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Abstract: Motor deficiencies constitute a significant problem affecting millions of people worldwide.
Such people suffer from a debility in daily functioning, which may lead to decreased and incoherence
in daily routines and deteriorate their quality of life (QoL). Thus, there is an essential need for
assistive systems to help those people achieve their daily actions and enhance their overall QoL.
This study proposes a novel brain–computer interface (BCI) system for assisting people with limb
motor disabilities in performing their daily life activities by using their brain signals to control assistive
devices. The extraction of useful features is vital for an efficient BCI system. Therefore, the proposed
system consists of a hybrid feature set that feeds into three machine-learning (ML) classifiers to
classify motor Imagery (MI) tasks. This hybrid feature selection (FS) system is practical, real-time,
and an efficient BCI with low computation cost. We investigate different combinations of channels
to select the combination that has the highest impact on performance. The results indicate that the
highest achieved accuracies using a support vector machine (SVM) classifier are 93.46% and 86.0%
for the BCI competition III–IVa dataset and the autocalibration and recurrent adaptation dataset,
respectively. These datasets are used to test the performance of the proposed BCI. Also, we verify
the effectiveness of the proposed BCI by comparing its performance with recent studies. We show
that the proposed system is accurate and efficient. Future work can apply the proposed system
to individuals with limb motor disabilities to assist them and test their capability to improve their
QoL. Moreover, the forthcoming work can examine the system’s performance in controlling assistive
devices such as wheelchairs or artificial limbs.

Keywords: brain–computer interface (BCI); motor Imagery (MI); electroencephalography (EEG);
wavelet packet decomposition (WPD); feature selection (FS)

1. Introduction

Motor deficits are a barrier for many paralyzed patients and people suffering from difficulty
in moving their limbs. There are several causes of motor impairments such as spinal cord injury,
a stroke of the motor cortex, neurodegeneration in the basal ganglia and cerebellum, or damage to the
associational motor cortex. Spinal cord injury is mutilation to the spinal cord that leads to short-term
or permanent alterations in its functions. Such alterations are developed deliberately in the sense of
continuing neuroplasticity that reveals the damage of afferent response from the separated limbs [1].
Stroke is the foremost reason for long-term adult debility. It disrupts the brain’s blood supply, leading to
an injury in brain tasks, specifically motor function. After a stroke, motor tasks’ impulsive response is
related to activity feedback in the primary motor cortex [2].

On the other hand, Basal ganglia disease is a collection of mental complications that arise when
the nuclei in the brain known as the basal ganglia defeat to restrain undesirable movements correctly
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or appropriately inform upper motor neurons circuits to recruit motor function [3]. Examples of Basal
ganglia disease are Parkinson and Dystonia diseases. The cerebellar illness leads to incoordination,
ineptness [4,5], and tremor as the cerebellum controls flattening and taming voluntary movements.
It does not lead to the loss of any sole task but, conversely, produces an overall motor reaction [6].
Injury in various areas of the association cortex can generate higher-level syndromes of behavior.
Apraxia is a condition of motor control that can happen after injury in the parietal association cortex,
premotor cortex, or supplementary motor cortex. There is no disability of patient muscles or limbs
in apraxia, and muscle power may not be reduced [7]. Motor deficiencies are affecting millions
of people worldwide [8]. People with such disabilities experience an encumbrance in performing
their daily functions. This dysfunction will decrease, and cease disable people’s daily routines
and affect their quality of life (QoL) [9]. The QoL for those people can benefit from intelligent
assistive technology that can enhance communication, house-environment arrangement, and motion,
according to the individual’s enduring motor capabilities [10,11]. Thus, intelligent assistive systems
such as brain–computer interface (BCI) are essential for helping those people achieve their daily actions
and enhance their overall QoL [9]. Such a BCI system can use these people’s brain signals to control
assistive devices to enable them to do their everyday tasks regardless of their motor disability.

BCI systems which are also known as the brain-machine interface (BMI) is a method used for
controlling or communicating between a patient brain’s electrical activity and an external device such
as a computer or robotic arm [11,12]. There are two ways to measure brain signals, namely invasive or
non-invasive methods. Although the invasive method is very accurate, it requires a surgical operation
to place the skull’s electrodes. On the other hand, the non-invasive approach is more comfortable
in implementation and does not require any surgical intervention as only electrodes are attached to
the scalp [13]. Among the non-invasive methods, electroencephalography (EEG) is a well-known
technique that captures brain activity. Its popularity is due to the simplicity of use, mobility, lower cost,
and high temporal resolution [14,15]. To produce an efficient and accurate BCI system capable of
performing an intended task such as moving a hand, a foot, or a control wheelchair, significant features
should be extracted from preprocessed EEG signals and then processed and analyzed. In BCI systems,
extracted features are usually of high dimension. Therefore, the feature extraction process [16] is vital to
pool out important information from EEG signals. Moreover, the features selection procedure is essential
to reduce computational time and select a reduced number of features. Moreover, channel reduction is
critical to lower the computational cost [17] further.

Motor imagery (MI) is when an individual internally imagine a part of his body is moving or
performing an action. [18–21]. It can also be described as locomotion’s intellectual practice without
any activation of the muscles [22]. This imagination of the motion produces a significant variation
in the µ and β frequency bands’ amplitude in an individual’s EEG, recognized by the BCI system.
This BCI system is beneficial for paralyzed people, as they are incapable of truly moving their limbs.
However, they have kept the capacity to conceive the motion of paralyzed limbs. In this form, the BCI
system can be used to control assistive devices such as prosthetic limbs [23]. Another sort of MI-based
BCI system is spinal cord injury rehabilitation. Such a BCI system is connected to powered exoskeletons
located on the paralyzed limbs. These exoskeletons use the EEG signal acquired during the MI task,
which activates brain regions to enable individuals to move [23,24]. Several studies indicated the
positive impact of BCI systems on the rehabilitation process [25,26]. EEG signals acquired during
MI tasks are commonly used to constructed assistive BCI systems. A BCI system based on MI aims
to get distinct EEG signals by imagining specific motor activities, which are then converted into
actions [27,28]. Several BCI schemes based on MI have been proposed to help people with different
motor disabilities attain a normal lifestyle [29,30]. Among these schemes, the studies [31,32] indicated
that MI-based-EEG signals operated in BCI systems effectively treat patients with spinal cord injury.
Also, the articles [22,33,34] verified that MI has a constructive influence on motor rehabilitation after
stroke. Since the execution of MI is interior to the patient, and therefore not directly noticeable,
BCI can ease the MI-based stroke rehabilitation by providing a straight and instant response on the



Brain Sci. 2020, 10, 864 3 of 25

MI performance [22]. Moreover, the authors in [35] proved that MI could activate neuroplasticity in
ipsilesional motor cortical areas despite acute paralysis after stroke.

The authors in [28] introduced a system that allowed paralyzed patients to control wheelchairs
by imagining the right and left hands and feet’ movement. The authors first used surface Laplacian
derivation (SLD) for spatial filtering. Then they used the Mahalanobis linear distance (MLD) classifier
for classification. The authors in [36] proposed a BCI system to help the paralyzed patients control
artificial limbs. In [37], the authors designed a BCI system to control a real-time wheelchair. The authors
in [38] built a BCI system that successfully integrates a wheelchair with artificial limbs. They used the
common spatial patterns (CSP) method to extract features and an SVM classifier. Although the system
proposed in [38] was built to perform an everyday task, no feature selection was used to reduce the
execution time. Edla et al. [39] proposed a system to control wheelchairs based on wavelet packet
decomposition (WPD). Another approach was suggested by Roy et al. [40] to control artificial limbs.
The authors in [41] proposed a system depending on spatial-frequency temporal domains to extract
new informative features. The classification process was done using a sparse representation classifier
(SRC). The BCI competition III–IVa dataset [42] was used later by Singh et al. [43] who proposed a BCI
system that is not patient dependent. The authors of this study applied a spatial filter to reduce the
data dimension.

Then using known channels, they extracted information features using the symmetric positive
definite (SPD) method. Selim et al. [44] extracted features using CSP. Moreover, the authors proposed
a novel feature selection model that reduces the number of extracted features. Also, they applied
segmentation to remove epochs during resting time. In [45], Yuan et al. used frequency domain features
by applying the Fourier transform (FT) for MI-based BCI. The authors in [46] extracted features using a
time domain, including the root mean square (RMS) method. The authors compared the performance
of the proposed system with different channel sets. A summary of recent related BCI systems is shown
in Table 1.

This study proposes a novel efficient BCI system based on MI to differentiate between different
limb motor tasks. Another goal is the make the system easier to set up. To achieve these goals,
we proposed a novel system to investigate a different combination of channel sets previously used in
the literature instead of using the whole number of channels available in the dataset. These channels
sets were used separately in different research articles and were verified to produce efficient results.
However, we examined which set has the highest performance using the hybrid feature set proposed
in the paper. Second, to further reduce the number of channels, we proposed a hybrid feature selection
approach that selects the most significant features that impact the BCI performance. These reduced
selected features will consequently reduce the number of channels. The performance of the proposed
BCI to classify MI tasks with high accuracy is tested. The possibility of reducing the number of features
and channels while improving classification accuracy is also examined. The system may be considered
an initial step for achieving a complete real-life–based framework to assist people with motor disability.
The proposed BCI uses such people’s EEG signals to control assistive devices such as wheelchairs or
wheelchairs regardless of their motor deficiency. To overcome the challenges from previous studies
that used either time, frequency, or time-frequency feature extraction methods, the proposed system
introduces a hybrid feature extraction used to classify MI tasks. Also, to reduce the computational
cost of the BCI system, which was overlooked in previous studies, we present a feature selection
procedure to determine the most significant features that are capable of differentiating between right
hand and foot motor imagery tasks based on the µ frequency range (8–13 Hz) and β frequency range
(13–30 Hz) of EEG signals [47]. Also, different combinations of channels are investigated to select
the combination, which has the highest impact on the proposed BCI system’s performance. Finally,
three machine-learning classifiers are used to translate human brain EEG signals to commands or
actions. To test the proposed BCI system’s efficacy, two public datasets are used, specifically, the BCI
competition III–IVa dataset and the autocalibration and recurrent adaptation dataset.
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Table 1. Literature review of current BCI systems.

Article Application Feature Extraction Classifier Disadvantages Accuracy (%)

[27] Limb Motor Task Spatial-frequency-temporal
patterns SRC High computational cost 75.46

[46] Limb Motor Task RMS LDA
Time-domain features

not suitable for analysis
EEG datasets

78.77

[38] Integrate a wheelchair and an
artificial limb CSP SVM

CSP suffers from
degradation in

performance in case of
non-Gaussian
distributions

80

[44] Limb Motor Task CSP SVM Required high input
channels 85.01

[29] Limb Motor Task CSP MDRM Required high input
channels 86.13

[40] Control an artificial limb DWT 1 LDA QDA
KNN

DWT gives lower
frequency resolution

than WPD
86.9

[36] Control artificial limb by
paralyzed patients HOS 2 + DWT LDA

DWT gives lower
frequency resolution

than WPD
89.5

[39] control wheelchairs WPD SVM High computational cost 90.698

[45] Limb Motor Task FT MNFD FT not suitable for
analysis of EEG data 90.89

[28] Limb Motor Task CSP/CSP + AR 3 LDA

Patient dependent and
cannot be generalized on

all patients in any
dataset

[23] Real-time wheelchair control FFT 4 FNN FFT not suitable for
analysis EEG dataset 92.0

[48] Limb Motor Task DWT + WPD KNN KNN suffers from the
curse of dimensionality 92.8

[28] 2-D virtual wheelchair control SLD MLD
Spatial filters such as

SLD may destroy
features‘ information

98.4

1 DWT is the discrete wavelet transform, 2 HOS is higher-order statistics, 3 AR is autoregression, 4 FFT is the fast
Fourier transform.

This paper’s remainder is organized as follows: In Section 2, we describe the two datasets used
and provide details for the proposed BCI model. In Section 3, we present the performance evaluation
metrics, and we demonstrate the results in Section 4. In Section 5, we discuss the significance of
the proposed FS on the proposed BCI’s computational cost and compare the proposed BCI system’s
performance with previous studies. Finally, we provide some conclusive remarks for this study
in Section 6.

2. Materials and Methods

2.1. Datasets

We used two publicly available datasets to test the effectiveness of the proposed BCI system.
These datasets contain EEG signals collected during MI tasks. The two datasets are the BCI competition
III–IVa dataset [42] and the autocalibration and recurrent adaptation dataset [49]. Details for these
datasets are included in Appendices A and B, respectively.

2.2. The Proposed BCI System

This study proposes a novel BCI system based on MI to classify different limb motor tasks.
The proposed system’s key objective is to construct a portable and easy to set up EEG-BCI based on
motor-imagery training neuro-feedback system to classify motor-imagery tasks in real time with high
accuracy. The proposed system can be supposed as a primary stage for attaining an entire real-life-based
framework to assist individuals with motor debility. The proposed BCI system consists of the following
steps: signal preprocessing, feature extraction, feature selection, and finally, classifying features.
These steps are presented in Figure 1.
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2.2.1. Preprocessing

Noise removal is necessary for EEG. Preprocessing is used to enhance noisy signals and remove
artifacts. Sources of noise and artifacts may include power-line interference, electrocardiography (ECG),
electromyography (EMG), electrooculogram (EOG), and individuals’ movements [14,50]. In this study,
the preprocessing phase is divided into four steps. In the first step, a bandpass filter is used. The two
EEG frequency sub-bands (µ andβ rhythms) are extracted from the EEG signals by cutting the frequency
from 10 Hz to 30 Hz and removing all the remaining range. The bandpass filter is implemented using a
5th order Butterworth finite impulse response (FIR) filter. Afterwards, the input signal is normalized to
remove the absolute amplitude and keep the relative amplitudes. Normalization significantly reduces
the channel dispersion in comparison with non-normalized recordings. Both datasets are normalized
using Equation (1).

zi =
wi −w
δ

(1)

where zi is the normalized EEG signal, wi is the original EEG signal, w and δ are the mean and standard
deviation, respectively.

In the third step, a notch filter is applied to eject the power-line interference at 60 Hz from the
BCI competition III–IVa dataset’s EEG signals. Please note that a notch filter was already applied
to the autocalibration and recurrent adaptation dataset according to that dataset’s owners. Lastly,
in the fourth step, EEG signals are segmented to extract the epochs with windows from [0.5 to 3.5] s
duration for the BCI competition III–IVa dataset and from [3 to 8] s duration for the autocalibration
and recurrent adaptation dataset.

2.2.2. Feature Extraction

One of the challenges in any BCI system is to extract the most representative features capable of
distinguishing between different MI tasks from the processed EEG signals. Motor activities are then
translated into real actions. Useful features lead to an accurate BCI system; therefore, we present two
feature sets in this study. The former is extracted in the time domain, whereas. The second is extracted
in the time-frequency domain. Afterwards, the two feature sets are combined to form a hybrid feature
set to test feature fusion’s influence on the proposed BCI [51]. The details of feature extraction methods
are presented in this section.



Brain Sci. 2020, 10, 864 6 of 25

(1) Feature extraction in the time domain (Feature Set 1)

Time-domain features are directly extracted from the processed signal. In this study, six features
are extracted in the time domain, including RMS, Renyi entropy, and Hjorth parameters, including the
following parameters: (activity, mobility, complexity), wavelength, and mean absolute value.

i. Root Mean Square

RMS is the square root of the average of the signal’s squared value in the time domain and can be
represented with the following equation [46].

RMS =

√√√√
1
M

M∑
j = 1

y j2 (2)

ii. Renyi Entropy

Renyi uses brain activity to identify the complexity of time series. Then, the disorder in the BCI
system, as illustrated in the following equation [46]:

Renyi = log

∑M
j = 1 y j

q

1− q
(3)

iii. The Hjorth parameter [52]

The Hjorth parameters include the complexity and mobility parameters.

mobility =

√√√√√√var
(
y′j

)
var

(
y j

) (4)

Complexity =
mobility

(
y′j

)
mobility

(
y j

) (5)

iv. The waveform length [53]

Waveform length (WL) measures the signal complexity

WL =
M∑
j

∣∣∣y j − y j−1
∣∣∣ (6)

v. The mean absolute value [48]

µ =
1
M

M∑
j = 1

∣∣∣y j
∣∣∣ (7)

where M is the number of samples in each sub-band, y j{yj = 1, yj = 2, . . . , yj = M} are the samples in the

time domain, and the ‘q’ parameter controls the shape of the probability distribution, var
(
y′j

)
is the

variance of the first derivative of the signal sample yj, var
(
y j

)
is the variance of the signal sample yj,

y j and y j−1 are the current and previous samples in the time domain,mobility
(
y′j

)
is the mobility of

the first derivative of the signal sample yj, mobility
(
y j

)
is the mobility the signal sample yj,

∣∣∣y j
∣∣∣ is the

absolute value of the sample yj.
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(2) Feature extraction in the time-frequency domain (Feature Set 2)

FT and linear models have been commonly used to analyze the EEG signals; however, the analysis
using time-frequency models achieved remarkable success over FT [54–56]. Among the various wavelet
transform (WT) methods, the discrete wavelet transform technique (DWT) decomposes the signal in
the time-frequency domain to approximation coefficients, representing the low pass filter and the detail
coefficients, which represent the high pass filter. For multi-stage decomposition, only the approximate
components are further decomposed, followed by down-sampling by 2. On the other hand, the WPD
is an improvement or extension to the DWT. For multi-level decomposition, WPD decomposes both
the approximation (lowpass) and detail (highpass) [57]. WPD produces 2 j sets of wavelet coefficients
and gives a better time-frequency resolution for the decomposed signal more than the DWT [58].

In this study, four levels of WPD are used to decompose signals and then four different features
are extracted from the decomposed signals. In addition to two HOS features [48].

i. The absolute mean of coefficients in each sub-band (µ)

µ =
1
N

N∑
i = 1

|xi| (8)

ii. The average power of coefficients in each sub-band (Pav)

Pav =

√√√
1
N

N∑
i = 1

xi2 (9)

iii. The standard deviation of the coefficients in each sub-band (σ)

σ =
1
N

N∑
i = 1

(xi − µ)
2 (10)

iv. The ratio of the absolute mean values of coefficients of adjacent sub-bands (γ)

γ =
1
N

∑N
i = 1|xi|

1
N

∑N
i = 1|zi|

(11)

v. The Skewness of the coefficients (signal) in each sub-band (S)

S =
1
N

N∑
i = 1

(xi − µ)
3

σ3 (12)

vi. The Kurtosis of the coefficients (signal) in each sub-band (K)

K =
1
N

N∑
i = 1

(xi − µ)
4

σ4
(13)

where N is the cue’s length in each sub-band, and X{x1, x2, . . . xN} and Z{z1, z2, . . . , zN} are two adjacent
sub-bands after WPD.

Finally, the two feature sets are combined and used to test the impact of the feature fusion process
on the proposed BCI system’s performance.
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2.2.3. Feature Selection

The hybrid feature set extracted in the feature extraction stage is of large dimension. Such a
large dimension increases the BCI system’s classification step’s complexity and usually reduces its
performance. Therefore, feature selection (FS) is essential. FS is commonly used in medical systems
to decrease the feature set’s size and omit excessive and irrelevant features [59]. Feature selection is
divided into three main categories which are: filter, wrapper, embedded, and hybrid. The filter FS
method is the easiest and quickest method. Filter FS employs a metric for selecting features. The main
drawback of such a technique is the independence of the classification process.

On the other hand, the wrapper FS is dependent on the classification procedure, but it is more
complicated and slower than the previous filter method. In the embedded method, the FS process is
inserted within the classifier structure. The embedded FS technique comprises the interface within
the classification process. It requires less execution time than the wrapper FS method. Finally,
the hybrid method fuses two or more of the previous FS methods, which usually enhances the BCI
system’s performance.

For this reason, we use a hybrid feature selection method in this study, where filters and wrappers
methods are combined. Most significant features are selected at the beginning of the available feature
set via the computationally efficient Correlation-based Feature Selection (CFS) filter method [60].
For more refinement, the classifier subset evaluator wrapper method [51], which includes SVM, LDA,
and KNN classifiers, is used to select significant features. We applied a method where the filters and
wrappers are merged to select the most notable features among the ranked features.

Correlation-based Feature Selection (CFS) is a well-known filter FS method which measures the
similarity between two features. If two features are correlated, the correlations coefficients value will
be between (−1 to 1), and if the two features are not correlated, they will have a correlation coefficient
near 0. Classifier Subset Evaluation (CSE) is one of the most commonly known wrapper feature
selection methods. It uses a classifier to estimate the ‘merit’ of a set of attributes. This feature subset is
used to train a classifier, and the accuracy of that classifier determines its effectiveness. The classifier
subset evaluator avoids overfitting by using cross-validation measures of predictive accuracy. In this
study, a forward stepwise searching strategy method is used where the model starts with no features,
then iteratively adds features that improve the model performance. Once additional features no longer
improve the classification accuracy, the CSE method will not add any more features to the subset [61].

2.2.4. Classification

All feature combinations on the classification accuracy are tested on three different classifiers,
specifically, SVM, LDA, and KNN. Although every subject in the dataset contains separate train and test
sets, they are combined into one dataset due to the low number of trials. A 10-fold cross-validation (CV)
approach is employed to validate the results where the dataset is randomly split into ten different sets
with equal sizes. The ten groups consist of nine training sets and one testing set. The model is trained
using the nine different training sets and tested using the testing set every round. The classification
accuracy (CA) of the testing set is then calculated. This process is repeated ten times, and the
average accuracy of all rounds are calculated. In this study, a linear kernel was used for the SVM
classifier. For the k-NN, the Euclidean distance was used. The three classifiers used in this study were
implemented in MATLAB using the X, Y, Z libraries/packages versions X, Y, Z [50,62,63].

3. Performance Evaluation

Numerous metrics are used to assess the performance of the proposed BCI system. These metrics
are the CA, sensitivity, specificity, F1-score, precision, and receiver operating characteristic curve
(ROC) [14]. Equations (14)–(18) are used to calculate these metrics.



Brain Sci. 2020, 10, 864 9 of 25

Accuracy is an evaluation metric used to determine how the entire data classifier has correctly
classified many motor tasks. Therefore, it specifies the capability of the classifier to execute well.

Accuracy =
TP + TN

TP + TN + FP + FN
(14)

Sensitivity =
TP

TP + FN
(15)

Specificity =
TN

TN + FP
(16)

where TP, FN, TN, and FP represent the true positive, false negative, true negative, and false-positive
rates, respectively.

Precision is calculated as the ratio of correctly predicted positive examples divided by the
summation of true positive and false-positive predictions.

Precision =
TP

TP + FP
(17)

The F1-score is calculated to evaluate the system performance. Classification accuracy is commonly
used as it is a single measure used to summarize model accomplishment. F-Measure provides a way to
combine both precisions and recall into a single measure and captures both properties.

F1− Score =
(2× Precision×Recall)

Precision + Recall
(18)

The area under the receiver operating characteristic curve (AUC) is a method for evaluating
models based on each point’s average on the ROC curve. The ROC curve is a plot of the true positive
rate against the false-positive rate. The AUC is the area under this curve, and its value is always between
0 and 1. For a given classifier, a higher AUC value indicates a better classifier performance.

4. Experimental Results

This study aims to construct an effective BCI system based on MI to distinguish amid several
limb motor tasks. Moreover, develop a portable and affordable EEG-BCI based on MI training
neuro-feedback system to classify motor-imagery tasks in real time with high accuracy. The presented
BCI system could be deemed a former phase for accomplishing a comprehensive real-life–based
framework to help people with motor deficiencies. To achieve this goal, we present a new BCI system
that consists of four experiments. Reducing the number of EEG channels used in MI tasks classification
would make the BCI system more mobile and easier to set up, and maintain a real-time EEG-based
BCI system. Therefore, the four experiments for the proposed BCI system are carried out on different
combinations of channel sets to determine the significance of channel reduction and select the channel
set, which has a higher impact on the BCI system’s performance. For the BCI competition III–IVa
dataset, the full set of channels is 118 channels. Three combinations of channel sets are used. The first
channel set includes the C3, Cz, and C4 channels suggested by S. Selim et al. in [35] and is known as
“Channel set 1 BCI III”. The second channel set contains 18 electrodes around the sensorimotor cortex
in the β frequency range, including the channels “C5, C3, C1, C2, C4, C6, CP5, CP3, CP1, CP2, CP4,
CP6, P5, P3, P1, P2, P4, and P6” and it was suggested by Wang et al. [64] and known as “Channel
set 2 BCI III”. In addition, finally, the third channel set further, which includes the 25 channels on
the parietal lobe that was suggested in [35] and named “Channel set 3 BCI III”. On the other hand,
for the autocalibration and recurrent adaptation dataset, two-channel sets were suggested. The first
channel set consists of 13 channels, including C3 (FC3, C5, CP3, and C1), Cz (FCz, C1, CPz, and C2)
and C4 (FC4, C2, CP4, and C6) and is named “Channel set 1 Auto”. The second channel set consists of
3 channels, C3, Cz and C4 and are called “Channel set 2 Auto”.
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Figure 2 illustrates the four experiments conducted in this study that are constructed with different
channel sets. The four experiments are summarized as follows:

Experiment 1—six time-domain features are extracted and used for classifying MI tasks.
Experiment 2—six time-frequency features are extracted and used for classifying MI tasks.
Experiment 3— a hybrid feature set is used for classifying MI tasks.
Experiment 4—a hybrid FS is employed to select the most relevant features and classify MI tasks.
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4.1. Experiment 1—Time-Domain Features (Feature Set 1)

The results of Experiment 1 are discussed in this section for BCI competition III–IVa and
autocalibration and recurrent adaptation datasets.

4.1.1. BCI Competition III–IVa Dataset Results

This section covers the effect of using only time-domain features on the classification of mental
motor-imagery tasks using the BCI competition III–IVa dataset. Figure 3 shows the mean classification
accuracies for the five subjects of the dataset using SVM, LDA, and KNN classifiers constructed with
the three-channel sets. Figure 3 can clearly show the superiority of the channel set 3 BCI (25 channels)
set over the two other electrodes sets. This is because the SVM classifiers achieved mean accuracies
of 79.78% and 84.22% using the channel set 1 BCI (3 channels) and channel set 2 BCI (18 channels),
respectively, which are lower than the mean CA of 86.3% achieved by the SVM classifier constructed
using the channel set 3 BCI. The LDA and KNN classifiers constructed with channel set 1 BCI attained
77.54% and 78.64%, respectively. However, when using the SVM classifier, a mean accuracy of 79.78%
is reached. Mean accuracy of 81.4% and 83.92% is obtained using the LDA and KNN classifiers
constructed with channel set 2 BCI, whereas using the SVM classifier, an accuracy of 86.3% is reached.
On the other hand, the KNN classifier constructed with channel set 3 BCI (25 channels) reached a mean
CA of 84.46%, which is lower than the SVM (86.3%) constructed with the same channel set. The results
of Experiment 1 show that the highest mean accuracy is achieved with the SVM classifier (86.3%) built
with channel set 3 BCI (25 channels).
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Figure 3. Experiment 1—Time-domain features—Classification Accuracies of BCI competition
III–IVa dataset.

4.1.2. Autocalibration and Recurrent Adaptation Dataset Results

The results of Experiment 1 for the autocalibration and recurrent adaptation dataset are shown in
Figure 4. This figure shows a comparison between SVM, LDA, and KNN classifiers using the channel
set 2 Auto (3 channels) and channel set 1 Auto (13 channels). It is evident from Figure 4 that the
SVM classifier shows a remarkable success over the other two classifiers. It is clear that the mean CA
(82.23%) for all subjects for SVM constructed using the channel set 1 Auto (13 channels) is higher than
that of the SVM (80.93%) constructed using the channel set 2 Auto (13 channels).

Brain Sci. 2020, 10, x FOR PEER REVIEW 11 of 25 

 
Figure 3. Experiment 1—Time-domain features—Classification Accuracies of BCI competition III–IVa 
dataset. 

4.1.2. Autocalibration and Recurrent Adaptation Dataset Results 

The results of Experiment 1 for the autocalibration and recurrent adaptation dataset are shown 
in Figure 4. This figure shows a comparison between SVM, LDA, and KNN classifiers using the 
channel set 2 Auto (3 channels) and channel set 1 Auto (13 channels). It is evident from Figure 4 that 
the SVM classifier shows a remarkable success over the other two classifiers. It is clear that the mean 
CA (82.23%) for all subjects for SVM constructed using the channel set 1 Auto (13 channels) is higher 
than that of the SVM (80.93%) constructed using the channel set 2 Auto (13 channels). 

 
Figure 4. Experiment 1—Time-domain features—Classification Accuracies (%) autocalibration and 
recurrent adaptation dataset. 

4.2. Experiment 2—Time-Frequency Domain Features (Feature Set 2) 

4.2.1. BCI Competition III–IVa Dataset Results 

This section discusses the results of Experiment 2 on the BCI competition III–IVa dataset. Figure 
5 shows the CA results for SVM, LDA, and KNN classifiers constructed using the three different 
channel sets’ time-frequency features. Figure 5 shows that the SVM classifier achieved the highest 
mean CA among classifiers. The mean CA using SVM constructed with channel set 1 BCI (3 channels) 
is 81.86%. However, channel set 2 (18 channels) achieved a mean CA of 90.34% 12, which is higher 

79.78

84.22
86.3

77.54

81.4

84.28

78.64

83.92 84.46

72
74
76
78
80
82
84
86
88

Channel Set 1 - BCI Channel Set 2 - BCI Channel Set 3 - BCI

Ac
cu

ra
cy

 (%
)

SVM LDA KNN

82.23

80.93

79.51

77.54

80.94

79.84

75

76

77

78

79

80

81

82

83

Channel Set 1 Auto Channel Set 2 Auto

Ac
cu

ra
cy

 (%
)

SVM LDA KNN

Figure 4. Experiment 1—Time-domain features—Classification Accuracies (%) autocalibration and
recurrent adaptation dataset.

4.2. Experiment 2—Time-Frequency Domain Features (Feature Set 2)

4.2.1. BCI Competition III–IVa Dataset Results

This section discusses the results of Experiment 2 on the BCI competition III–IVa dataset.
Figure 5 shows the CA results for SVM, LDA, and KNN classifiers constructed using the three
different channel sets’ time-frequency features. Figure 5 shows that the SVM classifier achieved the
highest mean CA among classifiers. The mean CA using SVM constructed with channel set 1 BCI
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(3 channels) is 81.86%. However, channel set 2 (18 channels) achieved a mean CA of 90.34% 12,
which is higher than the mean CA (89.28%) performed using the channel set 3 BCI (25 channels)
and with 13 channel set 1 BCI (3 channels). It is clear from Figure 5 that the time-frequency features
have increased the CA of the three classifiers for the three combinations of channel sets compared to
Experiment 1 results (see Figure 3). Although the performance of the proposed BCI system constructed
with time features has shown the highest CA of 86.3% (Experiment 1) when applying the channel set
3 BCI (25 channels set), the time-frequency features (Experiment 2) enhanced the CA. The highest CA
of 90.4% is achieved with channel set 2 BCI (18 channels), both using an SVM classifier.
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Figure 5. Experiment 2—Time-Frequency domain—Classification Accuracies—BCI competition
III–IVa dataset.

4.2.2. Autocalibration and Recurrent Adaptation Dataset Results

The results of Experiment 2 for the autocalibration and recurrent adaptation dataset are shown in
Figure 6. This figure shows a comparison between SVM, LDA, and KNN classifiers using the channel
set 2 Auto (3 channels) and channel set 1 Auto (13 channels). SVM classifier shows the highest mean
CA for all subjects. SVM classifier achieved a mean CA of (83.56%) for all subjects using the channel
set 1 Auto (13 channels), which is higher than that of the SVM (82.06%) constructed using the channel
set 2 Auto (3 channels).
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Figure 6. Experiment 2—The Time-Frequency domain features’ classification accuracies for the
autocalibration and recurrent adaptation dataset.
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4.3. Experiment 3—Hybrid Features

4.3.1. BCI Competition III–IVa Dataset Results

The results of the hybrid feature set for the BCI competition III–IVa dataset are shown in Figure 7.
The mean CA for channel set 2 BCI (18 channels) outperforms the other channels’ accuracy for the
three classifiers. Channel set 1 BCI (3 channels) showed the lowest performance with mean CA
range (80.3–83.22%), whereas channel set 2 BCI (18 channels) showed the highest mean CA range
(84.5–91.72%). The SVM classifier achieved the most elevated mean CA for the three-channel sets
configurations. In contrast, the LDA classifier yielded the worst classification accuracy results among
the three classifiers. The highest mean CA of 91.72% is achieved using an SVM classifier constructed
with channel 2 BCI (18 channels).
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Figure 7. Experiment 3—The Hybrid features’ classification accuracies for BCI competition
III–IVa dataset.

Once a model is constructed, it is crucial to decide whether it is adequate to make robust
predictions. CA alone is typically not enough metric to make this decision. Therefore, sensitivity,
specificity, precision, F 1-score, and area under ROC curve (AUC) have been calculated for all subjects
to give a clear and accurate evaluation of the proposed system and are shown in Table 2. All the
mentioned parameters have been measured for SVM classifiers constructed with hybrid features of
channel set 2 BCI (18 channels) as it showed the highest performance in Table 2. Subject “al” achieved
the most heightened sensitivity, specificity, and precision. The highest F1-score and AUC of 0.989 and 1
were performed by subject “al,” as well.

Table 2. Experiment 3—Hybrid features—Performance metrics for SVM classifier with channel set 2
(18 channels) for BCI competition III–IVa dataset.

Subjects “aa” “al” “av” “aw” “ay” Mean (SD)

Sensitivity 0.907 1.00 0.736 0.964 0.921 0.9056 (0.091)
Specificity 0.893 0.979 0.693 0.964 0.914 0.8886 (0.097)
Precision 0.894 0.979 0.705 0.964 0.915 0.8914(0.098)
F1-score 0.901 0.989 0.720 0.964 0.918 0.8984(0.095)

AUC 0.930 1.00 0.830 1.00 0.980 0.948(0.064)

4.3.2. Autocalibration and Recurrent Adaptation Dataset Results

In this section, the results are presented and discussed for the autocalibration and recurrent
adaptation dataset. Figure 8 shows a comparison between CAs of SVM, LDA, and KNN for the
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two-channel sets. Channel set 1 Auto includes 13 channels, whereas channel set 2 consists of 3 channels.
Each subject performed two or three runs. Figure 8 indicates that the SVM classifier has superior
performance with CA ranging from 82.76%–85%, which is higher than that of the K-NN (81.79%–84.57%),
as well as the LDA (81.48%–83.96%).

Brain Sci. 2020, 10, x FOR PEER REVIEW 14 of 25 

channel sets. Channel set 1 Auto includes 13 channels, whereas channel set 2 consists of 3 channels. 
Each subject performed two or three runs. Figure 8 indicates that the SVM classifier has superior 
performance with CA ranging from 82.76%—85%, which is higher than that of the K-NN (81.79%—
84.57%), as well as the LDA (81.48%—83.96%). 

The sensitivity, specificity, precision, F1-score, and area under the ROC curve (AUC) metrics are 
calculated for all subjects to give a clear and accurate evaluation of the proposed system (Table 3). 
These metrics have been measured for SVM classifiers constructed using hybrid features of channel 
set 1 Auto (13 channels) since it showed the highest performance (Figure 8). It is evident that the first 
subject’s first-run “S01A” yielded the most heightened sensitivity, specificity, precision, and F1-score. 
The AUC for all subjects’ runs was equal. 

 
Figure 8. Experiment 3—Hybrid features—Classification Accuracies for the autocalibration and 
recurrent adaptation dataset. 

Table 3. Experiment 3—Hybrid features—Performance metrics for SVM classifier with channel set 1 
Auto (13 channels) for the autocalibration and recurrent adaptation dataset. 

Subjects “S01” “S02” “S03” Mean (SD) 
Runs S01A S01B S02A S02B S03A S03B  

Sensitivity 0.936 0.914 0.879 0.879 0.871 0.871 0.892 (0.025) 
Specificity 0.929 0.900 0.864 0.864 0.864 0.871 0.882 (0.024) 
Precision 0.929 0.901 0.866 0.866 0.865 0.871 0.883 (0.024) 
F1-Score 0.918 0.900 0.864 0.864 0.852 0.871 0.878 (0.023) 

ROC Area 0.99 0.99 0.99 0.99 0.99 0.99 0.99 (0) 

4.4. Experiment 4—Feature Selection for Hybrid Features 

4.4.1. BCI Competition III–IVa Dataset Results 

This section covers using the introduced FS on the proposed BCI system’s performance using 
the BCI competition III–IVa dataset. Table 4 shows the CA and the mean CA for the five subjects of 
the dataset using SVM, LDA, and KNN classifiers constructed using the channel set 2 BCI (18 
channels) since this channel set achieved the highest performance in Experiment 3. 
  

82.7

85

81.48

83.96

81.97

84.57

79

80

81

82

83

84

85

86

Channel Set 1 Channel Set 2

Ac
cu

ra
cy

 (%
)

SVM LDA KNN

Figure 8. Experiment 3—Hybrid features—Classification Accuracies for the autocalibration and
recurrent adaptation dataset.

The sensitivity, specificity, precision, F1-score, and area under the ROC curve (AUC) metrics are
calculated for all subjects to give a clear and accurate evaluation of the proposed system (Table 3).
These metrics have been measured for SVM classifiers constructed using hybrid features of channel set
1 Auto (13 channels) since it showed the highest performance (Figure 8). It is evident that the first
subject’s first-run “S01A” yielded the most heightened sensitivity, specificity, precision, and F1-score.
The AUC for all subjects’ runs was equal.

Table 3. Experiment 3—Hybrid features—Performance metrics for SVM classifier with channel set
1 Auto (13 channels) for the autocalibration and recurrent adaptation dataset.

Subjects “S01” “S02” “S03” Mean (SD)

Runs S01A S01B S02A S02B S03A S03B

Sensitivity 0.936 0.914 0.879 0.879 0.871 0.871 0.892 (0.025)
Specificity 0.929 0.900 0.864 0.864 0.864 0.871 0.882 (0.024)
Precision 0.929 0.901 0.866 0.866 0.865 0.871 0.883 (0.024)
F1-Score 0.918 0.900 0.864 0.864 0.852 0.871 0.878 (0.023)

ROC Area 0.99 0.99 0.99 0.99 0.99 0.99 0.99 (0)

4.4. Experiment 4—Feature Selection for Hybrid Features

4.4.1. BCI Competition III–IVa Dataset Results

This section covers using the introduced FS on the proposed BCI system’s performance using the
BCI competition III–IVa dataset. Table 4 shows the CA and the mean CA for the five subjects of the
dataset using SVM, LDA, and KNN classifiers constructed using the channel set 2 BCI (18 channels)
since this channel set achieved the highest performance in Experiment 3.
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Table 4. Experiment 4—The Hybrid Feature Selection using the channel set 2 BCI (18 channels) for the
BCI competition III–IVa dataset.

Subjects aa al av aw ay CA SD

Linear-SVM 92.2 99.4 79.9 98.9 97.0 93.46 8.1
LDA 83.93 97.15 71.93 93.22 87.4 86.73 9.72

K-NN 82.1 98.6 74.3 96.4 92.1 88.7 10.24

In Table 4, we compare the performances of the three classifiers after applying the presented FS
technique. We show that FS improves the CA from 91.72% (the highest CA achieved in Experiment
3) to 93.46% using Linear-SVM, as shown in Table 4 (an improvement of 1.74%). Also, for LDA and
K-NN classifiers, the CAs have improved by 2.23% and 3.12%, respectively.

Figure 9 shows the CA for Experiment 4 using the SVM classifier constructed with hybrid features
using the channel set 2 BCI (18 channels), which showed its superiority in Experiment 3. In this figure,
we compare the subject CA before and after applying FS. The average CA increased from 91.72% to
93.56% using the channel set 2 BCI (18 channels).
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Figure 9. Experiment 4—The Hybrid Feature Selection using the SVM classifier constructed using the
channel set 2 BCI. for the BCI competition III–IVa dataset.

In Table 5, we show the performance metrics for the SVM classifier constructed with the selected
features of the hybrid feature set using the channel set 2 BCI (18 channels) for the BCI competition
III–IVa dataset. The proposed FS has enhanced sensitivity, specificity, precision, F1-score, and AUC.
For example, sensitivity for subject “aa” has increased from 0.907 to 0.914, and the specificity has
increased from 0.893 to 0.907 after feature selection. On the other hand, the precision and F1-score for
subject “av” have risen from 0.705 and 0.720 to 0.780 and 0.783, respectively.
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Table 5. Experiment 4—The Hybrid Feature Selection’ performance metrics of the SVM classifier
constructed with the channel set 2 BCI (18 channels) for the BCI competition III–IVa dataset.

Subjects “aa” “al” “av” “aw” “ay” Mean (SD)

Sensitivity 0.914 1.00 0.786 0.993 0.950 0.9286 (0.0778)
Specificity 0.907 0.986 0.779 0.993 0.935 0.92 (0.0774)
Precision 0.901 0.986 0.780 0.993 0.937 0.9194 (0.0774)

F-Measure 0.931 0.993 0.783 0.993 0.937 0.9274(0.0769)
ROC Area 0.933 0.993 0.782 0.993 0.943 0.9288(0.7747)

4.4.2. Autocalibration and Recurrent Adaptation Dataset Results

This section describes the effect of using the introduced FS on the proposed BCI system’s
performance using the autocalibration and recurrent adaptation dataset. Table 6 shows the CA and the
mean CA for the 12 subjects of the dataset using SVM, LDA, and KNN classifiers constructed with the
channel set 1 Auto (13 channels). This channel set achieved the highest performance in Experiment
3. Table 6 shows that the mean CA for all subject using SVM classifier reached 86.41% instead of
85.0% without FS (Experiment 3). The bold values in Table 6 represent the highest CA achieved using
the SVM classifier for each subject individually and all subjects. The SVM classifier showed better
performance for all subjects except for subject S01. S01 had an average CA of 99.5% when using K-NN
and 99.25% for the Linear-SVM. In Figure 10, we compare using the hybrid features extracted from
the channel set 1 Auto before and after applying feature selection techniques using the SVM classifier.
The results emphasize the importance of applying feature selection on each subject. After applying
feature selection, CA has increased for all subjects. The mean CA has increased from 85 to 86.41%
using the channel set 1 Auto.
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Table 6. Experiment 4—The Hybrid Feature Selection CA using the Channel Set 1 Auto (13 channels) for the autocalibration and recurrent adaptation dataset.

Classifier Runs S01 S02 S03 S04 S05 S06 S07 S08 S09 S10 S11 S12 CA (SD)

SVM
1st 99.0 97.0 97.0 90.0 94.5 77.0 89.0 66.5 94.0 81.0 92.0 64.5
2nd 99.5 97.5 96.0 92.0 87.5 83.0 95.0 75.0 88.0 70.0 75.0 66.5
3rd – – – — – – – 81.0 96.0 71.5 81.5 –

Mean for each subject 99.25 97.25 96.5 91.0 91.0 80.0 92.0 74.17 92.7 74.7 82.83 65.5 86.41 (10.31)

LDA
1st 99.0 96.5 96.5 88.0 94.0 76.5 88.5 65.5 91.5 80.5 90.0 63.5
2nd 99.5 96.5 95.0 93.0 85.0 81.5 94.0 75.0 87.0 69.0 73.5 66.0
3rd – – – – – – – 81.0 97.0 70.5 79.5 –

Mean for each subject 99.25 96.5 95.75 90.5 89.5 79.0 91.25 73.83 91.83 73.33 81.0 64.75 85.54 (10.44)

KNN
1st 99.5 96.5 96.5 88.5 94.0 77.0 88.5 66.0 93.0 80.0 91.0 64.0
2nd 99.5 97.0 96.0 93.0 86.0 82.0 94.5 75.0 87.5 70.0 74.0 65.0
3rd – – – — – – – 81.5 96.5 71.0 81.0 –

Mean for each subject 99.5 97.25 96.25 90.75 90.0 79.5 91.5 74.17 92.33 73.67 82.0 64.5 85.95 (10.54)
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Figure 10. Experiment 4—Hybrid Feature Selection using SVM for the autocalibration and recurrent
adaptation dataset–Channel Set 1 Auto.

Table 7 shows the SVM classifier’s performance metrics constructed with selected features of
hybrid feature set using the channel set 1 Auto (13 channels) for autocalibration and recurrent adaptation
dataset. Applying the proposed FS technique has enhanced sensitivity, specificity, precision, F1-score,
and AUC. For example, sensitivity for subject “S01A” has increased from 0.936 to 0.957, and the
specificity has increased from 0.929 to 0.950 as well, after feature selection. Also, the precision and
F-Measure for subject “S02A” have increased from (0.705 and 0.720) to (0.780 and 0.783), respectively.

Table 7. Experiment 4—Hybrid Feature Selection—Performance Metrics of SVM classifier constructed
with Channel Set 1 Auto (13 channels) for autocalibration and recurrent adaptation dataset.

Subjects “S01” “S02” “S03” Mean (SD)

Runs S01A S01B S02A S02B S03A S03B
Sensitivity 0.957 0.914 0.893 0.886 0.879 0.879 0.9058 (0.0279)
Specificity 0.950 0.907 0.900 0.871 0.879 0.879 0.9014 (0.0277)
Precision 0.950 0.907 0.899 0.873 0.879 0.879 0.9016 (0.0269)
F1-Score 0.950 0.907 0.896 0.869 0.879 0.879 0.9 (0.0271)

ROC Area 1.00 1.00 1.00 1.00 0.99 0.99 0.998 (0.0049)

5. Discussion

This study proposes a novel efficient BCI system based on EEG data collected while performing
MI tasks. The proposed system’s primary goal is to construct a portable and low-cost BCI based on MI
training neuro-feedback system to classify limb MI tasks in real time with high accuracy. The proposed
system is an initial step for developing a comprehensive real-life–based framework to help people with
motor deficiencies to perform their daily activities. The evaluation of the proposed BCI system consists
of three components. Lowering the number of EEG channels employed in the BCI system construction
can lead to a more portable and easier system to set up. It also maintains a real-time EEG-based BCI
system. Thus, the system’s three evaluation metrics are based on different combinations of channels
set to determine the significance of channel reduction and then select the channel set with the strongest
influence on the BCI system’s performance. We first compare two feature sets. The first feature set
consists of statistical time features, whereas the second one consists of time-frequency features. Second,
we examine the influence of fusing time and time-frequency features (hybrid feature set). The results
suggest that the combination of time and frequency features increases the proposed BCI system’s
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performance. To create an efficient BCI system, the computational system cost should be lowered,
and this could be done by selecting a reduced number of significant features. Lastly, we used an FS
approach to reduce the feature set, which impacts the proposed BCI system’s accuracy.

To further evaluate the performance of the proposed FS (Experiment 4), two more parameters
were considered: the number of features selected and the execution time before and after FS,
as shown in Table 8 for BCI competition III–IVa and autocalibration and recurrent adaptation datasets.
The results in Table 8 indicate that FS significantly decreases the BCI competition III–IVa dataset’s
execution time. Moreover, the number of features was reduced. For channel set 2 (the 18 channels
configuration), the average number of features was reduced from 1836 features per run to 6 features.
Moreover, the average execution time decreased from 13.1964 s to 1.2694 s. FS has significantly reduced
the execution time for the autocalibration and recurrent adaptation dataset as well. Also, the number
of features was reduced, and the average number of features decreased from 1326 features per run to
9.679 features per run. The average execution time was also reduced from 12.6015 s to 1.8571 s.

Table 8. The number of features and execution time after the proposed Hybrid feature selection for the
BCI competition III–IVa and the autocalibration and recurrent adaptation datasets.

Dataset Features of the Full Set Features after FS Ex. Time before FS (s) Ex. Time after FS (s)

BCI competition
III–IVa dataset 1836 6 13.1964 1.2694

Autocalibration and
recurrent adaptation 1326 9.679 12.6015 1.8571

To verify our proposed system’s effectiveness, the results were compared with the classification
accuracy of recent related studies (Tables S7 and S8). In Table S7, we compare the CA of
the proposed BCI system and recent studies based on the BCI competition III–IVa dataset.
Although Wang et al. method [64] obtained an accuracy of 94.2%. This CA is patient dependent and is
not generalizable to all patients. This is because the authors used three different feature extraction
methods that are dependent on the patient. For ‘al,’ ‘aw,’ and ‘ay,’ they used the CSP algorithm on
Event-Related Desynchronization (ERD). The remaining subjects used the hybrid feature set (CSP and
Autoregressive (AR)) extracted from 18 channels. Singh et al. [43] designed a spatial filter which
reduces the dimension of Sample Covariance Matrices. The authors achieved an average CA of 86.13%,
which is lower than the proposed method. On the other hand, “Spatially Sparse CSP” filters had been
implemented by Arvaneh et al. [22]. SSCSP filters have emphasized that they have heavy weights
within the area of the motor cortex. They reached a CA of 73.5%, which is 19.96% lower than our
proposed system. In [65], the CSP approach was used for the training trials before assigning a score to
each channel based on L1 norm scores. The authors in [46] extracted the RMS feature from the time
domain only. An LDA classifier was built with 18 channels as well. They reached an average CA
of 78.77%, which is lower than the proposed BCI system. Miao et al. [41] achieved a CA of 86.38%
after extracting features depending on spatial-frequency-temporal patterns. The results suggest that
R-CSP-A considerably outperforms the other methods concerning overall CA. Selim et al. reduced the
number of CSP features and used the same 18 channels employed in [44] and introduced a hybrid
feature selection model. J. Kervin et al. [48] achieved a CA of 92.8% using WPD and KNN classifier.
In [66], the authors implemented a regularized-CSP with aggregation (R-CSP-A), in which a few
R-CSPs are aggregated, providing an ensemble-based solution. They reached an average accuracy
of 83.9%. The CSP approach was applied for feature extraction in [67]. A mutual information-based
frequency band selection approach was proposed and got a mean CA of 91.68%. The results in Table
S7 verify the competence performance of the proposed BCI system compared to other recent studies.

In Table S8, we compare the CA of the proposed BCI system and recent studies based on the
autocalibration and recurrent adaptation dataset. The authors of [49] implemented an optimized
system for rapid setup and fast co-adaptive training and reached CA 76.0%, which is about 10% lower
than the result achieved by our proposed system. According to the data presented in Tables S7 and S8,



Brain Sci. 2020, 10, 864 20 of 25

the proposed BCI shows promising performance compared to recent studies. The performance of the
proposed BCI to classify MI tasks with high accuracy is tested. The possibility of reducing the number
of features and channels while improving classification accuracy is also examined. The proposed
BCI results verified that the system has successfully reduced the number of channels and features
while achieving a higher accuracy, which is greater than other recent related work, as shown in
Tables S7 and S8 of the Supplementary Materials. Also, the system has avoided the limitations that
existed in other related work. Thus, the proposed system may be considered an initial step for achieving
a complete real-life–based framework to assist people with motor disability. Future work will apply
the proposed system to individuals with limb motor disabilities to test their capability to improve
their QoL.

6. Conclusions

This study proposes a novel efficient BCI system based on EEG data collected while performing MI
tasks. The proposed system’s core objective was to develop a portable and low-cost BCI based on MI
training neuro-feedback system to classify limb MI tasks in real time with high accuracy. This system
is a preliminary stage for constructing a comprehensive real-life-based framework to aid people with
motor deficiencies to make their daily activities. The proposed BCI system extracts features in the
time-frequency domain for different sets of electrodes. It then fuses these features to form a hybrid
feature set used to train SVM, LDA, and KNN classifiers. The results showed the proposed hybrid
feature had increased the accuracy of the system. A hybrid feature extraction approach was also
presented. This proposed FS lowered the computation cost and enhanced the BCI system’s accuracy
for both the BCI competition III–IVa and the autocalibration and recurrent adaptation datasets. For the
former dataset, the hybrid fused features using 18 channels after feature selection reached a mean CA of
93.56%, which is higher than most recent studies. For autocalibration and recurrent adaptation dataset,
the hybrid fused features using 13 channels after feature selection yielded a mean CA of 86.41%, which is
also higher than existing BCI systems. Our proposed systems’ competitive performance encourages
the efficient usage of this system in future experiments to attain a comprehensive framework to assist
people with motor disabilities in performing their daily functions. Future work will focus on testing
the proposed BCI system’s capacity to improve individuals’ overall QoL with motor deficiencies.
Also, upcoming research will investigate the system’s ability to successfully aiding people with
wheelchairs or artificial limbs.

Further future work will investigate the use of the BCI system for rehabilitation procedures.
Nevertheless, different experiments are still necessary to evaluate real-world rehabilitation treatments’
performance to test its performance on enhancing the rehabilitation treatments. Additional forthcoming
work will focus on using the proposed BCI system in other applications such as driving, controlling a
robot, communications, etc. New multiclass datasets containing more MI tasks should be used to test
the proposed system’s performance.
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Appendix A

The BCI competition III–IVa dataset was collected from five healthy subjects (aa, al, av, aw, and ay).
They were first seated in a comfortable chair. Then, EEG signals were acquired using 118 channels for
the five subjects. Subjects were asked to perform MI tasks during EEG recording. MI tasks consisted of
right-hand movement (RH) and foot movement (F). Visual signs indicated the type of MI task that
each subject was to perform for 3.5 s. The number of such signs was 280. Short breaks of around
2 s were given to subjects between each successive visual sign. Electrodes were attached according
to the international 10–20 system to describe the location of scalp electrodes. A bandpass filter was
then applied to EEG signals from 0.05 Hz to 200 Hz. Signals were then digitized with a sampling rate
of 1000 Hz then down-sampled to 100 Hz. 100 Hz signals were used in this study. The trials were
unevenly split into training and evaluation trials for each subject, as shown in Table A1.

Table A1. Training and test trials for each person.

Person Training Trials Evaluation of Trials

“aa” 168 112

“al” 224 56

“av” 84 196

“aw” 56 224

“ay” 28 252

Appendix B

The autocalibration and recurrent adaptation dataset were recorded for 12 healthy participants.
These participants included seven males and five females (ages 24.8 ± 3 years). Participants sat in
a comfortable chair and asked to relax. Then, EEG signals were acquired for all participants while
performing a MI task using 13 electrodes, including C3 (FC3, C5, CP3, and C1), Cz (FCz, C1, CPz,
and C2) and C4 (FC4, C2, CP4, and C6). These MI tasks consisted of a right-hand movement (RH)
and a foot movement (F). Electrodes were attached according to the international 10–20 system to
describe the location of scalp electrodes. Signals were digitized at a sampling frequency of 512 Hz.
Afterwards, artifacts were removed using a bandpass filter from 0.5 Hz to 100 Hz. For this dataset,
a notch filter was applied to eject the 50 Hz power-line noise. Visual signs indicated the type of MI
task that each participant was to perform for 5 s. The number of such signs was 200. Short breaks
of around 3s were given to the subjects between each successive visual sign presentation. The trial
structure is shown in Figure A1. Two electrode sets were chosen; the 13 channels (full set) available as
in27 and the 3 channels set C3, Cz, and C4.
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