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ABSTRACT Klebsiella pneumoniae infections affect infants and the immunocompro-
mised, and the recent emergence of hypervirulent and multidrug-resistant K. pneu-
moniae lineages is a critical health care concern. Hypervirulence in K. pneumoniae is
mediated by several factors, including the overproduction of extracellular capsule.
However, the full details of how K. pneumoniae capsule biosynthesis is achieved or
regulated are not known. We have developed a robust and sensitive procedure to
identify genes influencing capsule production, density-TraDISort, which combines
density gradient centrifugation with transposon insertion sequencing. We have used
this method to explore capsule regulation in two clinically relevant Klebsiella strains,
K. pneumoniae NTUH-K2044 (capsule type K1) and K. pneumoniae ATCC 43816 (cap-
sule type K2). We identified multiple genes required for full capsule production in K.
pneumoniae, as well as putative suppressors of capsule in NTUH-K2044, and have
validated the results of our screen with targeted knockout mutants. Further investi-
gation of several of the K. pneumoniae capsule regulators identified—ArgR, MprA/
KvrB, SlyA/KvrA, and the Sap ABC transporter—revealed effects on capsule amount
and architecture, serum resistance, and virulence. We show that capsule production
in K. pneumoniae is at the center of a complex regulatory network involving multiple
global regulators and environmental cues and that the majority of capsule regula-
tory genes are located in the core genome. Overall, our findings expand our under-
standing of how capsule is regulated in this medically important pathogen and pro-
vide a technology that can be easily implemented to study capsule regulation in
other bacterial species.

IMPORTANCE Capsule production is essential for K. pneumoniae to cause infections,
but its regulation and mechanism of synthesis are not fully understood in this or-
ganism. We have developed and applied a new method for genome-wide identifica-
tion of capsule regulators. Using this method, many genes that positively or nega-
tively affect capsule production in K. pneumoniae were identified, and we use these
data to propose an integrated model for capsule regulation in this species. Several
of the genes and biological processes identified have not previously been linked to
capsule synthesis. We also show that the methods presented here can be applied to
other species of capsulated bacteria, providing the opportunity to explore and com-
pare capsule regulatory networks in other bacterial strains and species.

KEYWORDS Klebsiella, TraDIS, capsular polysaccharide, capsule regulation,
pathogenesis

Klebsiella pneumoniae is a ubiquitous Gram-negative bacterium, found both in the
environment and as an asymptomatic coloniser of the mucosal surfaces of mam-

mals (1). K. pneumoniae is also an opportunistic pathogen and can express a multitude
of virulence factors which enable it to cause infections in humans (1–4). Historically
associated with infections in the immunocompromised and in neonates (1, 5), focus has
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been directed on K. pneumoniae following the emergence of antimicrobial-resistant
and hypervirulent lineages (6, 7). Hypervirulent lineages are a particular concern in a
clinical setting, because they have the potential to cause infection in immunocompe-
tent hosts (6, 8, 9), to metastasise (10), and to cause infections in unusual infection sites
(11).

Numerous factors contribute to K. pneumoniae virulence, such as the ability to
produce siderophores, fimbriae, lipopolysaccharide (LPS), and extracellular polysaccha-
ride capsule (6, 12–14). Hypervirulence is associated with these factors, particularly with
the overproduction of capsular polysaccharide (6, 12, 15, 16), and in the absence of
these virulence factors, K. pneumoniae virulence is reduced or abolished (14, 17, 18). The
�200-kb K. pneumoniae virulence plasmid, which is also associated with the hyperviru-
lent phenotype (6), encodes siderophores such as aerobactin and salmochelin and
positive regulators of capsule biosynthesis (6, 19–21). More than 100 capsule locus
types have been identified in K. pneumoniae (17), though the majority of hypervirulent
K. pneumoniae isolates represent strains of capsule types K1 and K2 (12, 22).

Excessive capsule production is strongly associated with hypervirulence in K. pneu-
moniae (23–25), and several studies have sought to identify genetic determinants of
hypervirulence. For example, the mucoviscosity-associated gene magA (now named
wzy_K1 [26, 27]) was originally identified by transposon mutagenesis screening (28).
The rmpA and rmpA2 genes also affect hypermucoviscosity and encode transcription
factors that positively regulate the K. pneumoniae capsule biosynthesis locus (6, 15, 16,
29). These regulators can be either chromosomally encoded or plasmid-borne. Al-
though rmpA is correlated with hypervirulence and strains lacking rmpA and aerobactin
are avirulent in mice (12, 30), it has been shown that this increased virulence is a
consequence of the hypermucoviscous phenotype conferred by rmpA rather than a
consequence of the presence of the gene itself (24).

Capsule is also a potential therapeutic target in K. pneumoniae. Capsule-targeting
monoclonal antibodies increased the killing of K. pneumoniae ST258 (an outbreak
lineage) by human serum and neutrophils (31, 32) and limited the spread of a
respiratory K. pneumoniae ST258 infection in mice. Specific capsule-targeting bacterio-
phage have been shown to clear or limit infections caused by K. pneumoniae strains of
capsule types K1, K5, and K64 (33–35), and in some cases protection could also be
achieved by treatment with the capsule depolymerase enzymes produced by these
phage, rather than the phage itself. Translating these early-stage findings to the clinic
is a priority as extensively drug-resistant K. pneumoniae strains become more prevalent
(36).

Despite the absolute requirement for capsule in Klebsiella infections, its promise as
a therapeutic target and the connection between capsule overproduction and hyper-
virulence and the biosynthetic and regulatory mechanisms governing K. pneumoniae
capsule have not yet been fully explored. Genetic screens and reverse genetics (28,
37–41), including transposon mutagenesis approaches (38), have been used to identify
biosynthetic genes and activators of capsule production (including the rmpA and magA
genes), and some of the cues that elevate capsule expression above basal levels have
also been described—these include temperature, iron availability, and the presence of
certain carbon sources (12, 42). Defining the capsule regulatory network of Klebsiella
pneumoniae in more detail not only would deepen our understanding of this patho-
gen’s interaction with the host environment but also could inform efforts to target this
factor with new therapeutics.

Here we employed transposon-directed insertion sequencing (TraDIS) (43, 44) to
identify genes influencing K. pneumoniae capsule production. We performed density-
based selection on mutant libraries of both K1 and K2 capsule type K. pneumoniae,
using a discontinuous density gradient (45). This approach allowed the simultaneous
selection of both capsulated and noncapsulated mutants from mutant libraries without
requiring growth of bacteria under selective pressure. We have identified 78 genes
which, when mutagenized by transposon insertion, reduce the ability of one or both of
these strains to manufacture capsule. These included multiple genes not previously
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associated with capsule production in K. pneumoniae. We have also identified 26
candidate genes in NTUH-K2044 which cause an increase in capsulation when dis-
rupted. Our results allow us to present an integrated model for capsule regulation in K.
pneumoniae and establish a technology for study of capsule production that is appli-
cable to other bacterial species.

RESULTS
Density gradient centrifugation separates bacterial populations on the basis of

capsule phenotype. K. pneumoniae capsule influences the centrifugation period re-
quired to pellet cells, and this property has been used to semiquantitatively compare
capsule amounts between different strains (38). On the basis of this observation, we
speculated that Klebsiella cells of different capsulation states could be separated by
density-based centrifugation and that this method could be combined with TraDIS to
screen for capsule-regulating genes. Discontinuous Percoll density gradients are rou-
tinely used to purify macrophages from complex samples (46) and have also been used
to examine capsulation in Bacteroides fragilis and Porphyromonas gingivalis (45, 47).
Tests with K. pneumoniae NTUH-K2044 (capsule type K1, hypermucoid) (Fig. 1A) and K.
pneumoniae ATCC 43816 (K2, hypermucoid) and a noncapsulated Escherichia coli
control showed that these strains differed in density and migrated to above 15%, above

FIG 1 Summary of density-dependent TraDISort strategy. (A) Electron microscope image of capsulated
K. pneumoniae NTUH-K2044. (B) Schematic of the density-TraDISort strategy to identify capsule regula-
tors. A high-density transposon library is applied to the top of a discontinuous Percoll gradient, which
is then centrifuged at moderate speed to separate capsulated and noncapsulated mutants. The separate
fractions are sequenced to identify transposon-gDNA junctions. (C) Validation of the Percoll gradient
method for separating cells by capsule phenotype. Individual fractions immediately following separation
on a Percoll gradient were adjusted to an OD600 of 4 in sterile PBS and were assayed for uronic acid
content. Statistical significance was evaluated by one-way analysis of variance (ANOVA) followed by
Tukey’s honestly significant difference (HSD) test, and data are reported for each fraction relative to the
input sample (**, P � 0.01; ***, P � 0.001).
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35% and below 50% Percoll, respectively (see Fig. S1A in the supplemental material).
Growth of the Klebsiella strains at 25°C (which reduces capsule production) decreased
their density, with NTUH-K2044 localizing to above 35% Percoll and ATCC 43816
showing limited migration into the 35% layer. A third K. pneumoniae strain, RH201207
(nonhypermucoid, capsule type K106), was retained above 50% Percoll (Fig. S1A). We
also examined the proportion of Klebsiella bacteria migrating to different locations
within the density gradient (Fig. S1B). While the majority of K. pneumoniae NTUH-2044
bacteria were located above the 15% layer, a small fraction (4% viable count of the top)
migrated to below the interface of this layer, suggesting some heterogeneity in capsule
production. In both NTUH-K2044 and ATCC 43816, only a very small number of cells
were present below the 50% layer (Fig. S1B); these numbers could be partially due to
cross-contamination occurring during extraction of this part of the gradient, which was
recovered by pipetting from the top.

We then tested this method with a high-density transposon insertion library of K.
pneumoniae NTUH-K2044 (generated as described in Materials and Methods). This
mutant library gave rise to three fractions on a 15% to 35% to 50% Percoll gradient
(Fig. 1B). The middle and bottom fractions separated from the NTUH-K2044 library
contained less capsule than the input library culture, as shown by quantification of
capsular uronic acids (Fig. 1C) and the hypermucoidy centrifugation test (Fig. S1C). To
determine whether altered migration in a Percoll gradient was the result of stable
mutant phenotypes, the fractions of the K. pneumoniae NTUH-K2044 gradient were
cultured overnight and centrifuged on a fresh gradient. The “bottom” and “top”
fractions migrated to the same position as before, while the “middle” fraction showed
a partially heritable phenotype and was distributed across the top and middle positions
(Fig. S1D).

These data indicated that centrifugation on a discontinuous density gradient suc-
cessfully separated K. pneumoniae populations on the basis of their capsule production
and that variations in density among library mutants were, in part, due to stable
phenotypes. Random-prime PCR analysis of several colonies from the bottom fraction
of the K. pneumoniae NTUH-K2044 library identified insertions in known capsule
biosynthetic or regulatory genes (see Text S1 in the supplemental material), and a wza
insertion mutant was retained as a capsule-negative control for future experiments. We
then wished to determine whether our method could be used for capsule-based
separations of other species, for which we tested capsulated and noncapsulated
Streptococcus pneumoniae 23F. These strains were separated reproducibly on a Percoll
gradient (Fig. S1E), indicating that our method is applicable to other bacterial species.

Density-TraDISort identifies multiple capsule-associated genes in Klebsiella
pneumoniae. TraDISort is a term for transposon sequencing screens that employ
physical, rather than survival-based, enrichment of insertion mutants from saturated
libraries (48), which allows examination of phenotypes that are not linked to survival.
We call our approach “density-TraDISort” to distinguish it from the original approach
using fluorescence-based flow sorting as the physical selection method. The final
density-TraDISort approach is shown (Fig. 1B). Briefly, transposon mutant libraries were
grown overnight at 37°C in LB, applied to the top of a Percoll gradient, and centrifuged
at a moderate speed for 30 min (see Materials and Methods). Following centrifugation,
each bacterial fraction was extracted and subjected to TraDIS, as was a sample of the
input culture. Data were analyzed using the Bio-TraDIS pipeline (see Materials and
Methods). The K. pneumoniae NTUH-K2044 library contained approximately 120,000
unique transposon insertion sites (equivalent to an insertion every 45 bp), with a
median of 14 insertion sites per gene. Statistics summarizing the sequencing results
from each fraction are reported in Table S2 in the supplemental material.

Unlike traditional growth-based transposon insertion screens, our density-TraDISort
setup combines positive and negative selection within a single experiment; mutants
with reduced capsule can be identified through their loss from the top fraction or by
virtue of their enrichment in another fraction (see Fig. 2A for an example). We applied
stringent cutoffs on the basis of both selections to identify putative capsule-related
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genes. Briefly, a gene was counted as a hit only if it was (i) lost from the top fraction
(log2 fold change [log2FC] � �1; false-discovery-rate [q] value � 0.001) and (ii) enriched
in another fraction (log2FC � 1; q value � 0.001) (see Table S3 and S4). The presence
of a “middle” fraction also enabled us to identify genes which increased capsulation
when disrupted (an example is shown in Fig. 2B). These were apparent in the raw
TraDIS plot files as genes where all or nearly all the mutants localized to the top fraction
following centrifugation (mutants with wild-type capsule were distributed between the
top and middle fractions, in keeping with the migration pattern of wild-type NTUH-
K2044) (Fig. S1A). We defined putative “capsule up” genes as those which showed a
marked depletion in the middle fraction relative to the input (log2FC � �3; q value �

FIG 2 (A) Results of TraDIS mapping at the capsule locus of K. pneumoniae NTUH-K2044. Transposon insertions in capsule genes were very abundant in the
input sample. The majority of these mutants were not found in the top fraction but were instead enriched in the middle fraction (e.g., gnd and galF) or the
bottom fraction (all genes from wcaJ to wzi). Genes defined as hits in our screen are shown in yellow and others in gray. (B) Insertion mutations in genes of
the sap ABC transporter locus were not found in the middle fraction, suggesting higher capsule production than wild type. Genes which are putative increased
capsule hits are shown in blue, with others in gray. Note that sapD had a very low number of reads in all fractions. The flanking genes, codB and KP1_2336,
are examples of genes where transposon insertion does not change capsule, and such insertion mutants were found in both the top and middle fractions. (C)
Common and strain-specific genes required for full capsule production in K. pneumoniae NTUH-K2044 and ATCC 43816. Putative increased-capsule mutants are
not considered in this chart. These two strains share approximately 4,200 genes, and the majority of genes required for full capsule production are present in
both strains. Sixteen genes were defined as capsule related in both strains. Note that the gene content of the cps locus differs between these two strains, which
accounts for the majority of hits in strain-specific genes.
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0.001), with genes with very low initial read counts (log2cpm � 4) excluded (Table 1;
see also Table S4). Examples of TraDISort data for several genes known to affect capsule
production are shown in Fig. S2C.

In total, we identified 62 genes required for full capsule production in K. pneumoniae
NTUH-K2044 (Table 1; see also Table S4). We also identified 26 putative capsule up
mutants in this strain (Table 1; see also Table S4). The biological roles of the genes
determined to influence capsule production are discussed in more detail below.

Global regulators, metabolic genes, and cell surface components affect capsule
in K. pneumoniae. Our “capsule down” mutants included almost every gene of the
capsule biosynthesis locus of K. pneumoniae NTUH-K2044 (Fig. 2A), further confirming
that our experimental strategy had successfully isolated capsule-deficient mutants. The
manB and ugd genes were not called as hits, however, these contained very few
insertions in the input sample (visible in the plot files above these genes in Fig. 2A). In
addition to biosynthetic genes, the known capsule regulators rmpA, rcsB, and rfaH were
identified (Fig. S2C).

Other capsule down hits included multiple cell surface components, metabolic
genes, and genes of global regulatory systems. Extended functional information cor-
responding to all of our hits, including reported links to capsule production in Klebsiella
and other proteobacteria, is included in Table S4. Gene enrichment analysis using the
TopGO package (49) indicated that genes for polysaccharide metabolic processes
(P � 1.7 � 10�5), molecular transducers (P � 0.0042), and protein kinases (P � 0.005)
were overrepresented in our hits (all probabilities are from Fisher’s exact test, parent-
child algorithm [50]).

Several global regulators were identified as affecting capsule production. These
included the ArcB anaerobic/redox-sensitive sensor kinase, the OmpR-EnvZ osmotic
stress response system, the BarA-UvrY system, the ArgR arginine repressor, and the CsrB
carbon storage regulatory small RNA. Transcription regulators MprA and SlyA were also
needed for full capsule production. Metabolic genes, including genes coding for the
electron transport chain, glycolytic enzymes, and the GlnB nitrogen source regulatory
protein, were also identified.

The capsule up mutants of NTUH-K2044 included nucleoid proteins, membrane-
bound transporters such as SapBCDF (Fig. 2B), and several metabolic gene products
(Table S4). Interestingly, some of the capsule up hits, including CsrD (targets CsrB for
degradation), H-NS (reported to be antagonized by SlyA), and GlnD (modifies and
controls activity of GlnB), are known antagonists or regulators of genes in the capsule
down hits.

Finally, our results also included many genes for other cell surface components;
genes for the synthesis and modification of LPS were identified, along with enterobac-
terial common antigen (ECA) genes and the Lpp lipoprotein gene.

Distinct and overlapping capsule regulators in two K. pneumoniae strains. We
wished to determine the extent of conservation of our capsule-regulatory hits across
the Klebsiella species, and the overlap of the capsule-influencing genes in different
Klebsiella strains. To explore this issue, we applied our density-TraDISort method to a
second strain, K. pneumoniae ATCC 43816, a capsule type K2 strain which is commonly
used in Klebsiella infection studies (Fig. S3A). We constructed a K. pneumoniae ATCC
43816 saturated transposon insertion library with �250,000 unique insertion sites (or
an insertion every 22 bp) and a median of 36 insertion sites per gene (see Materials and
Methods) (Fig. S3C and D). This library resolved into two fractions on a 35% to 50%
Percoll gradient, with no obvious heritable “middle” fraction, and fractions were
collected and their transposon insertion junctions sequenced as described for K.
pneumoniae NTUH-K2044. Genes were counted as hits in this strain if they were lost
from the top fraction relative to the input (log2FC � �1; q value � 0.001) and enriched
in the bottom fraction (log2FC � 1; q value � 0.001). The lack of a “middle” fraction in
this experiment meant that there was less sensitivity for identifying reduced-capsule
mutants, particularly using the second, positive-selection-based filtering criterion. We
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TABLE 1 Genes in which mutants have altered capsule productiona

Gene Annotation
Proportion
of strains

Locus tagc

NTUH-K2044 ATCC 43816

Low-capsule mutants
wzxE WzxE protein 0.94 KP1_0154 VK055_3183
wzy ECA polymerase 1.00 KP1_0156 VK055_3181
rfaH Transcriptional activator RfaH 1.00 KP1_0199 VK055_3141
seqA Replication initiation regulator SeqA 0.99 KP1_1663 VK055_1821
pgm Phosphoglucomutase 1.00 KP1_1664 VK055_1820
gnd 6-Phosphogluconate dehydrogenase 0.69 KP1_3704 VK055_5026
wcaJ Colanic acid biosynthsis UDP-glucose lipid carrier transferase WcaJ 0.20 KP1_3705 VK055_5025
wza Polysaccharide export protein 0.98 KP1_3720 VK055_5015
wzi Outer membrane protein 0.99 KP1_3721 VK055_5014
orf2 PAP2 family protein 0.93 KP1_3725 VK055_5013
mlaD ABC transporter 1.00 KP1_4915 VK055_3874
arnF 4-Amino-4-deoxy-L-arabinose-phosphoundecaprenol flippase subunit ArnF 1.00 KP1_5178 VK055_3630
arnE SMR family multidrug resistance protein 0.95 KP1_5179 VK055_3628
arnD Polymyxin resistance protein PmrJ 1.00 KP1_5181 VK055_3626
gor Glutathione reductase 1.00 KP1_5206 VK055_3604
wabN Deacetylase 1.00 KP1_5319 VK055_3502
wecA Undecaprenyl-phosphate N-acetylglucosaminyl 1-phosphate transferase 0.98 KP1_0146 VK055_3191
yjeA Translation elongation factor P Lys34:lysine transferase 1.00 KP1_0426 VK055_2911
miaA tRNA delta(2)-isopentenylpyrophosphate transferase 1.00 KP1_0439 VK055_2895
dksA RNA polymerase-binding transcription factor 0.99 KP1_0973 VK055_2423
htpG Chaperone protein HtpG 0.97 KP1_1331 VK055_2094
manA Mannose-6-phosphate isomerase 0.65 KP1_2524 VK055_0991
ydgI Arginine/ornithine antiporter ArcD 1.00 KP1_2534 VK055_0982
rnfA Electron transport complex protein RnfA 0.98 KP1_3036 VK055_0514
rnfC_2 Electron transport complex protein RnfC 0.38 KP1_3038 VK055_0512
nqrB_1 (rnfD) Electron transport complex protein RnfD 0.99 KP1_3039 VK055_0511
rnfE Electron transport complex protein RnfE 0.78 KP1_3041 VK055_0509
slyA_1 Transcriptional regulator SlyA 1.00 KP1_3054 VK055_0496
lpp Major outer membrane lipoprotein 1.00 KP1_3230 VK055_0326
galU UTP-glucose-1-phosphate uridylyltransferase 0.97 KP1_3315 VK055_0250
uvrY BarA-associated response regulator UvrY (GacA, SirA) 1.00 KP1_3542 VK055_0032
rmpA Regulator of mucoid phenotype 0.05 KP1_3619 VK055_5097
manC Mannose-1-phosphate guanylyltransferase 0.24 KP1_3703 VK055_5027
galF UDP-glucose pyrophosphorylase 0.88 KP1_3726 VK055_5012
rcsB DNA-binding capsular synthesis response regulator RcsB 0.77 KP1_3872 VK055_4883
glnB Nitrogen regulatory protein P-II 1.00 KP1_4132 VK055_4623
rluD 23S rRNA pseudouridine synthase D 0.96 KP1_4172 VK055_4583
emrR Transcription repressor 1.00 KP1_4277 VK055_4504
barA BarA sensory histidine kinase 0.92 KP1_4400 VK055_4386
greA Transcription elongation factor GreA 0.99 KP1_4900 VK055_3886
arcB Aerobic respiration control sensor protein arcB 1.00 KP1_4931 VK055_3858
argR Arginine pathway regulatory protein ArgR 1.00 KP1_4961 VK055_3832
envZ_2 Osmolarity sensory histidine kinase EnvZ 0.90 KP1_5105 VK055_3697
ompR Osmolarity response regulator 1.00 KP1_5106 VK055_3696
rfaZ Lipopolysaccharide core biosynthesis protein RfaZ 0.76 KP1_5316 VK055_3505
waaL O-Antigen polymerase 0.78 KP1_5317 VK055_3504
rfaQ (waaQ) Lipopolysaccharide heptosyltransferase III 1.00 KP1_5320 VK055_3501
wabH Glycosyltransferase 1.00 KP1_5322 VK055_3499
yjeK EF-P beta-lysylation protein EpmB NA KP1_0415 NA
wcaI Putative glycosyl transferase 0.11 KP1_3706 NA
gmm (wcaH) GDP-mannose mannosyl hydrolase 0.05 KP1_3708 NA
wcaG GDP-fucose synthetase 0.11 KP1_3709 NA
gmd GDP-mannose 4,6-dehydratase 0.13 KP1_3711 NA
KP1_3712 Galactoside O-acetyltransferase 0.00 KP1_3712 NA
group_19979 Glycosyltransferase 0.06 KP1_3713 NA
magA Mucoviscosity-associated protein 0.06 KP1_3714 NA
KP1_3715 Polysaccharide pyruvyl transferase 0.05 KP1_3715 NA
wzx Repeat unit exporter 0.06 KP1_3716 NA
wzc Tyrosine-protein kinase Wzc 0.06 KP1_3718 NA
wzb Putative protein tyrosine phosphatase 0.00 KP1_3719 NA
csrBb Carbon storage regulatory sRNA NA KP1_6106 NA
rmpA_2b Regulator of mucoid phenotype NA KP1_p020 NA
pgi Glucose-6-phosphate isomerase 1.00 KP1_0264 VK055_3061
mioC_2 Flavodoxin 0.99 KP1_0001 VK055_3326
glpD Aerobic glycerol-3-phosphate dehydrogenase 0.99 KP1_5126 VK055_3679
yrbF Putative ABC transporter ATP-binding protein YrbF 1.00 KP1_4917 VK055_3872
mlaE (yrbE) ABC transporter 1.00 KP1_4916 VK055_3873
mlaC (yrbC) ABC transporter 1.00 KP1_4914 VK055_3875
mlaA lipoprotein 1.00 KP1_3977 VK055_4786
wzb Putative acid phosphatase Wzb 0.01 NA VK055_5016

(Continued on next page)
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used a pan-genome generated from 263 annotated K. pneumoniae genomes (Table S5)
to define the common genes in NTUH-K2044 and ATCC 43816 and to determine their
prevalence across the K. pneumoniae population (Table 1; see also Table S4).

We identified 34 candidate capsule-regulatory genes in K. pneumoniae ATCC 43816.
As observed for NTUH-K2044, the genes of the capsule biosynthetic locus were nearly
all called as hits (Fig. S3E). Of the three genes that were not, two had very low initial
insertion counts, and the third met our first selection criterion of being lost from the top
fraction but was not enriched in the bottom fraction. Putative capsule-influencing
genes of ATCC 43816 fell into diverse functional categories, with genes encoding cell
surface components, metabolic genes, and genes associated with transporters and
known regulators implicated.

Although the majority of capsule hits are encoded in the core genome (48 of 62 in
K. pneumoniae NTUH-K2044; 23 of 32 in K. pneumoniae ATCC 43816; Fig. 2C), only 16
genes were called as hits in both strains. These shared genes included five shared
components of the two strains’ capsule biosynthesis loci, the transcription antitermi-
nator rfaH, two enterobacterial common antigen genes, three genes of the arn operon
responsible for modification of LPS lipid A with L-Ara4N, and the glutathione reductase
gor gene. Strain-specific differences were also identified, with the caveat that NTUH-
K2044 produces more capsule (Fig. S3B) and therefore afforded us greater sensitivity in
our experiment. Genes that were identified as required for ATCC 43816 capsule

TABLE 1 (Continued)

Gene Annotation
Proportion
of strains

Locus tagc

NTUH-K2044 ATCC 43816

wzc (etk) Tyrosine autokinase 0.08 NA VK055_5017
mshA Group 1 glycosyl transferase 0.08 NA VK055_5018
orf8 Group 1 glycosyl transferase 0.08 NA VK055_5019
VK055_5020 Group 1 glycosyl transferase 0.08 NA VK055_5020
VK055_5021 Lipid A core–O-antigen ligase and related enzymes 0.08 NA VK055_5021
wzxC Colanic acid exporter 0.08 NA VK055_5022
orf12 Hypothetical protein 0.08 NA VK055_5023
orf13 Putative lipopolysaccharide biosynthesis O-acetyl transferase WbbJ 0.06 NA VK055_5024

High-capsule mutants
polA DNA polymerase I 0.79 KP1_0024
cyaA Adenylate cyclase 0.99 KP1_0164
trkH Potassium transport protein 1.00 KP1_0206
purA Adenylosuccinate synthetase 1.00 KP1_0448
apaH Diadenosinetetraphosphatase 0.96 KP1_0859
ace Pyruvate dehydrogenase E1 component 0.98 KP1_0941
glnD PII uridylyl-transferase 0.94 KP1_1019
hha Hemolysin expression modulating protein 0.99 KP1_1317
tolR Putative inner membrane protein involved in the tonB-independent uptake of group A colicins 1.00 KP1_1700
tolB Translocation protein TolB precursor 1.00 KP1_1702
mdoG Periplasmic glucans biosynthesis protein 1.00 KP1_2050
mdoH Glucosyltransferase 0.93 KP1_2051
sapF ABC-type peptide transport system ATP-binding component 0.97 KP1_2331
sapC ABC-type peptide transport system permease component 1.00 KP1_2333
sapB ABC-type peptide transport system permease component 0.99 KP1_2334
sapA ABC-type peptide transport system periplasmic component 0.68 KP1_2335
pykF Pyruvate kinase 0.99 KP1_3229
hns DNA-binding protein HLP-II/pleiotropic regulator 0.99 KP1_3314
prc Carboxy-terminal protease for penicillin-binding protein 3 0.11 KP1_3473
ackA Acetate/propionate kinase 1.00 KP1_3933
pta Phosphate acetyltransferase 0.80 KP1_3934
smpB SsrA tmRNA-binding protein 1.00 KP1_4198
ptsN Sugar-specific PTS family enzyme IIA component 1.00 KP1_4926
KP1_4976 (csrD) csrB regulatory protein CsrD 0.95 KP1_4976
fis DNA-binding protein 1.00 KP1_4989
pitA Putative low-affinity inorganic phosphate transporter 0.84 KP1_5198

aA list of all statistically significant genes from this TraDIS screen which, when disrupted by transposon insertion, increase capsule production in K. pneumoniae. Cutoff
criteria are described in Materials and Methods. Gene names and functional annotations are taken from the pan-genome consensus file (see Materials and Methods).
The complete data set, including statistical data, is provided in Table S3 and S4.

bNote that the pan-genome includes only protein-coding sequences located on the chromosome, so the small RNA csrB gene and plasmid-encoded rmpA2 gene are
not included in our pan-genome analysis.

cLocus tags are shown in bold for hits and in italics where the gene was not called as a hit.

Dorman et al. ®

November/December 2018 Volume 9 Issue 6 e01863-18 mbio.asm.org 8

https://mbio.asm.org


production but not NTUH-K2044 capsule production included the yrbCDEF (mlaCDEF)
ABC transporter genes and the mlaA gene, which are involved in maintaining outer
membrane asymmetry through the cycling of phospholipids (51). Thirty-two genes
common to both strains had a capsule down phenotype in NTUH-K2044 but were not
called as hits in ATCC 43816 (note that capsule up hits are not included in our
comparison as these were not resolved in ATCC 43816). These included electron
transport pump rnf, global regulators such as arcB and ompR, transcription factor mprA,
and several additional cell surface component biosynthetic genes. It appears that the
influence of at least some conserved genes on capsule is strain specific.

Phenotypes of single-gene mutants confirm results of density-TraDISort. We
generated a set of 10 single-gene-deletion mutants in K. pneumoniae NTUH-K2044, and
a set of 3 in K. pneumoniae ATCC 43816, in order to validate the results of our
density-TraDISort screen. Genes selected for mutagenesis were the known capsule and
LPS regulator gene rfaH in both strains, the LPS O-antigen ligase gene waaL, the aerobic
respiration control sensor gene arcB, and multiple transcriptional regulator genes
(ompR, argR, slyA, mprA, and uvrY). We also deleted the arnF gene in ATCC 43816. The
sapBCDF ABC transporter in NTUH-K2044 was examined in order to validate our
assignment of capsule up hits.

Single-gene-knockout mutants were grown under the same conditions as in the
original screen and were subjected to density gradient centrifugation. Every mutant
showed a banding pattern consistent with the results of density-TraDISort (Fig. 3A and
B). The ΔarcB mutant appeared to have two populations, one with wild-type capsule
and one with reduced capsule. Most of the other NTUH-K2044 mutants migrated to the
position of the middle fraction, while the ΔwaaL, i-wza, and ΔrfaH mutants migrated to
the bottom of the gradient. The ΔsapBCDF mutant showed higher density than the
wild-type strain and remained above the 15% Percoll layer, with no movement into the

FIG 3 Validation of putative capsule regulators with single-gene-deletion mutants. (A) Percoll gradient centrifu-
gation of clean deletion mutants in selected NTUH-K2044 genes. All of the genes tested showed reduced density
compared to the wild type (WT), with the exception of the putative increased-capsule mutant, ΔsapBDEF, which
stayed above the 15% Percoll layer. (B) Validation of ATCC 43816 deletion mutant phenotypes on 35% to 50%
Percoll gradients. The ΔarnF and ΔrfaH mutants showed reduced density compared to the wild type, while the
ΔmprA mutant did not, in contrast to its phenotype in NTUH-K2044. (C) Hypermucoidy tests with K. pneumoniae
NTUH-2044 mutants. Strains were grown to late stationary phase and cultures centrifuged for 5 min at 1,000 � g.
The OD600 of the supernatant was measured and is presented here as a proportion of the starting OD600. *, P �
0.05; ***, P � 0.001 (one-way ANOVA followed by Tukey’s HSD test, relative to the wild type).
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gradient itself. Mutants of NTUH-K2044 were also tested for hypermucoidy and uronic
acid production, and these experiments showed increased capsule in NTUH-K2044
ΔsapBCDF and reduced capsule in all other mutants (Fig. 3C; see also Fig. S4B). Of the
K. pneumoniae ATCC 43816 mutants (Fig. 3B), the ΔrfaH mutant migrated to the bottom
of the gradient and the ΔarnF mutant to the middle and bottom, while mutant ΔmprA
showed the same pattern as the wild type. This is consistent with the TraDISort
assignment of this gene as having a strain-specific effect on capsule, at least under
these growth conditions (Table 1).

Our hits included several genes with roles in LPS biosynthesis, which raised the
possibility that LPS O-antigen may affect cell density independently of capsule. To test
this possibility, we constructed a ΔwaaL deletion in our wza transposon insertion strain
(see Materials and Methods). The resulting double mutant had no detectable reduction
in density compared to the wza mutant on the standard 15% to 35% to 50% gradient
or on 70% Percoll (representing the minimum concentration required to exclude the
wza mutant; Fig. S4A), indicating that the LPS O-antigen alone does not affect the
density of K. pneumoniae, at least within the resolution range of this experiment.

Virulence and capsule architecture of K. pneumoniae NTUH-K2044 �argR,
�mprA, �sapBCDF, and �slyA. We selected the transcription factors ArgR, SlyA, and
MprA, along with the ABC transporter SapBCDF, for further characterization. ArgR
represses arginine synthesis and transport as well as expression of other genes (52),
SlyA is an antagonist of H-NS (known to suppress capsule in K. pneumoniae) (53, 54),
and MprA is a transcriptional regulator with an effect on capsule in uropathogenic E.
coli (UPEC) (55). Both SlyA and MprA were also shown very recently to be virulence and
capsule regulators in K. pneumoniae and were renamed KvrA and KvrB (56). SapBCDF
has been reported to mediate resistance to antimicrobial peptides (AMPs) in H. influ-
enzae by importing them for degradation (57) and was presumed to have this activity
in Enterobacteriaceae as well, though it has recently been reported that this pump
functions as a putrescine exporter in E. coli and has no role in AMP resistance (58). ArgR
and SapBCDF have not previously been linked to capsule regulation.

To confirm that the alterations in capsule production observed in the NTUH-K2044
ΔargR, ΔslyA, ΔmprA, and ΔsapBCDF mutants were due to the deleted genes, each
mutant was complemented by reintroducing the wild-type gene on the chromosome
(see Materials and Methods). Although this complementation strategy ensures wild-
type levels of expression, it cannot rule out polar effects. Complementation caused a
complete restoration of wild-type capsule production, as measured by the hypermu-
coidy and uronic acid assays (Fig. 4A and B). To define changes in capsule architecture,
each mutant strain was examined by transmission electron microscopy (TEM) (Fig. 4C).
Wild-type K. pneumoniae NTUH-K2044 had a thick, filamentous capsule of roughly half
the cell diameter. The ΔargR and ΔslyA mutants had capsules with slightly reduced
thickness and finer filaments, while the ΔmprA mutant had extremely fine and diffuse
filaments such that the boundary of the capsule was not clear. The ΔsapBCDF capsule
had some thick filaments but at lower density than NTUH-K2044, with an additional
gel-like layer visible outside these filaments. The virulence of the ΔargR, ΔslyA, ΔmprA,
and ΔsapBCDF mutants, and their complements, was assessed by infection of research-
grade Galleria mellonella larvae, an established invertebrate model for Klebsiella infec-
tions (59). Each of the reduced-capsule strains showed a virulence defect relative to the
wild-type strain which was restored on complementation (Fig. 5A), while the ΔsapBCDF
mutant did not have changed virulence compared to the wild type.

The sap transporter alters serum survival but does not affect antimicrobial
peptide resistance. We then examined the effect of ArgR, MprA, SlyA, and SapBCDF on
resistance to human serum. After 2 h, the NTUH-K2044 wild type showed full survival
with a slight increase in viable count, while the wza mutant was reduced in viable count
by �25-fold. The ΔargR, ΔmprA, and �slyA mutants did not change significantly
(Fig. 5B). The ΔsapBCDF mutant showed increased viable count compared to the
wild-type strain, with a 7-fold increase over the course of the experiment. This increase
was unexpected, as the wild-type strain is already fully serum resistant. A double
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ΔsapBCDF cps mutant was constructed (see Materials and Methods) and showed a
drastic reduction in survival, suggesting that the increased serum survival of the
NTUH-K2044 ΔsapBCDF mutant is capsule dependent (Fig. 5B).

We also tested the ΔsapBCDF mutant for resistance to the peptide antibiotics colistin
and polymyxin B. The drug MICs were approximately the same as that seen with the
wild type, at 1 �g/ml for colistin and 0.75 �g/ml for polymyxin B, indicating that the Sap
transporter in K. pneumoniae does not contribute to antimicrobial peptide resistance.

sap mutation increases transcription of capsule middle genes without activat-
ing the Rcs system. We then wished to determine whether mutation of the Sap
transporter increased capsule production by acting on transcription. RNA was extracted
from late-exponential-phase wild-type and ΔsapBCDF cells, and the abundance of three
capsule locus transcripts—manC, wcaG, and wza—was measured by reverse transcrip-
tion real-time quantitative PCR (qRT-PCR). These genes are transcribed from separate
promoters. The ΔsapBCDF mutant showed elevated expression of wcaG, at 2.5 times
wild-type levels, while expression of wza and manC was not significantly changed
(Fig. 5C).

FIG 4 Complementation and electron microscopy of K. pneumoniae NTUH-K2044 ΔargR, ΔmprA, ΔslyA, and
ΔsapBCDF mutants. (A) Hypermucoidy assay. Strains were centrifuged at 1,000 � g for 5 min to define decreased
hypermucoidy relative to the wild type or at 2,500 � g to identify increases in hypermucoidy relative to the wild
type. Significant differences are indicated as follows: **, P � 0.01; ***, P � 0.001 (one-way ANOVA and Tukey’s HSD
test). The data represent results from an experiment conducted independently of the experiment whose results are
represented in Fig. 3C. comp, complemented. (B) Uronic acid assay to confirm the capsule phenotype of each strain.
Differences relative to the wild type were evaluated by pairwise one-way ANOVA with Benjamini-Hochberg
correction for multiple testing. *, P � 0.05; **, P � 0.001; ***, P � 0.0001. (C) Transmission electron microscopy
images of K. pneumoniae NTUH-K2044 and its ΔargR, ΔmprA, ΔslyA, and ΔsapBCDF mutants. Red arrows indicate the
boundary of the gel-like layer of the sapBCDF mutant capsule.

density-TraDISort for K. pneumoniae Capsule ®

November/December 2018 Volume 9 Issue 6 e01863-18 mbio.asm.org 11

https://mbio.asm.org


The Rcs phosphorelay system regulates capsule expression in E. coli and other
enterobacteriaciae and is induced by cues such as membrane stress (60, 61). RcsA is a
component of the system which autoregulates and increases its own expression when
activated. We measured rcsA transcript levels to determine whether loss of the
ΔsapBCDF genes induces rcsA (Fig. 5C). Unexpectedly, levels of rcsA were much lower
in the mutant than in the wild type, indicating that Sap-dependent induction of capsule
expression does not occur through rcsA. Note, however, that RcsA is not required for all
permutations of Rcs signaling as RcsB can interact with a number of partner proteins
to regulate transcription (60).

Capsule is at the center of a complex regulatory network in Klebsiella pneu-
moniae. We identified numerous putative capsule regulators by density-TraDISort and
validated the results of our screen with single-gene-deletion mutants. We propose an
integrated model for how the genes we identified may collectively control K. pneu-
moniae NTUH-K2044 capsule. This model is based on our results and previous pub-
lished work in K. pneumoniae and other enterobacteria (particularly Escherichia coli). Full
details of the literature relevant to each hit are listed in Table S4.

Major nodes for transcriptional control are the CsrB carbon source utilization system
and the Rcs phosphorelay system. Each of these systems is itself regulated by multiple
genes identified in our study—CsrB integrates signals from the UvrY-BarA two-
component system (a capsule down hit) and various carbon metabolic genes, is
activated by DksA, and is targeted for degradation by CsrD (a capsule up hit); the Rcs
system is induced by MdoGH mutation, can cooperate with RmpA and RmpA2 to
induce capsule, and also responds to carbon metabolism and some forms of entero-
bacterial common antigen. SlyA/KvrA and MprA/KvrB both promote capsule transcrip-
tion (56). The SlyA/KvrA protein acts as a temperature-dependent switch which acts by

FIG 5 Virulence of selected mutants. (A) Killing of research-grade Galleria mellonella larvae by infection with K.
pneumoniae NTUH-K2044 wild-type or mutant strains. Larvae were infected at an inoculum of 105. Differences in
killing compared to the wild type were evaluated using the Kaplan-Meier log rank test and are indicated as follows:
*, P � 0.05; **, P � 0.01; ***, P � 0.001. (B) Survival in human serum. Differences relative to the wild type are
indicated as follows: **, P � 0.01; ***, P � 0.001 (pairwise one-way ANOVA). (C) Expression of several capsule-related
genes in strain NTUH-K2044 ΔsapBCDF. Transcript abundance was measured using the relative standard curve
method with recA as a reference gene, and data were normalized to the WT. *, P � 0.05; ***, P � 0.001 (one-way
ANOVA).
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relieving H-NS-mediated transcriptional silencing; H-NS suppressed expression of rcsA
and the three capsule operons in a clinical K. pneumoniae strain of capsule type K39
(53). Capsule is also affected by the composition of the cell envelope, and mutations in
lpp or various LPS-related genes can reduce the retention of capsule at the cell surface.
Note that several genes related to cell envelope composition and membrane stress
have been shown to regulate the Rcs system (61); therefore, some of the cell envelope
component genes identified in our study may act through RcsB. Our work has also
uncovered novel regulators of capsule that, at this stage, cannot be tied to the wider
regulatory network, such as argR, and the ABC transporter Sap. We intend to define the
mechanisms by which these genes affect capsule in future studies.

DISCUSSION

We have developed a simple, robust technology for genome-wide studies of
bacterial capsule, density-TraDISort, and applied it to identify capsule regulators in two
strains of K. pneumoniae. In doing so, we have identified multiple positive and negative
regulators of capsule production, including several genes not previously linked to
capsule in this species.

To our knowledge, this was one of the first studies employing physical selection
independently of bacterial survival and growth to separate TraDIS libraries and repre-
sents the first time that density-based physical selection has been applied to study-
ing capsule regulation in K. pneumoniae. TraDISort/FAST-INSeq technology with
fluorescence-based sorting has to date been used to identify genes affecting efflux of
ethidium bromide and mutations influencing expression of a Salmonella enterica
serovar Typhi toxin reporter (48, 62). We have expanded the utility of this method by
adding a selection step based on cell density, allowing us to resolve different capsu-
lation states. We envisage that, in addition to facilitating genome-wide screens for
altered capsulation in other bacterial species, density-TraDISort could be used to
identify genes affecting cell size and shape or cell aggregation.

Our study was the second application of TraDIS to screen for genes affecting
bacterial capsule production, following a recent study focused on UPEC (55). The UPEC
study utilized a capsule-specific phage to positively select transposon insertion mutants
lacking capsule; two novel capsule regulators were identified in this way. Compared
with phage-based selection, our method offers increased sensitivity—mutants with a
range of capsule phenotypes can be identified, in addition to capsule-null mutations.
In addition, there is an option for very stringent selection of hits, as cutoffs can be
applied on the basis of both negative selection (loss from the top fraction) and positive
selection (enrichment in another fraction). However, density-based selection is less
specific to capsule than phage infection, and there is the possibility that mutations
could affect cell density in a capsule-independent manner. Interestingly, one of the
novel Klebsiella capsule regulators identified in this study, MprA, was also shown to
regulate capsule in UPEC. In Klebsiella pneumoniae, this gene increases capsule
production above a baseline in hypermucoid strains (56) (Fig. 3A and 4; see also
Fig. S4B in the supplemental material), while a UPEC ΔmprA mutant did not produce
capsule at all.

We have shown that capsule production in K. pneumoniae NTUH-K2044 is controlled
by many different global regulatory systems, allowing us to provide a detailed snapshot
of the control of capsule in this strain (Fig. 6). Note that our assay was performed on
bacterial cells at the late-stationary-growth phase, in LB medium, under microaerophilic
conditions. This condition was used in this study because the associated level of
capsule production is high, offering good resolution for capsule-based selection of
mutants. Additional regulators, linked to different cues and stresses, are likely to be
involved in different environments. Many of the regulators identified in this study were
called as hits only in the hypermucoid strain, K. pneumoniae NTUH-K2044. It remains to
be seen whether these same regulators control capsule (though to a degree outside the
resolution of our gradient) in other K. pneumoniae strains; note, though, that several
genes of K. pneumoniae ATCC 43816 (including uvrY, barA, csrB, rcsA, and rcsB) met our
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first screening criterion of being lost from the top fraction but not the second of being
enriched in the bottom fraction. We speculate that capsule production is subject to
complex environmental control across the Klebsiella species but that the hypermucoid
phenotype is more costly to maintain and more sensitive to disruptions in its regulatory
network.

Many of our hits are involved in the synthesis of other cell surface polysaccharides;
these included genes for enterobacterial common antigen (ECA), as well as genes for
the synthesis or modification of LPS. ECA is a nonimmunogenic surface glycolipid found
in various forms in Enterobacteriaceae, and structural modifications in this moiety can
induce the Rcs system (63, 64). LPS is a major contributor to K. pneumoniae pathogen-
esis in sepsis, though to a lesser extent in pneumonia (12, 18), and various LPS
modifications have roles in immune modulation during infection (65, 66). We are
confident that the LPS mutations identified in our study affect capsule retention or
biosynthesis, rather than density per se, because (i) deletion of the O-antigen ligase
waaL gene did not reduce cell density in an acapsular K. pneumoniae NTUH-K2044
strain (Fig. S4A); (ii) some LPS, but not all, biosynthesis genes were hits in our screen;
and (iii) the glucuronic acid moieties on the core LPS polysaccharide are required for
capsule retention in K. pneumoniae (67, 68). In both of the strains that we studied,
disrupting genes of the arn operon reduced capsulation (Table 1; see also Table S4 in
the supplemental material). The arn operon has been shown to be responsible for
modifying lipid A of LPS with 4-amino-4-deoxy-L-arabinose to mediate resistance to
peptide antibiotics (69) but has not previously been linked to capsule. The arnEF genes
encode a flippase thought to translocate the modified arabinose across the cell
membrane (70), while arnD is involved in its biosynthesis (71). We hypothesize that the

FIG 6 Overview of capsule regulation in NTUH-K2044. Products are colored red for mutants with low capsule and blue
for mutants with high capsule, and those genes that were validated in clean deletion knockouts are indicated with bold
labels and outlines. Likely modes of action are indicated by green or red arrows for predicted positive and negative effects
on transcription of the capsule locus. Gray arrows indicate inputs that may affect capsule synthesis without modulating
transcription. Omitted are individual capsule biosynthetic genes, ECA biosynthetic genes, and components of the
transcription and translation machinery.
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reduced capsule of mutants of arnD and arnEF is independent of Lipid A modification,
because other genes in this operon did not affect capsule and because a previous study
showed that lipid A modification with L-Ara4N does not occur in cells grown in LB (66).
Overall, our results hint at a high degree of interdependence among the three major
surface polysaccharides of K. pneumoniae.

The sap ABC transporter, when mutated, was found to promote capsule production
by increasing the expression of capsule middle genes (Fig. 3A, 4A and B, and 5C)
(Table 1; see also Table S3 and S4). To our knowledge, our study is the first to implicate
sapABCDF in capsule regulation, though its full functions (or, indeed, the substrate of
this transporter in Klebsiella) are not known. The H. influenzae Sap homologue mediates
resistance to antimicrobial peptides by importing them for degradation and is also
required for haem uptake (57, 72), while the Sap pump in E. coli has been reported to
export putrescine and facilitate potassium import through TrkGH (58, 73). We found
that the Sap transporter did not affect antimicrobial peptide resistance, which was also
observed in E. coli. It is unclear how Sap mutation induces wcaG while suppressing an
important component of the Rcs system—more work will be needed to define the role
and mechanism of this transporter in K. pneumoniae. For the four mutants characterized
in detail in this study, it would be interesting to examine their phenotypes in mam-
malian models in addition to the invertebrate model used here, to see how these genes
influence specific host-pathogen interactions.

We have developed a simple, broadly applicable method for studies of capsulation
and used it to define the regulatory network that controls capsule in K. pneumoniae
NTUH-K2044. We have also identified genes required for full production of capsule in
a K2 strain. Although the majority of regulators are located in the core genome of K.
pneumoniae, there are differences in the specific regulators deployed in the two strains
that we investigated, and it would be interesting to determine whether this pattern of
strain-specific regulatory networks comprising primarily core genes holds across the
Klebsiella phylogeny. This intraspecies comparison, together with our data showing that
density-based capsule selection can be used in other capsulated bacteria, also opens
the possibility for robust interspecies comparisons of capsule regulation.

MATERIALS AND METHODS
Culture conditions and microscopy. K. pneumoniae strains were cultured routinely in LB media

supplemented with 1.5% (wt/vol) agar as appropriate. Cultures were supplemented with 12.5 �g/ml
chloramphenicol and 12.5 �g/ml tetracycline when required. S. pneumoniae strains were grown on blood
agar plates (Oxoid; CM02718) in microaerobic candle jars containing CampyGen sachets at 37°C or in
static brain heart infusion (BHI) liquid media (Oxoid; SR0050C). The list of strains, plasmids, and
oligonucleotides used in this study is reported in Table S1 in the supplemental material.

Generation of transposon insertion libraries. TraDIS libraries were generated using the mini-Tn5
transposon delivery plasmid pDS1028 (74), introduced into the recipient strain by conjugation. Full
details are provided in Text S1 in the supplemental material.

Mutant library fractionation on Percoll gradients. Bacterial mutant libraries were separated on the
basis of their capsule expression by centrifugation on a discontinuous Percoll (GE Healthcare) density
gradient for 30 min at 3,000 � g (Fig. 1B). Full details are provided in Text S1.

Identification of transposon insertion sites by random-prime PCR. Genomic DNA (gDNA) was
prepared from overnight cultures of single reduced-capsule mutants using a DNeasy blood and tissue kit
(Qiagen). Random-prime PCR to identify the transposon insertion site in each gDNA template was
performed as previously described (75) using primers FS57-59 and FS109 and Herculase II polymerase
(Agilent). Amplicons were sequenced using primer FS107.

DNA extraction and next-generation sequencing. Genomic DNA (gDNA) was prepared from each
Percoll-resolved fraction by phenol-chloroform extraction. Two micrograms of DNA from each gDNA
preparation was used to prepare TraDIS transposon-specific sequencing libraries as described previously,
using primer FS108 for specific amplification of transposon junctions (43). Sequencing was carried out on
an Illumina MiSeq platform using primer FS107.

Analysis of TraDIS data. The analysis of TraDIS sequencing results was carried out using the
Bio-TraDIS pipeline as described previously (43, 44), with minor modifications (see Text S1). All scripts
used in this study are available at https://github.com/sanger-pathogens/Bio-Tradis and https://github
.com/francesca-short/tradis_scripts. Comparisons between fractions were based on normalized read
counts per gene. Genes with (i) reduced mutant abundance in the top fraction and (ii) increased
mutant abundance in the middle or bottom fraction were called as decreased capsule hits, with
thresholds of an absolute change in log2FC of �1 and a q value of �0.001. Increased capsule hits
in NTUH-K2044 were defined as those with severely reduced mutant abundance in the middle
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fraction (log2FC � �3; q value � 0.001) without enrichment in the bottom fraction (log2FC � 1), with
genes containing very few reads in any fraction excluded (i.e., the value corresponding to log2

counts per million in the top fraction was greater than 4).
Generation of the pan-genome and the method of enrichment analysis are described in Text S1.
Construction of single-gene-deletion strains. Single-gene-knockout mutants were constructed in

K. pneumoniae by allelic exchange. Upstream and downstream sequences (� 500 bp) for each target
gene were amplified and joined by overlap PCR, cloned into pKNG101-Tc, and introduced into the
recipient strain by conjugation with the E. coli �2163 donor strain. All primers used, and the resulting
constructs, are listed in Table S1. Conjugation patches were incubated for 1 h at 37°C and then for 16 h
at 20°C. Single-crossover mutants were selected on LB agar plus 15 �g/ml tetracycline. Double-crossover
mutants were selected on low-salt LB agar plus 5% sucrose at room temperature and were subsequently
patched onto LB plus sucrose and LB plus tetracycline plates to confirm loss of the vector. Mutants were
confirmed by PCR across the deleted region. Mutants were complemented by reintroduction of the
relevant gene into its original location on the chromosome by allelic exchange as described above, using
a vector carrying the gene and its flanking region. The ΔsapBCDF cps (K. pneumoniae 1_3713 [KP1_3713])
double mutant was generated by random transposon mutagenesis of the ΔsapBCDF strain with the
pDS1028 vector, followed by selection of acapsular mutants from the pool by density-gradient centrif-
ugation and random-prime PCR to identify the insertion site.

Quantification of capsule by uronic acid assay. Capsule extraction and quantification of uronic
acids were performed as described previously (14, 76), with modifications (see Text S1).

Hypermucoviscosity assay. Cultures of K. pneumoniae were grown overnight in 5 ml LB medium at
37°C. These cultures were sedimented at 1,000 � g or 2,500 � g for 5 min (room temperature). The
optical density at 600 nm (OD600) of the top 500 �l of supernatant was determined by spectrophotom-
etry. Results were expressed as a ratio of the supernatant OD600 to that in the input culture.

Electron microscopy. Colonies were taken directly from an agar plate, frozen at high pressure in a
Balzers HP010, and freeze-substituted for 8 h in acetone containing 0.1% tannic acid and 0.5% glutar-
aldehyde at �90°C followed by 1% osmium tetroxide–acetone for 24 h at �50°C. They were then
embedded in Lowicryl HM20 monostep resin. Ultrathin sections were cut on a Leica UC6 ultramicrotome
and contrasted by the use of uranyl acetate and lead citrate. Images of bacteria were taken on an FEI
Spirit Biotwin 120 kV TEM with a Tietz F4.15 charge-coupled-device (CCD) camera.

Serum resistance assay. Bacteria were grown in LB to an OD600 of 1, pelleted, and resuspended in
sterile phosphate-buffered saline (PBS). Human sera (Sigma-Aldrich S7023) (400 �l) was prewarmed to
37°C and added to 200 �l bacterial suspension, and the mixture was incubated at 37°C for 2 h. Viable
bacterial counts were determined before and after incubation.

Galleria mellonella infection. Larvae of G. mellonella were purchased from BioSystems Technology
Ltd. (United Kingdom) (research-grade larvae) and used within 1 week. Bacteria were grown overnight,
subcultured and grown to an OD600 of 1, and then resuspended in sterile PBS. Larvae were infected by
injecting the bacterial suspension (105 cells) into the right hind proleg of the larvae using a Hamilton
syringe. Infected larvae were incubated at 37°C and monitored every 24 h and were scored as dead when
they were unresponsive to touch. Thirty larvae were used per strain, and these were infected in three
batches of 10 using replicate cultures.

Antimicrobial peptide resistance tests. Strains were grown overnight, subcultured, and grown to
an OD600 of 1.0. This culture (100 �l) was spread on the surface of an LB agar plate and dried, and an Etest
(bioMérieux) strip was placed on the surface of the plate. Plates were incubated face up at 37°C, and the
result was read after 6 h to avoid overgrowth of the capsule interfering with the reading.

RNA extraction and qRT-PCR. Bacteria were grown in LB medium at 37°C to an OD600 of 1.0.
Cultures were mixed with 2� volumes of RNAProtect reagent, centrifuged, and RNA extracted using a
MasterPure Complete DNA and RNA purification kit (Epicentre) according to the manufacturer’s instruc-
tions. Samples were then subjected to in-solution DNase I digestion (Qiagen) and cleaned up using a
Qiagen RNeasy minikit. Reverse transcription of 200 ng RNA was performed using ProtoScriptII enzyme
(NEB) per the supplied instructions.

Transcripts were quantified using a StepOne real-time PCR instrument with a Kapa SYBR FAST qPCR
kit. Relative abundances were determined using the relative standard curve method with K. pneumoniae
NTUH-K2044 gDNA as a standard and recA as the reference gene (77).

Accession number(s). Sequences generated during this study have been deposited into the
European Nucleotide Archive (ENA; http://www.ebi.ac.uk/ena) under study accession number
ERP105653.
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