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Abstract

Background: Evolutionary histories of parasite and host populations are intimately linked such that their spatial
genetic structures may be correlated. While these processes have been relatively well studied in specialist parasites
and their hosts, less is known about the ecological and evolutionary consequences of relationships between generalist
ectoparasites and their hosts. The aim of this study was to investigate the genetic structure and demographic history
of a bat ectoparasite, Cimex adjunctus, whose host affinity is weak but the biology of the potential hosts have been
well studied. This ectoparasite has been hypothesized to rely on its hosts for dispersal due to its low inherent dispersal
potential. Here we describe genetic diversity and demographic history in C. adjunctus through most of its range in
North America. We investigated variation at the cytochrome c oxidase 1 mitochondrial gene and nine microsatellite
markers, and tested the prediction that genetic diversity in C. adjunctus is spatially structured. We also tested the
prediction that demographic history in C. adjunctus is characterized by range and demographic expansion as a

consequence of post-Pleistocene climate warming.

Results: We found stronger spatial structuring of genetic diversity in C. adjunctus than has been quantified in two of its
hosts, but contrast in amount of variation explained by host association with different genetic markers (i.e, nuclear vs
mitochondrial DNA). Also, C. adjunctus’ history is not primarily characterized by demographic and range expansion, as is

the case with two of its key hosts.

Conclusions: Our study shows different patterns of genetic structure and demographic history in C. adjunctus than
have been detected in two of its key hosts. Our results suggest an effect of a loose parasite-host relationship and anti-
parasitism strategies on genetic structure and post-Pleistocene recovery of population size.

Keywords: AMOVA, Approximate Bayesian computation, Bayesian skyline plot, COT, Genetic clustering, Isolation by

distance, Phylogeography

Background

Parasites, through effects on host survival and
reproduction, can modify the morphology, life history
and behavior of their hosts. Parasites may also influence
the dynamics of host populations thereby shaping com-
munities [1]. Hosts in turn may also have important ef-
fects on their parasites. Many parasite species, whether
endoparasites or ectoparasites, remain closely associated
with their hosts through much of their life cycle [2], and
often rely on their hosts for dispersal. Dispersal, in turn,
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influences gene flow and therefore genetic structure and
diversity of a species; across a broad range of taxa, less
dispersal is associated with increased spatial structure
and differentiation [3]. Not surprisingly, spatial genetic
structure of a parasite frequently reflects dispersal of its
host. For example, population genetic structure of para-
sitic nematodes of cattle, sheep and white-tailed deer is
explained by host movements [4]. However, relative to
their hosts, parasites often show higher levels of genetic
differentiation. As such, analysis of the trematode para-
site (Pagioporus shawi) permitted more detailed infor-
mation on population assignments in its host, the
steelhead trout (Oncorhynchus mykiss) than could be ob-
tained by examining genetic variation in the host itself
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[5]. In addition to dispersal, parasites and hosts may
have experienced correlated demographic and range dy-
namics [6, 7] which will also be reflected in their popula-
tion genetic structure; for instance, patterns of genetic
variation among populations of the parasitic nematode
Heligmosomoides polygyrus have revealed demographic
and historic events affecting its host, the field mouse
Apodemus sylvaticus [8]. Furthermore, differences in re-
gional abundance of two Apodemus species likely caused
differentiation of both the Apodemus host and their
Heligmosomoides parasite species [9].

However, it has recently been shown that a strong link
between host dispersal and parasite genetic structure is
not ubiquitous, and depends on factors that include the
degree of association with the host and host mobility
[10]. Here, we investigated spatial genetic structure and
past demography of an ectoparasite that is associated
with highly mobile flying hosts, and would be considered
a weak generalist based on its association with a number
of different host species that are closely related to each
other [10]. Our study complements a body of work on
spatial genetic structure and phylogeography of vari-
ous ectoparasites associated with hosts having higher
mobility [11-13].

Insects in the genus Cimex (Order: Hemiptera) are
temporary ectoparasites of homeothermic animals. They
do not remain on their host at all times but rather re-
main in nests or roosts between blood meals [14]. Most
Cimex species are associated exclusively with bats, while
a few associate with a more diverse range of hosts
[14-16]. Cimex adjunctus is a widespread ectoparasite
of bats in North America, occurring from the eastern
seaboard to the Rocky Mountains, and from Labrador
and the Northwest Territories south to Texas [14]. It
parasitizes a number of bat species, including the big
brown bat (Eptesicus fuscus) and the little brown my-
otis (Mpyotis lucifugus), two species that often roost in
buildings [17-19]. The generation time of C. adjunctus is
unknown, but is likely similar to that of the common bed
bug C. lectularius, which can range from two to 12 gener-
ations a year depending on monthly temperatures [14],
and is certainly much shorter than that of its hosts.

Usinger [14] proposed that Cimex species have a very
low inherent capacity for dispersal over long distances,
on the scale of kilometers. He thought it unlikely that
adult Cimex species disperse on their own. He therefore
hypothesized that Cimex species can disperse occasion-
ally attached to a host’s body [14]. Previous studies of
genetic diversity of the big brown bat and little brown
myotis in North America have reported high within-site
genetic variation and generally low among-site differen-
tiation, although there are differences between patterns
at nuclear and mitochondrial markers (E. fuscus, [20, 21];
M. lucifugus, [22-25]). Overall, these studies indicate that
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high levels of gene flow are maintained over long distances
in both bat species, while genetic structuring of mitochon-
drial variation suggests a higher degree of female than
male philopatry. For C. adjunctus, likely only a fraction of
host dispersal events result in successful parasite dispersal
so gene flow may be lower in C. adjunctus relative to these
two host species. Furthermore, C. adjunctus may experi-
ence frequent extirpation and recolonization events.
Bartonicka and Razickova [26] identified bat bug load as a
possible cause of roost-switching in bats, with numbers of
bats dropping as the population of C. pipistrelli reaches a
high. They also found the appearance of C. pipistrelli 21
to 56 days after the first bat visit in any given roost. Since
C. adjunctus, like C. pipistrelli, does not stay on the host
between blood meals, sudden host population decreases
within roosts might drive local extirpation events.

Although different ectoparasite races are often associ-
ated with different host species [27-29], high gene flow
among populations associated with different host species
has also been documented. In Europe, Cimex pipistrelli
is morphologically, but not genetically, differentiated
among bat host species [30]. This suggests possible
morphological plasticity, but high gene flow, among
individuals associated with different host species. In
North America, we might also expect gene flow
among C. adjunctus populations on different host
species. Many different North American bat species
temporarily roost together for short intervals during the
night, such as many Myotis species, including M. lucifu-
gus, and E. fuscus [31], potentially facilitating host switch-
ing by C. adjunctus.

Much of North America was unsuitable for many bat
species during the last Pleistocene glacial maximum, and
both M. lucifugus and E. fuscus are hypothesized to have
expanded their ranges from glacial refugia. Dixon [32]
suggested that little brown myotis populations currently
in Minnesota have dispersed from a single large
southeastern US glacial refugium, and Neubaum et al.
[21] suggested that big brown bat populations have dis-
persed from several eastern and western US glacial refu-
gia into what is now Colorado. Range and demographic
expansion in little brown myotis has also been proposed
on the east coast of Canada [22]. We expect that the po-
tential dependence of C. adjunctus on its host species
for long-distance dispersal and colonization may have
contributed to broadly congruent patterns of historical
range expansion over large spatial scales.

We investigated the spatial genetic structure and phy-
logeography of C. adjunctus across its range in North
America. Because of its comparatively shorter generation
time, the likelihood that only a fraction of bat dispersal
events may result in ectoparasite gene flow, and the po-
tential for local extirpations, we predicted stronger
spatial genetic structure in C. adjunctus relative to its
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hosts. Because of the potential for movement among
host species, we also examined differentiation among
populations found on different host species. Finally,
based on the hypothesis that post-Pleistocene climate
warming had similar effects on the demographic history
of C. adjunctus as that of its hosts, we predicted gen-
etic signatures of demographic and range expansion
in C. adjunctus.

Results

We collected 160 Cimex adjunctus samples from
throughout its range in North America (108 from E. fus-
cus, 36 from M. lucifugus and 16 from M. septentriona-
lis; Fig. 1; in Additional file 1: Table S1), from 45 sites
(Additional file 2: Table S2). We successfully amplified a
fragment of the cytochrome c oxidase 1 (COI) gene for
154 C. adjunctus, and identified 41 haplotypes with 46
polymorphic sites (data available in Additional file 1:
Table S1). We also genotyped 150 of the C. adjunctus at
nine microsatellite loci (data available in Additional
file 3: Table S3). We successfully obtained both mito-
chondrial and microsatellite data for 144 C. adjunctus
(94% of the COI dataset and 96% of the microsatellite
dataset; in Additional file 1: Table S1). For approxi-
mate Bayesian computation (ABC), which uses both
types of markers, we used the overlapping dataset
(144 individuals). For analyses using only microsatellite
loci (genetic clustering and isolation by distance, IBD), we
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used the whole microsatellite dataset (150 individuals) and
for analyses using only mitochondrial DNA (minimum
spanning network, MSN; mismatch distribution, MD; and
extended Bayesian skyline plot, EBSP), we used the
complete COI dataset (154 individuals). Finally, we used
only sites with data for at least two individuals, and for
which we obtained both mitochondrial and microsatellite
data, for the analysis of molecular variance (AMOVA)
analysis, which resulted in a dataset of 127 individuals
from 26 sites (82% of the COI dataset and 85% of the
microsatellite dataset).

Microsatellite diversity, and Hardy-Weinberg and linkage
disequilibrium

Among the nine microsatellite loci, we observed be-
tween two and 31 alleles. Across different sites and gen-
etic clusters (identified by Geneland), average number of
alleles ranged from 1.5 to 4, expected heterozygosity
ranged from 0.18 to 0.62, observed heterozygosity
ranged from 0.09 to 0.25, and the inbreeding coefficient
varied between 0.00 and 0.77 (Table 1). Variation in gen-
etic diversity and inbreeding coefficients did not show
any obvious spatial pattern. We found three significant
cases of deviation from Hardy-Weinberg equilibrium
(one site at the loci Clec104 and Cle015, and another
site at Clec104). Since these incidences of deviation from
Hardy-Weinberg equilibrium were not systematic across
loci or sites, we retained these two markers and two sites
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Fig. 1 Sampling locations of Cimex adjunctus in North America. Created with ArcGIS v10.3 (ESRI, Redlands, USA). Numbers on the map
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Geneland, is shown with a unique colour and shape. Cluster numbers are given in the Legend and correspond to those in Additional file 1:
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Table 1 Genetic diversity estimates for C. adjunctus, averaged across nine microsatellite markers, for sites with five or more sampled
individuals and for genetic clusters identified by Geneland (with the exception of Cluster 1, in which there was only one individual;
in Additional file 1: Table S1). Site and cluster numbers correspond to those in Fig. 1 and Additional file 1: Table S1

Site/Cluster Average number of alleles Expected heterozygosity Observed heterozygosity Inbreeding coefficient Gis
Site 17 2.000 0275 0278 —0.009
Site 19 1.889 0.363 0.093 0.745
Site 30 2778 0.346 0.201 0420
Site 31 21M 0327 0.254 0223
Site 32 3.000 0.193 0.193 0.369
Site 36 2444 0.325 0.224 0310
Site 39 2.556 0.293 0241 0.178
Site 40 2222 0.239 0.145 0.393
Site 41 1.778 0.184 0.160 0.129
Cluster 2 3.000 0349 0.225 0431
Cluster 3 2.556 0.394 0.246 0.375
Cluster 4 3.222 0332 0.235 0.291
Cluster 5 2.778 0309 0.186 0399
Cluster 6 2222 0327 0.247 0.245
Cluster 7 3.889 0.349 0.225 0.354
Cluster 8 3.000 0615 0.143 0.768
Cluster 9 1.667 0.250 0.194 0222
Cluster 10 3.556 0.301 0.196 0.349

for our analyses. We did not find any evidence of signifi-
cant linkage disequilibrium in any marker.

Range-wide genetic structure

Genetic clustering analyses using the Geneland method
revealed 10 genetic clusters (Table 2), which were gener-
ally concordant with geographic location (Fig. 1). One
interesting exception was that individuals from the
Northwest Territories and Saskatchewan clustered with
individuals from distant regions (Clusters 3 and 7; Fig. 1).
There was no association between genetic clusters iden-
tified by Geneland and any major geographic barriers

Table 2 Results of clustering and isolation-by-distance analyses
of Cimex adjunctus, estimated using microsatellite markers. Most
likely number of genetic clusters (K) estimated using the
Geneland method, Isolation-by-distance (IBD) and IBD while
correcting for population genetic structure (IBD + K) are shown

Statistic Value
Most likely K 10
1BD (rw) P 0.001*
R’ 0.19
IBD (rw) +K P (1BD) 0.001*
P (K) 0.001*
R’ 021

*Statistically significant at a=0.05

that might knowingly impact dispersal. The sampling
year and host species did not seem to strongly affect
clustering, as individuals associated with different host
species or sampled at different years were frequently
assigned to the same cluster (Additional file 4: Table S4).
Using K-means clustering, we obtained the lowest BIC
value at K'=11, and the second lowest BIC value was at
K'=10. Moreover, we observed significant IBD calculated
on individual genetic relatedness values (P =0.001, R* =
0.19; Table 2). Conditioning for genetic structure
slightly improved the fit of the IBD model (R*=0.21;
Table 2).

AMOVA results were very different between the two
types of markers. For microsatellites, considerably less of
the total variation was explained by among (22.8%;
Table 3) than within sites (37.0%), but for mitochondrial
data the variation among (48.8%) and within sites

Table 3 Results of analysis of molecular variance (AMOVA) on
Cimex adjunctus, using mitochondrial and microsatellite data.
Percentage of total variation among host species, among
sample sites (population), and within sample sites are shown

Source of variation Mitochondrial Microsatelite

Among host species 74 40.2
Among populations 488 228
Within populations 437 370
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(43.7%) were similar. The proportion of genetic variation
among host species was high for microsatellite data
(40.2%; Table 3), but quite low for mitochondrial data
(7.4%).

Demographic history

Considering those haplotypes represented by four or
more individuals, there was some degree of spatial struc-
turing in their distribution. Specifically, distinct haplo-
types were associated with the western and eastern ends
of C. adjunctus’ range (Fig. 2). One interesting observa-
tion was that individuals from Northwest Territories and
Saskatchewan had very similar haplotypes to individuals
from the Midwest of the United States. The MSN did
not show a well-defined starburst pattern (Fig. 3).
Also, the MD showed multiple peaks rather than a
single peak that would have indicated potential demo-
graphic expansion in the past (Fig. 4). Evolution of
Ngt through time, estimated using EBSP, showed
mostly constant population size with a possible grad-
ual decrease from about 200,000 to 30,000 years ago
to about half of the initial population size, followed
by a small increase to the present (Fig. 5). Finally,
ABC analysis gave strongest support to a scenario
mimicking a decrease in effective population size of
at least an order of magnitude between 10 million
years ago and 10,000 years ago (Table 4; See
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Additional file 5: Figure S1 for pre-evaluation of prior dis-
tributions of scenarios with the observed values).

Discussion
Range-wide genetic structure
Analyses of mitochondrial and microsatellite genetic
markers supported our prediction of high range-wide
genetic structure, mediated by geographic distance, in C.
adjunctus, an ectoparasite of bats. Across the range of
C. adjunctus, we found significant genetic structure, a
large proportion of which was explained by geographic
distance. Whereas IBD has not been previously investi-
gated in most bat parasites (but see [33]), it has been in-
vestigated in two of the key hosts of C. adjunctus, the
big brown bat and the little brown myotis. A relationship
between genetic and geographic distance has been ob-
served in both the big brown bat [20] and little brown
myotis across a considerably smaller spatial scale [24]
than examined here. Range-wide IBD has also been
described for little brown myotis [25], based on
population-level analyses using Fgr. Thus, geographic
distance explains a lot of the variation in genetic struc-
ture of C. adjunctus as it does in two of its hosts, which
could potentially reflect the reliance of C. adjunctus on
their hosts for dispersal.

However, the overall degree of genetic structuring ap-
pears to be higher in C. adjunctus than in its hosts. Ana-
lysis of microsatellite genotypes has revealed only two
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genetic clusters in both big brown bat [34] and little
brown myotis [25], both at continental spatial scales,
whereas our results point to ten genetic clusters in C.
adjunctus. Likewise, very little genetic variation (<10%
with microsatellite data, and <20% with mitochondrial
data) occurs among spatially separate sites in big brown
bat [20] and in little brown myotis [22-25]. In C.
adjunctus, about one third of the microsatellite variation
and about one half of mitochondrial variation occur
among sites (after taking out variation among host spe-
cies). These observations suggest that C. adjunctus is

Frequency

0 10 20 30

Pairwise differences

Fig. 4 Frequency of pairwise mismatches among cytochrome ¢

oxidase 1 (COT) sequences of Cimex adjunctus in North America

more subdivided within its range than at least two of its
hosts, and that its genetic structure does not entirely re-
flect the dispersal patterns of its hosts. Interestingly
however, both genetic clustering and MSN results also
offer some evidence of possible continent-scale long-
distance movement in C. adjunctus, as reflected in the
relationships among individuals from the Northwest
Territories, Saskatchewan, Maritime Canada and the US
Midwest. Relationships among C. adjunctus samples
from these locations echo a pattern that was observed in
M. lucifugus, where a set of sites in the central United
States and central to north-western Canada are con-
nected by high gene flow [25].

Spatial structuring of genetic diversity can arise when
gene flow is not sufficiently high to homogenize allele
frequencies throughout the study area, and across a
broad range of animal species dispersal ability is corre-
lated with both gene flow and population genetic struc-
ture [3]. This has led to the prediction that genetic
structure of many parasites will reflect host dispersal
and genetic structure [10]. However, the association be-
tween host dispersal and parasite genetic structure has
recently been shown to be generally weak [10]. Further-
more, genetic structure in parasites is often found to be
stronger than that of their host, as we have observed
here for C. adjunctus. For example, a finer genetic struc-
ture was found in an endoparasitic nematode H. polygyrus
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than in its host, the field mouse A. sylvaticus [8]. One rea-
son for stronger genetic structuring in parasites than their
hosts could be that, for parasites using their host as a
means of dispersal, not every host dispersal event will re-
sult in dispersal by the parasite. This is likely to be the
case for C. adjunctus, which spends a considerable pro-
portion of time living off of its hosts within cracks and
crevices in roosting sites. First, only a small subset of dis-
persing bats are likely to be accompanied by C. adjunctus.
Second, dispersal mortality in the parasite may be very
high due to grooming behaviour of bats that can cause the
parasites to fall off [35]. Additionally, parasites that have a
generation time that is much shorter than that of their
hosts, that are associated with more than one host species,
or that are associated with highly mobile hosts typically
show a much stronger genetic structure than their host, as
highlighted by Mazé-Guilmo et al. [10]. All of these fac-
tors are true for C. adjunctus, and could explain the much
stronger genetic structure we observed for relative to two
of its key hosts.

In addition to gene flow and dispersal, genetic structure
may also be influenced by genetic drift in small
populations, which acts by increasing differentiation [36].

Table 4 Results of approximate Bayesian computation analysis
of effective population size (Ng) history of Cimex adjunctus.
Posterior probabilities of each scenario (with confidence interval
in parentheses) are shown

Scenario Posterior probability
0.297 (0.285 - 0.308)
0.522 (0.508 - 0.536)

0.181 (0.167 - 0.196)

Ng Increase
N Decrease

Ng Constant

Bat-associated Cimex populations might be much smaller
than populations of their hosts, although information on
C. adjunctus population sizes is limited. In addition, it is
possible that C. adjunctus experiences localized extirpa-
tions and recolonizations when roosts are abandoned by
bats and subsequently re-occupied. The resulting founder
events would further reduce effective population sizes and
lead to higher genetic differentiation in C. adjunctus via
genetic drift.

We also examined the proportion of genetic variance
among samples of C. adjunctus associated with different
host species. Interestingly, we found a sharp difference
between mitochondrial DNA and microsatellite markers
in this regard. Mitochondrial data suggested consider-
ably less variation among populations associated with
different host species compared to microsatellite data.
At the same time, microsatellite data showed less vari-
ation among populations than did the mitochondrial
data, indicating that the difference we observed with re-
spect to host species does not reflect a generally poorer
ability of the mitochondrial data to detect differentiation
in C. adjunctus.

Our mitochondrial data are consistent with an earlier
study on C. pipistrelli that found no genetic differenti-
ation among individuals associated with different host
species, using mitochondrial COI and four nuclear loci
[30]. Our microsatellite results contradict these results
from C. pipistrelli, although it is important to point that
all nuclear loci in the study of Balvin et al. [30] showed
almost no variation. Mitochondrial DNA is maternally
inherited and therefore variation in it will reflect disper-
sal and history of the maternal lineage only. It is possible
therefore that sex-biased behaviour in C. adjunctus
could be the reason for our results. Male-biased
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dispersal among roosts could lead to the higher propor-
tion of genetic variation among sites in mitochondrial
data than in microsatellite data. On the other hand,
female-biased switching of hosts within roosts could be
responsible for the lower proportion of genetic variation
among host species observed in the mitochondrial ver-
sus microsatellite data. Autonomous (i.e., not host-
assisted) female-biased movements over short distances,
such as between neighbouring apartment units, have
been described in the common bed bug, C. lectularius
[37]. If female C. adjunctus also move more readily at
short distances within roosts, that could explain both a
higher rate of host-switching among females and a lower
rate of transport among roosts by their hosts (since fe-
males might spend more time off of the hosts while they
engage in exploratory behaviour). However, there is cur-
rently no information available on sex-biased dispersal
or host switching in C. adjunctus. Our results not only
suggest sex-biased dispersal or host switching in C.
adjunctus, but also highlight the need to use more than
one type of marker when investigating genetic diversity
in an understudied species.

The most well studied member of the genus Cimex is
the human associated common bed bug, C. lectularius.
Several studies have examined genetic structure in C.
lectularius across a range of spatial scales [38—42]. How-
ever, most such studies focus on a considerably smaller
scale than we do here, making direct comparisons of
genetic structure difficult. For example, Saenz et al. [42]
describe a weaker IBD pattern in C. lectularius than we
observed for C. adjunctus, which could be due in part to
the smaller spatial scale of their sampling (eastern USA
only). On the other hand, our genetic diversity estimates
for C. adjunctus were strikingly similar to those found in
one study on C. lectularius [41], although we report
slightly higher average numbers of alleles. In an interest-
ing parallel, a study of C. lectularius populations associ-
ated with bats and humans found higher average
numbers of alleles in the bat-associated populations than
human-associated populations [38]. Another study of C.
lectularius in Europe [39] found higher mitochondrial
DNA variation among bat and human associated popula-
tions than we observed among populations of C. adjunc-
tus associated with different bat species. One likely
reason for this dissimilarity between C. adjunctus and C.
lectularius is that the former is a weak generalist, associ-
ated with closely related species [10], while the former is
a strong generalist, associated with phylogenetically very
different species. Overall, sample sizes and the number
of microsatellite markers used were lower in our study
than in several studies of C. lectularius genetic structure
[34, 40, 41], but were nonetheless appropriate given the
much broader spatial and temporal scale of resolution of
our analyses [5, 8, 12, 43].
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Demographic history

We predicted signals of range and demographic expansion
in C. adjunctus, based on the fact that there are wide-
spread signatures of historic population expansion in
many vertebrates, invertebrates and plant populations, in-
cluding in the bat hosts of C. adjunctus. Such patterns are
most probably attributable to postglacial climate warming
[44]. However, we found that the history of this ectopara-
site is marked most strongly by demographic decline, with
only a weak signal of recent demographic expansion, and
no clear pattern of range expansion. For example, typical
starburst patterns were previously observed in the haplo-
typic networks of E. fuscus and M. lucifugus [21-23], indi-
cative of range expansion. However, we found no clear
starburst pattern for C. adjunctus. This is unlikely to be a
result of inadequate spatial sampling since our samples
cover most of the known range of this species [14].

We found evidence of population decline in the demo-
graphic history of C. adjunctus using a variety of ap-
proaches. According to EBSP results, a gradual decline
might have started at around 200,000 years ago, corre-
sponding roughly to the Illinoian glaciation, a time of
likely very harsh climate for most species in North
America [45]. A small demographic recovery may have
started at around 30,000 years ago. Our ABC results
confirmed a population decline as the most likely histor-
ical scenario. Two previous studies found signals of
demographic expansion in M. lucifugus in eastern
Canada [22] and Minnesota, United States [46]. A small
potential increase in C. adjunctus effective population
size indicated in the EBSP starting 30,000 years ago is in
a similar timeframe as, but is of much smaller amplitude
than, the demographic expansion found in both M. luci-
fugus studies. Relative to those studies, our analysis was
able to span a larger amount of time, probably due to
the larger spatial scale of our sampling.

Conclusions

Parasites that are mostly free-living, associate with mul-
tiple species of hosts, and have hosts that are highly mo-
bile, such as some ectoparasites of bats, may be expected
to show a genetic structure that contrasts with the disper-
sal patterns and genetic structure of their hosts [10].
These same factors may also lead to a difference in his-
toric patterns of change in host and parasite ranges and
population sizes. We have found exactly this pattern in C.
adjunctus, an insect ectoparasite associated with a number
of bat species in North America. This free-living parasite
moves off the host between blood meals and could be ac-
tively removed by the host through anti-parasitism behav-
iour. Our results highlight that the genetic structure and
demographic history of a weak generalist ectoparasite,
particularly one that has a loose relationship with its hosts,
can be very different from that of its hosts.
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Methods

Sample collection

We collected C. adjunctus across much of its North
American range. Most samples are from mist-netted
host individuals of E. fuscus, M. lucifugus or M. septen-
trionalis. Mist net capture locations were adjacent to a
known summer roost (house, barn, cabin, church, school
or abandoned mine) of either of the three bat species, or
within forested national, provincial, state or territorial
lands (Additional file 2: Table S2). Most mist-netted bats
and the C. adjunctus individuals they harboured likely
came from the adjacent known roost, although it is pos-
sible that a small proportion came from different roosts
in the area. Overall, between 3 and 15% of mist-netted
bats harboured a parasite, depending on the location.
We also sampled C. adjunctus individuals from the in-
terior of two summer roosts. One roost was in a church
attic inhabited by M. lucifugus, and one was in a house
attic inhabited by E. fuscus (Additional file 2: Table S2).
Because we could be certain of the roost site in these
cases, we considered these two sampling locations as
distinct from their adjacent mist-netting capture loca-
tions. Upon collection, we stored samples immediately
in a 95% ethanol solution until further analyses. We then
generated COI mitochondrial DNA sequence data and
nine nuclear microsatellite genotype data for all individ-
uals. All samples included in this study were confirmed
as being C. adjunctus using a DNA barcoding approach
[47]. We compared the COI sequence for each sample
to known COI sequences for Cimex species from pub-
lished sources [48].

Genetic analyses

We extracted DNA from the whole insect for all samples
using the DNeasy Blood & Tissue Kit (QIAGEN,
Germantown, Maryland, United States). We then ampli-
fied a 576-bp fragment of the COI gene from each indi-
vidual using the primers: F 5- TATGAGCAGGCAT
GTTAGGG and R 5-ATAGATGTTGATAAAGAATT
GGG (Designed by our group based on published se-
quences of Balvin et al. [48]). We used a DNAEngine
PTC-200 Thermal Cycler (BIO-RAD, Hercules, California,
United States) to execute the Polymerase Chain Reaction
(PCR) amplification. We performed PCR in 25 uL final
volume using the following recipe: 1X Taq Polymerase
Buffer excluding MgCl, (Applied Biosystems, Foster City,
California, United States), 1.5 mM of MgCl,, 0.2 mM of
each type of ANTP, 0.3 uM of each primer, 1 U of Taq
polymerase (ABI), and 1 puL of DNA extraction product.
We used the following PCR program: an initial denatur-
ation step of 1 min at 94 °C, followed by 36 cycles of 30 s
of denaturation at 94 °C, 45 s of annealing at 49 °C and
45 s of extension at 72 °C, finished by a final extension
step of 5 min at 72 °C. We visualized PCR products by
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1.5% agarose gel electrophoresis using SYBR Green (BIO-
RAD) on a UV transluminator to check the quality and
size of amplified fragments. Then, we sequenced the amp-
lified gene fragment for every sample using Sanger se-
quencing with BigDye terminator chemistry (ABI) and
analyzed the fragments on a 3730x] DNA Analyzer (ABI).
We aligned all sequences using MEGA 6.06.

We also genotyped all individuals at nine microsatel-
lite loci originally designed for Cimex lectularius
(Cle002, Cle003, Cle013, Cle015, from Fountain et al.
[40], and Clec21, Clec48, Clecl5, Clec104 and BB28B,
from Booth et al. [42]; in Additional file 6: Table S5).
We used a DNAEngine PTC-200 Thermal Cycler (BIO-
RAD) to execute PCR amplification. For markers from
Fountain et al. [41], we performed PCR using the follow-
ing recipe: 1X Taq Polymerase Buffer excluding MgCl,
(ABI), 2.175 mM of MgCl,, 0.216 mM of each type of
dNTP, 0.25 to 1.2 puM (Additional file 6: Table S5) of
each primer, 1 U of Taq polymerase (ABI), 2 uL of DNA
extraction product, in total volume of 12 pL. For
markers from Fountain et al. [40], we used the following
thermal cycling: an initial denaturation step of 15 min at
95 °C, followed by 11 cycles of 30 s of denaturation at
94 °C, 1 min and 30 s of annealing (initially at 65 °C and
reduced 1 °C at every cycle) and 1 min of extension at
72 °C, followed by 26 cycles of 30 s of denaturation at
94 °C, 1 min and 30 s of annealing at 55 °C and 1 min of
extension at 72 °C, finished by a final extension step of
10 min at 72 °C. For markers from Booth et al. [41], we
used the following thermal cycling: an initial denatur-
ation step of 3 min at 95 °C, followed by 35 cycles of
30 s of denaturation at 95 °C, 30 s of annealing at 59 to
61 °C (Additional file 6: Table S5) and 30 s of extension
at 72 °C, and a final extension step of 5 min at 72 °C.
We amplified each locus individually. PCR products
were visualized by 1.5% agarose gel electrophoresis using
SYBR Green (BIO-RAD) on a UV transluminator to
check the quality and size of amplified fragments. We
then sized products on a 3730x] DNA Analyzer (ABI).
We called all microsatellite genotypes for each species
using GeneMapper Software 4.0 (ABI), and we checked
all calls manually.

Statistical analyses

Microsatellite diversity, and Hardy-Weinberg and linkage
disequilibrium

For sites with data for at least five sampled C. adjunctus
individuals, and for genetic clusters (see next section),
we calculated average number of alleles, expected and
observed heterozygosity, and inbreeding coefficient. For
microsatellite loci, we tested for Hardy-Weinberg and
linkage disequilibrium within each site with data for at
least two sampled C. adjunctus individuals, using
Genepop 4.2. For each type of test, we corrected for
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multiple tests using Bonferroni correction, with a thresh-
old « of 0.05.

Range-wide genetic structure

We tested our prediction of range-wide genetic structure
and an effect of geographic distance in C. adjunctus
using genetic clustering, tests of isolation-by-distance
(IBD), and an analysis of molecular variance (AMOVA).
We conducted a Bayesian clustering analysis using
Geneland 4.0.5, which takes into account geographic co-
ordinates of individual samples. We used 100,000 itera-
tions, thinned every 100™ iteration, and a post-process
burn-in of 200 (of the 1000 left after thinning), for K
values between 1 and 20. We executed 10 runs, and kept
the one with the highest posterior mean density, after
burn-in. We attempted to identify the population to
which each individual was assigned the most often,
defined here as the population where the majority of
Markov Chain Monte Carlo (MCMC) chains converged
for any given individual. We also conducted a K-Means
clustering analysis using GenoDive 2.0 on allele frequen-
cies, for K values between 1 and 20, and using 50,000
simulation steps, to validate results obtained with the
Geneland method. We used Bayesian Information
Criterion (BIC) values to determine the most likely K
value.

We conducted an individual-level analysis of IBD,
using the estimate of genetic relatedness, ry [49], calcu-
lated with SpaGeDi 1.5. We calculated 1 — ry for each
pairwise relationship, in order to obtain genetic dis-
tances. We calculated geographic distance (in km) be-
tween sample sites, corrected for sphericity of the earth,
using the ‘rdist.earth’ function from the ‘fields’ package
[50] in R v3.1.3 (R Development Core Team, Vienna,
Austria). We then fit pairwise genetic distance to geo-
graphic distance using Multiple Regression on distance
Matrices (MRM), in the ‘MRM’ function from the
‘ecodist’ package in R v3.1.3 [51], which uses a Mantel
test derived linear regression model. We assessed signifi-
cance through a permutation procedure (9999 repli-
cates). An assumption of the ry relatedness index, and
most other relatedness indices, is that individuals are in
a large random mating population without population
structure [52]. In an attempt to correct for the popula-
tion structure present in our dataset, we subsequently
conditioned IBD models for genetic clustering. For each
pair of individuals assigned to the same population in
clustering analyses, we assigned a value of 0, and for
each pair of individuals assigned to different populations,
we assigned a value of 1. We then tested the effect of
geographic distance, together with genetic clustering, on
genetic distance in an MRM model.

For all sites with at least two sampled individuals, we
used AMOVA to examine the proportion of genetic
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variation among sites, and among individuals associated
with different host species. AMOVA was executed in
GenoDive 2.0 for microsatellite data, and Arlequin 3.5
for mitochondrial data.

Demographic history

We tested the prediction that C. adjunctus would show
signals of demographic and range expansion, similar to
some of its bat hosts, with a suite of methods for investi-
gating demographic history using either mitochondrial
data alone, or both mitochondrial and microsatellite
data. First, we produced a minimum-spanning network
of mitochondrial haplotypes (MSN) using TCS 1.21, with
a 95% connection limit. MSNs can indicate past range
expansions if they show starburst like patterns [53, 54].
We expected to find such evidence pointing towards
range expansion in C. adjunctus.

We executed a Mismatch Distribution (MD) analysis
with DNASP 5.1. The purpose of this analysis is to com-
pare the distribution of the frequency of each number of
pairwise mitochondrial sequence mismatches in the
dataset to the expected distributions under demographic
expansion or constant population size through time. A
unimodal peak at a non-zero number of pairwise mis-
matches is associated with demographic expansion,
which we expected to observe, whereas more than one
non-zero number of pairwise mismatches is usually asso-
ciated with a constant population size through time [55].

Then, we constructed an Extended Bayesian Skyline
Plot (EBSP) using mitochondrial data in BEAST 1.8.4.
We used a linear EBSP model, and random local clock,
which reportedly performs better than strict and relaxed
clocks for most situations using intraspecific data [56, 57].
In trial runs, we found the HKY substitution model [58] to
be the best-fitting model, as has also been shown for Tria-
toma infestans [59], a species in a genus closely related to
Cimex. We used the gamma sites model to account for
heterogeneity of substitution rate among individual loci.
We used the default value of 10,000,000 Markov Chain
Monte Carlo (MCMC) chains, logging every 1000 chains.
We set the substitution rate to 0.575%/Ma, or half of
1.15%/Ma, which is the standard Arthropod mitochon-
drial pairwise substitution rate as reported by [60]. All
other parameters were kept at default value. EBSPs allow
one to visualize effective population size (Ng) multiplied
by generation time (1) since some time in the past. In the
case of highly structured populations, Heller et al. [61]
suggested that a pooled sampling scheme, where several
individuals are taken from about ten populations, was
ideal to avoid a confounding effect of population struc-
ture, as opposed to all samples taken from the same popu-
lation or one sample taken for each of a large number of
populations. The sampling scheme used in our analysis
fits well with the described pooled scheme. We expected
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to see an increase in effective population size over time,
corresponding with a post-Pleistocene climate warming
timeline.

Finally, we executed approximate Bayesian computa-
tions (ABC) on both mitochondrial and microsatellite
data, using DIYABC 2.1.0. ABCs allow one to compare
posterior probabilities of different demographic sce-
narios [62]. As per the method of [63], we input
three scenarios in the analyses (for population sizes
N >N; >Ng), mimicking an increase in effective
population size from N; to N, at time ¢, a decrease
in population size from N; to Np at time ¢, and fi-
nally constancy in population size at N;. Boundaries
for N, Ng, Ny and ¢ priors are available in Table 5.
We set the potential time for the population size
change event between 10,000 and 10 million years
ago, to encompass a broad period of major climatic
changes in the northern hemisphere [64]. We set the
upper boundary of effective population after an in-
crease (N,) to 10 times the initial upper boundary of
effective population size (N;), to limit our analysis to
population size increases of at least an order of mag-
nitude. Similarly, we set the lower boundary of effective
population size after a decrease (Ng) to 1/10 of the initial
lower boundary of effective population size (N;) to limit
our analysis to population size decreases of at least an
order of magnitude. If no change in population size of at
least an order of magnitude occurred in the analysis time-
frame, or if both a population size decrease and increase
of similar magnitude occurred, then the scenario of con-
stant population size would be most likely. We conducted
a series of initial trial runs to determine the effective
population size parameters for ABC analysis where we
could achieve convergence between priors and observed
values (Table 5). As an example, our final effective popula-
tion size parameter values are large in comparison with
those in a study on the invasive ladybird Harmonia axyri-
dis [65]. Trial runs also indicated the best fit was achieved

Table 5 Parameter values used in the approximate Bayesian
computation analysis of demographic history of Cimex
adjunctus. The set lower and upper boundaries of the three
effective population size parameters are shown: N, is the
effective population size before population size change, Ny is
the effective population size after demographic expansion, and
Ng is the effective population size after demographic decline.
The time period over which a population size change potentially
occurred is t (in years)

Parameter Lower boundary Upper boundary
Na 500,000 50,000,000

Ng 50,000 5,000,000

N, 500,000 5,000,000

t 10,000 10,000,000
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when we used a mutation rate per site between 10”7 and
107%, with a mean at 10°%, for both mitochondrial and
microsatellite markers, and the Stepwise Mutation Model
(setting coefficient P at 0) for microsatellite markers. The
estimated mutation rate for microsatellites is on the low
end for such markers, but consistent with the relatively
low variability observed for markers originally developed
in a different species (i.e., ascertainment bias; [66]). We
used “Mean number of alleles” and “Mean genic diversity”
as summary statistics for microsatellite loci, and “Number
of haplotypes”, “Mean of pairwise differences” and “Private
segregating sites” for the mitochondrial locus. We
computed 3,000,000 simulated datasets to compare
with the observed dataset. First, we pre-evaluated the
fit of observed values to prior distributions of scenarios,
using a Principal Component Analysis implemented with
the software. In a graph of the first two principal
components, a good prior assessment is reflected in
the observed values being approximately in the centre
of the prior values for all three scenarios. Second, we
calculated posterior probabilities for all three scenar-
ios using a logarithmic regression, to determine which
scenario is the most likely given the data. We ex-
pected strong support for a scenario mimicking a
demographic expansion.

Additional files

Additional file 1: Table S1. List of Cimex adjunctus specimens included
in analyses. Site refers to each unique sampling location in the study.
Host species refers to the bat species from which the samples were
collected, or which was inhabiting the roost from which the samples
were collected (EPFU : Eptesicus fuscus, MYLU : Myotis lucifugus, MYSE :
Myotis septentrionalis). Individuals with the same haplotype number share
the same mitochondrial COT haplotype sequence (we could not obtain
CO1 information for six individuals). We provide the Genbank accession
number for each unique haplotype the first time it appears in the table.
The genetic cluster (identified by Geneland based on microsatellite data)
to which each specimen was assigned is also given (we could not obtain
microsatellite data for 10 individuals). (XLSX 51 kb)

Additional file 2: Table S2. Details of sampling locations where we
collected Cimex adjunctus specimens used in this study. Site refers to
each unique sampling location and correspond to those in Additional
file 1: Table S1. Sample size refers to the number of specimens collected
at each site. Capture method refers to the way C. adjunctus samples were
collected: either from the body of a bat that was captured outside a
roost with a mist net or a harp trap (Bat capture), or from inside of the
roost itself (Roost visit). Site characteristics refers either to the type of
roost (house, barn, cabin, church or abandoned mine) in, or next to
which, we collected samples, or to the forested land jurisdiction where
collection was performed. (XLSX 37 kb)

Additional file 3: Table S3. Genotypic data at 9 microsatellite markers
for 150 Cimex adjunctus individuals (we could not obtain microsatellite
data for 10 individuals). The first three digits in each string describe the
length (in base pairs) of the first allele, and the last three describe the
length of the second allele. Missing data is identified with “000000".
(XLSX 59 kb)

Additional file 4: Table S4. Host species and sampling year from
which C adjunctus samples assigned to each genetic cluster were

collected. (XLSX 41 kb)
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Additional file 5: Figure S1. First and second principal components
(percentage of explained variation in parentheses) of simulated values
under each putative demographic scenario for C. adjunctus, as determined
by approximate Bayesian computation (ABC), and comparison with
observed values. (PDF 2969 kb)

Additional file 6: Table S5. Sequence, primer concentration ([Primer]),
annealing temperature (T°), total number of alleles, and size range
information for nine microsatellite markers previously designed for Cimex
lectularius (by 1: Fountain et al. [41] and 2: Booth et al. [42]), used here on
Cimex adjunctus samples. For each marker, we also show the average
number of alleles (N,), expected heterozygosity (Hg), observed
heterozygosity (Ho) and inbreeding coefficient (Gis) across all sites with

five or more sampled individuals. (XLSX 51 kb)
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