polynomial-tailed priors used by Tang et al. (2018) in modeling extreme outliers in the random effects. However, the
parameter 𝛼 governing each random effect’s tail-weight needs to be evaluated by numerical methods and thus intensify
the computational effort needed. However, the computational time remains very reasonable, even with hundreds of areas
(a few minutes).
The proposed approach can be extended in several directions. The model ignores the spatial correlation among areas

that can be included by modifying the random effects’ distribution. We are currently working on a multivariate version
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of the proposed model. Another interesting aspect we do not account for is the measurement error in the covariates: we
are studying whether specifying a flexible distribution for the random effect could improve small area predictions even in
the presence of covariates measured with error.
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