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Abstract

Genetic risk for breast cancer is conferred by a combination of multiple variants of small effect. To 

better understand how risk loci might combine, we examined whether risk-associated genes share 

regulatory mechanisms. We created a breast cancer gene regulatory network between transcription 

factors (TFs) and putative target genes (regulons) and asked whether specific regulons are enriched 

for genes associated with risk loci via eQTLs. We identified 36 overlapping regulons that were 

enriched and formed a distinct cluster within the network, suggesting shared biology. The risk-TFs 

driving these regulons are frequently mutated in cancer and lie in two opposing subgroups, which 

relate to ER+ luminal A/B and to ER− basal-like cancers and to different, luminal epithelial cell 

populations in the adult mammary gland. Our network approach provides a foundation to reveal 
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the regulatory circuits governing breast cancer, to identify targets for intervention, and is 

transferable to other disease settings.

Introduction

Polygenic disease susceptibility results in a distribution of risk within the population. Given 

the large number of known risk loci there is a huge number of possible combinations of 

genotypes associated with high risk. Therefore, in parallel with the ongoing analysis of 

individual loci, a framework is needed to understand how multiple risk variants can combine 

at the cellular level, and indicate whether they work through many different mechanisms or – 

which would be more tractable for understanding and intervention – whether they converge 

on just a few. Germline variants will interact not only with each other, but with exposures 

and with acquired somatic events. Ideally, the framework should be able to capture these 

interactions.

Systems biology approaches may be able provide such a framework1. Protein-protein 

interaction networks have been derived in attempts to shed light on the pathways underlying 

risk2, but most of these networks remain sparse and have only yielded limited insight into 

cancer risk. Most germline risk variants are thought to affect gene expression. Therefore 

regulatory networks may be an appropriate starting point to understand the combinatorial 

effect of risk variants.

Here, we model breast cancer as such a gene regulatory network3 onto which the loci 

relating to risk can be mapped to identify key regulators4. We extend our previous analysis4 

to map onto the network all genes that are associated with the known breast cancer GWAS 

loci5. We found that the transcription factors (TFs) regulating the genes linked to risk loci 

cluster within the network, suggesting potential commonality of mechanisms. We also show 

that the same TFs are frequently mutated in breast cancer. Our analysis provides insight into 

the gene regulatory circuits operating in breast cancer and has implications for treatment and 

for the identification of novel therapeutic targets. The approach can be applied in any other 

settings where data from GWAS, large-scale genotyping and gene expression are available.

Results

Mapping of breast cancer risk loci to regulatory networks

Briefly, our analysis builds a regulatory network and then asks for each regulon in the 

network whether the genes within it are linked to more risk loci than would be expected by 

chance. In a subsequent step we examine whether the risk regulons, and the TFs driving 

them, cluster in the overall network.

First we created a regulatory network for breast cancer using the ARACNe algorithm3,4 

which defines regulons (possible target genes) for a set of curated TFs. Each TF-regulon is 

composed of all those genes whose gene expression data display significant mutual 

information with that of a given TF and are therefore likely to be regulated by that TF. We 

previously validated the functional significance of these regulons using ChIP-seq data and 

TF-knock-down studies4. Regulatory networks were inferred using separate analyses on 
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gene expression data from the METABRIC cohort I (n=997) and II (n=995)6. Within each 

network regulons overlap because many genes are regulated by more than one TF. We 

confirmed that copy number variation does not significantly impact the network structure 

(Supplementary Note, Supplementary Fig. 1).

Secondly, we identified regulons enriched for genes associated with risk loci using EVSE 

(eQTL-conditioned variant set enrichment)4. GWAS identify risk loci, marked by tagging 

SNPs that may themselves not be causative. Therefore each tagging SNP was expanded into 

an associated variant set (AVS)7 that includes all SNPs in strong linkage disequilibrium 

(methods). We then used variation in gene expression to determine which risk loci can be 

assigned to a given regulon using eQTL4 (expression quantitative trait loci; SNPs where 

allelic differences determine expression of a target gene). We used a multivariate eQTL 

analysis to test the association between the genotypes of the SNPs in each AVS, and, for 

each regulon separately, the expression of all the genes that lay within a +/− 250kb window 

around the AVS. If such an association was found, the locus was counted towards a mapping 

tally of the number of GWAS loci associated with genes in the regulon. Finally the statistical 

significance of the mapping tally was assessed by permutation analysis (methods, 

Supplementary Fig. 2). We refer to TFs whose regulons were significantly enriched as “risk-

TFs”.

We carried out the EVSE analysis independently for cohort I and II of the METABRIC 

cancer data set and identified 63 and 61 TFs, respectively, with significant enrichment 

scores, but none using the much smaller data set from normal tissue (Supplementary Fig. 3). 

Frequently, a single risk locus contributes to the mapping tally of many regulons. This can 

be driven by a single gene that is part of many regulons or by multiple distinct genes 

encoded at that locus contributing to the association with different regulons (Supplementary 

Note, Supplementary Figure 4). The regulons for 36 TFs were significant in both cohorts 

(Fig. 1a,b).

Validation of the risk-TFs

To gain confidence in the identification of the 36 risk-TFs, we tested the effects of changing 

the input GWAS data or regulons on the resultant enrichment score. The red box plots in 

Figure 1c show the average enrichment score for the 36 risk-TFs using eQTLs and regulons 

from METABRIC. When replacing the breast cancer GWAS data, we found that GWAS hits 

for bone mineral density (BMD), chronic lymphocytic leukaemia (CLL) or random SNPs 

did not give significant enrichment scores (Fig. 1c blue box plots). For prostate cancer 

GWAS loci the scores obtained were lower but still significant, probably reflecting 

similarities in these two hormone driven cancers8. When we replaced the regulons calculated 

from METABRIC with random regulons of similar size (Fig. 1c, grey box plots) none of the 

associations were significant. These results support the specificity and validity of the EVSE 

analysis. Our results were not confounded by population stratification (Supplementary Note, 

Supplementary Fig. 5). We did not find enrichment when using normal breast samples from 

METABRIC to calculate eQTLs (white box plot). This is possibly surprising, as one might 

expect inherited risk to be expressed in normal tissue. However, eQTL discovery is 

Castro et al. Page 3

Nat Genet. Author manuscript; available in PMC 2016 May 30.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



dependent on sample size9 and only 144 normal tissue samples were available in this data 

set.

Comparison of ARACNe/EVSE to other methods

We compared our analysis to alternative methods for the derivation of the network structure 

and expansion of tagging SNPs into AVSs and obtained very similar results (Supplementary 

Note, Supplementary Figures 6-8). We also compared our EVSE algorithm to analyses in 

which the multivariate eQTL step was replaced by a distance-based gene selection, or by 

using ‘pre-defined’ eQTLs10 from the same sample set (Supplementary Note, 

Supplementary Figures 9-12). EVSE identified more risk-TFs and showed better 

reproducibility than the other tested methods.

Risk-TFs are frequently mutated in breast cancers

To ask whether somatic and germline variation are associated with the same regions of the 

network, we examined the frequency of mutations and/or copy number changes affecting TF 

genes in data from the Cancer Genome Atlas (TCGA)11. Collectively our 36 risk-TFs have a 

significantly increased frequency of alterations compared to random genes (Fig. 1d; 

Supplementary Table 1) and are mutated at a similar frequency as annotated cancer genes for 

which mutations have been causally implicated in cancer12.

Confirmation of risk association using ChIP-seq data

To validate that our risk-TFs are indeed associated with the regulation of GWAS loci we 

examined ChIP-seq data13 that was generated for TF-eGFP fusion proteins, driven from 

endogenous sequences in MCF-7 cells. We used these data in a variant set enrichment (VSE) 

analysis7 to test whether risk-TF binding sites are enriched at risk SNPs. Our analysis 

correlated the position of TF binding sites with risk AVSs. ChIP-seq data were available for 

9 of our 36 risk-TFs and were compared to 9 low-risk TFs chosen from the EVSE analysis. 5 

out of the 9 high-risk TFs, but none of the low-risk TFs (Fig. 2a,b), yielded a significant 

enrichment score. The signal in this analysis is likely to be relatively low since fusion 

proteins rather than the native TFs were assayed. When we used ChIP-seq data obtained 

with anti-FOXA1 and anti-ESR1 antibodies, much higher enrichment scores were obtained 

(Fig. 2c), corroborating previous results7. CEBPB binding was also enriched at breast cancer 

risk loci (Fig. 2c). Some of the TFs, such as AR and PPARD, are expressed at very low 

levels in MCF-7 cells. We therefore tested whether AR binding sites were significantly 

enriched for GWAS hits in the cell line MDAMB453, which belongs to the molecular 

apocrine subclass14 and expresses high levels of AR. Figure 2d shows that after AR 

activation, AR targets yield significant enrichment scores in this cell line. Collectively, the 

ChIP-seq experiments strongly support our conclusion that the risk-TFs play a role in 

regulating transcription at risk SNPs.

Confirmation of risk association by master regulator analysis

Estrogen and FGFR2 signalling pathways are known to be associated with breast cancer 

risk. We examined differential gene expression in response to estrogen and FGFR2 

signalling in three ER+ breast cancer cell lines: MCF-7, T47D and ZR751. Using a master 
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regulator analysis (MRA)15 (methods) we identified MRs consistently associated with these 

responses (Supplementary Note, Supplementary Table 2) and found a high prevalence of 

risk-TFs amongst the MRs, providing further support that our risk-TFs are indeed 

functionally related to breast cancer risk.

Clustering of risk-TFs and clues to function

To examine whether the different risk-TFs converge on common mechanisms, we used 

ARACNe to calculate the breast cancer regulatory network and mapped onto this network 

the p-values for risk-association (shown in orange to red) using METABRIC cohort I. The 

network was visualised by the degree of overlap of regulons (Fig. 3, Supplementary Fig. 13). 

The enriched regulons mostly cluster together, suggesting that the risk-TFs share biological 

function.

To refine the clustering analysis and look for clues to biological function, we extended the 

RTN16 package (methods) to include the direction of association between any TF-target 

gene pair using Pearson correlation. For all pairs of TFs with a target gene in common, the 

correlation values were used to assess whether the TFs regulated shared target gene in the 

same direction (up or down), or in different (opposite) directions (Fig. 4a-c). This analysis 

was carried out for all TFs in our regulatory network, and the correlation heat map was used 

in unsupervised clustering to generate the dendrogram depicted above the matrix (Fig. 4d). 

The position of the 36 risk-TFs is highlighted by the black bars below the dendrogram.

Figure 4e shows an enlargement of the analysis for just the 36 risk-TFs. They fall into two 

distinct groups with high correlation within each group: Gene targets shared between two 

TFs in the same group are regulated in the same direction by both TFs, whereas gene targets 

shared between a TF in one group and a TF in the other, are regulated in opposite directions, 

suggesting the existence of two distinct regulatory groups of TFs able to oppose the effects 

of the other. The two groups of TFs are highly expressed in ER+ and ER− tumours 

respectively (Fig. 4f). Bootstrap analysis demonstrated that the split into two distinct groups 

is extremely stable (Supplementary Fig. 14). The behaviour of shared gene targets was 

mirrored in the correlation between the expression of the TFs themselves, but with much 

weaker signals (Supplementary Fig. 15a-c). This may reflect the difference between the 

regulatory activity of a TF, influenced by post-translational regulation and the presence of 

interacting factors, and the level of TF expression.

With respect to the intrinsic breast cancer subtypes, group 1 TFs are highly expressed in 

luminal A and B subclasses, while group 2 TFs are highly expressed in basal tumours. Her2 

and normal-like tumours showed more heterogeneous gene expression patterns 

(Supplementary Fig. 16). Given this distribution, we tested the enrichment of each regulon 

for genes upregulated in ER+ or ER− tumours using MRA (methods). We split each regulon 

into activated and repressed targets and found that group 1 positive targets were enriched in 

the ER+ gene signature, whilst the negative targets were enriched in the ER− signature (Fig. 

4e, bar above the matrix). Group 2 generated the opposite pattern, demonstrating that each 

group of TFs is associated with gene expression changes in both tumour subtypes, but with 

opposite effects.
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Identification of clusters associated with known breast cancer subtypes—The 

dendrogram generated in Figure 4d was used to draw a tree and leaf diagram (Fig. 5a) 

representing the 555 TFs whose regulons in cohort I were of sufficient size to be analysed in 

the EVSE pipeline. Colouring of regulons indicates p-values for risk association. While 

some risk-TFs occur scattered throughout the diagram, two distinct clusters emerge: cluster 

1 (enlarged in Fig. 5b) corresponds closely to group 1 in the previous analysis. These TFs 

include those important for the FGFR2 and estrogen response and also correlate with the 

TFs highly expressed in luminal A and B subtypes. Group 2 TFs are somewhat more 

dispersed throughout the tree, but there is clear clustering around the TFs YBX1, CBFB, 

NFIB, TRIM29 and SOX10, labelled as cluster 2 (Fig. 5c). Another branch in this node 

contains the risk-TFs CEBPB and TBX19.

A literature survey confirmed that TFs in cluster 2 are primarily associated with basal-like 

breast cancer. We therefore tested whether a gene signature for basal tumours17 was linked 

to cluster 2 using MRA. Of the six consensus MRs for basal-like cancers obtained from the 

METABRIC cohorts (Supplementary Table 3), the two most strongly associated TFs map to 

this cluster (SOX10, TRIM29). PLAGL1 also maps to cluster 2, but none of the basal-like 

cancer MRs fall within cluster 1.

Given the high differential expression of these clusters of TFs in ER+ and ER− tumours, we 

carried out the EVSE analysis separately in ER+ and ER− tumours. Risk-TFs for ER+ 

tumours map to both cluster 1 and 2 (Fig. 5 d-e, Supplementary Fig. 17), reinforcing our 

previous observation that both groups of risk-TFs can play a role in ER+ and ER− tumours, 

most likely with opposite effects. Both clusters were also marked by a VSE analysis using 

pre-defined eQTLs for ER+ tumours or using different network construction tools 

(Supplementary Fig. 18, Supplementary Table 4). An EVSE analysis with ER− tumours 

found very few, non-reproducible risk-TFs (not shown).

Activity of cluster 1 and 2 TFs in primary cells—Next we examined the expression 

patterns of our risk-TFs in primary cell populations isolated from the normal human 

mammary gland. Gene expression patterns for three luminal cell populations have previously 

been described18: an EpCAM+ CD49f− population highly enriched in ER+ cells that express 

high levels of luminal cell differentiation markers; ER− EpCAM+ CD49f+ ALDH+ cells that 

function as alveolar precursor cells; and ER− EpCAM+ CD49f+ ALDH− luminal cells that 

have a phenotype intermediate between the EpCAM+ CD49f− and the ER− EpCAM+ 

CD49f+ ALDH+ subpopulations. Figure 5f lists the risk-TFs that showed differential gene 

expression across these three populations (adj p-value <0.05). Eight cluster 1 TFs were 

overexpressed in the ER+-enriched population while several cluster 2 TFs (Fig. 5f, 

Supplementary Fig. 19a) were overexpressed in ER− EpCAM+ CD49f+ ALDH+ alveolar 

progenitors. The ALDH− population showed an intermediate pattern. Myoepithelial and 

stromal cells showed no clear expression pattern for the clusters (Supplementary Fig. 19b). 

The gene expression patterns seen in the ALDH+ versus the ER+-enriched primary cell 

population are reminiscent of that seen in basal-like versus luminal cancers.

Functional analysis of cluster 2 TFs—We examined the effect of siRNA knock-down 

of cluster 2 risk-TFs (NFIB, YBX1, CBFB and TBX19) in the ER− (MCF10A) and ER+ 
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(ZR751) cell lines. In MCF10A cells, siRNA-targeting of YBX1 strongly reduced 

proliferation (Fig. 6a), and targeting CBFB, NFIB, TBX19 and LMO4 (Fig. 6a, 

Supplementary Fig. 20) all had a significant anti-proliferative effect. In contrast, repression 

of the cluster 2 TFs in ZR751 cells had either no or little effect on proliferation, whilst 

repression of FOXA1 strongly inhibited growth (Fig. 6b). Interestingly in ZR751 cells 

siNFIB led to a slight, but significant increase in proliferation, in keeping with the 

hypothesis that members of the two clusters have opposing effects.

Whilst a group of ESR1-cooperating factors was already well defined, our analysis has 

extended the ESR1-cluster and revealed a group of TFs opposing ESR1 function, likely to be 

important in regulating basal-like cancers and their precursors.

Regulon activity as prognostic read-out

The ESR1 regulon consists of estrogen-induced and estrogen-repressed genes in 

approximately equal proportions.4 Our current analysis suggests that the relative activity of 

these two groups of genes may be important for determining the phenotype of the cell. We 

therefore devised a 2-tailed GSEA (Fig. 7a,b; methods) in which positive and negative 

targets of the ESR1 regulon are considered separately to generate a differential enrichment 

score (dES) (methods) representing the activity of the regulon. We used this in a stratified 

survival analysis in the METABRIC data (Fig. 7c,d). We found a continuous spectrum of 

dES across the tumors, except near the transition between the active and repressed state of 

the ESR1 regulon, which was characterized by an abrupt change. There was a strong trend 

for better survival with a high dES. Interestingly, we identified a set of patients with 

histochemically ER+ tumours that had a repressed ESR1 regulon and a significantly worse 

outcome than those with tumours with an active ESR1 regulon (Fig. 7e,f, Supplementary 

Fig. 21). This is not apparent when stratifying by ESR1 gene expression alone 

(Supplementary Fig. 22). We also tested the effect of tamoxifen treatment on the activity of 

the ESR1 regulon in MCF-7 cells using 2-tailed GSEA. As expected, we found that estrogen 

induction of steroid-starved MCF-7 cells led to a strong activation of the ESR1 regulon (Fig. 

7g). However with estrogen plus tamoxifen treatment, the ESR1 regulon was shifted towards 

a more repressed state than with estrogen alone (Fig. 7h). This finding suggests that 

tamoxifen, while inhibiting proliferation, may also push luminal tumours to a more basal-

like state19.

Discussion

Our goal was to develop a network-based approach to understand how the effects of multiple 

GWAS loci combine to influence susceptibility. We derived a TF-centric regulatory network 

for breast cancer and asked by eQTL analysis which regulons were enriched for an 

association with confirmed breast cancer GWAS loci. We identified 36 regulons that were 

enriched in both of two separate analyses. The TFs controlling these regulons are frequently 

mutated in breast cancer, implying a convergence of germline and somatic events in the 

etiology of breast cancer. Many of the risk-TFs are master regulators of pathways associated 

with breast cancer risk, such as estrogen and FGFR2 signalling. Within the regulatory 

network, almost all of the risk-TFs clustered around a group of TFs already known to be 
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central to breast cancer risk: ESR1, FOXA1, GATA3 and SPDEF4,7. This clustering supports 

the functional significance of the newly identified risk-TFs and suggests that risk-TFs share 

regulatory mechanisms.

The validity of the ARACNe/EVSE analysis was confirmed through extensive comparisons 

to other methods. The 36 identified risk-TFs were specific for hormone-driven cancer and 

could be validated experimentally. The EVSE analysis avoids the multiple testing problems 

of unrestrained eQTL calling and was therefore able to identify more risk-TFs than other 

methods. However, as in other analyses10, we identified eQTLs for only a minority of 

GWAS loci. Our method utilised gene expression data from breast tumours. Yet, our 

hypothesis is that inherited variation exerts its effects on normal tissue, and indeed on 

specific cell types within that tissue. To detect this, improved, context-specific methods for 

eQTL identification20,21 are required. The EVSE analysis we have developed can provide a 

general approach to interpret GWAS data in the context of regulatory networks.

Considering the direction (up or down) of the response of shared target genes revealed two 

distinct clusters of risk-TFs: those in cluster 1 whose positive targets were overexpressed in 

ER+ cancers, and those in cluster 2, whose positive targets were overexpressed in basal-like 

ER− cancers. However, the inverse also holds true: cluster 2 TFs repress genes associated 

with ER+ cancers, and cluster 1 TFs repress those associated with ER− cancers. Therefore 

both clusters of TFs are likely to be important for the establishment of ER+ and ER− 

tumours, albeit with opposing effects. This is supported by GWAS results, where the 

majority of loci confer risk for both ER+ and ER− disease22. Furthermore, our EVSE 

analysis using only ER+ tumours identified risk-TFs from both clusters.

Some cluster 1 TFs have previously been reported as critical for ER+ disease23-25 (ESR1, 

FOXA1, GATA3, SPDEF). We confirmed these and added more validated risk-TFs: XBP1, 

RARA and AR. XBP1 and ESR1 gene expression is highly correlated in laser 

microdissected breast tissue26 and RARA cooperates with ESR1 to drive estrogen-induced 

transcription27. Recent data suggest that in ER− apocrine tumours AR is able to replace the 

function of ESR1, leading to a luminal-like gene expression profile28. The identification of 

XBP1, RARA and AR as risk-TFs fits the overall framework that estrogen-driven gene 

expression is the predominant determinant of luminal breast cancer risk.

Cluster 2 comprises YBX1, CBFB, NFIB, TRIM29, SOX10, CEBPB and TBX19, all highly 

expressed in ER− tumours. Of these, our functional assays identified YBX1, NFIB and 

CBFB as important for proliferation in ER− cells in culture. Existing literature links 

individual TFs in cluster 2 to basal-like breast cancer29-32, which is associated with 

increased aggressiveness, metastasis and epithelial-to-mesenchymal transition (EMT). Here 

we suggest a network of cooperating TFs important in determining this cancer subtype. The 

link of cluster 2 TFs to basal-like breast cancer is further supported by increased binding at 

GWAS loci by CEBPB, a TF required for lobuloalveolar development33 whose loss is 

associated with EMT34.

The most striking aspect of cluster 1 and 2 TFs is the opposing regulatory effect they exert 

on their target genes. We postulate that this mutually exclusive activity reflects the decision 
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of a progenitor to commit to either an ER+ ductal or an ER− alveolar cell fate. In line with 

this hypothesis we find that in primary human mammary cell populations18, those 

representative of ER− alveolar progenitors show differential upregulation of cluster 2 TFs, 

whilst ER+ luminal cells display higher expression of cluster 1 TFs (Fig. 8). Recent genetic 

tracing experiments have shown that the ER+ ductal progenitors and ER− alveolar 

progenitors are self-renewing in the mouse mammary gland35,36,37. The differential 

expression of risk-TFs in these two self-renewing populations may suggest that these are the 

populations where risk genes are effective and cell transformation occurs. In line with this, 

transcriptional profiles of basal-like tumours most resemble that of ER− alveolar 

progenitors38,39, while luminal A and B tumours phenocopy ER+ ductal cells39-41,18. 

Furthermore, the ER− alveolar progenitor population is expanded in BRCA1 mutation 

carriers39, which are predisposed to develop ER− breast cancer.

The opposing activity of two distinct networks of TFs has not previously been reported, but 

is consistent with studies carried out for individual TFs. For example, ELF5, an important 

inducer of alveolar differentiation42 can reduce estrogen sensitivity in ER+ cell lines43. 

FOXA1 in combination with GATA3 and ESR1 can specify an estrogen-responsive 

phenotype24, and, conversely, is able to repress the basal phenotype44. The concept of 

antagonism between TFs, led us to the 2-tailed GSEA analysis of the ESR1 regulon (Fig. 7). 

Of potential clinical relevance, the analysis identifies a subgroup of histochemically ER+ 

patients in whom the ESR1 regulon is functionally in a repressed state and in whom anti-

estrogen treatment might not be effective. Our results also highlight the possibility that 

repression of cluster 1 TFs may lead to a shift in cell state towards more basal-like cancer, 

that is potentially associated with a more aggressive tumour phenotype and resistance to 

therapy. Better understanding of the interplay of the key regulators will be critical for 

optimal therapeutic strategies.

In summary, we have shown that EVSE analysis, together with gene regulatory networks, 

can identify key regulators that may influence disease risk. The analysis can be applied to 

any combination of GWAS loci for which eQTLs can be interrogated, not just those for 

which the causative SNPs and genes are already known. For breast cancer, the risk-enriched 

regulons include many driven by TFs already implicated in breast cancer, but many others 

that were not. The mutual antagonism of the two identified clusters of risk-TFs provides 

novel insights into their interactions, with potential clinical implications.

Online Methods

Computational Analysis

ARACNe/EVSE analysis—Regulons were calculated based on mutual information using 

the ARACNe algorithm3. Of the 809 TFs3 tested, we were able to assign regulons to 555 

TFs in cohort I and 635 in cohort II of the METABRIC data set. The EVSE analysis has 

been described before4 and here we extended our previous computational pipeline (RTN16) 

to allow the testing of all regulons defined in the network. Supplementary Figure 2 illustrates 

the steps and data sets used in this analysis. In more detail, EVSE was carried out using the 

72 breast cancer risk SNPs identified by Michailidou et al.5. For most of these GWAS loci 

neither the causative SNP nor the potential target genes are known. To deal with the former, 

Castro et al. Page 9

Nat Genet. Author manuscript; available in PMC 2016 May 30.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



the top hit at each locus (tagging SNP) was expanded into an AVS including all SNPs with a 

D′> 0.99 and a LOD>3.0 (Supplementary Fig. 2a), following the previously published VSE 

method7. This approach gave similar results to those obtained using r2 to expand the tagging 

SNP into the AVS (Supplementary Fig. 8). To identify potential target genes at each GWAS 

locus, we used gene expression and genotyping data in a multivariate eQTL analysis4. When 

considering multiple GWAS loci in a single analysis, the number of potential target genes 

may vary strongly for each GWAS locus to be analysed, making statistical comparisons 

between them difficult. For this reason we carried out a single multivariate eQTL analysis at 

each GWAS locus, asking whether there is an association of any of the SNPs in the AVS and 

the expression of any of the genes in a given regulon in a window of +/− 250kb around the 

AVS (Supplementary Fig 2b,c). (For each AVS only those SNPs for which genotyping data 

was available in METABRIC were considered in the analysis.) If a positive association was 

found, the locus was counted towards a mapping tally (Supplementary Fig. 2d) as described 

by Cowper Sal Iari et al7. In a subsequent step statistical significance was assessed 

(Supplementary Fig. 2e). To reduce the cost of the computational analysis when 

interrogating many regulons, we ran a low resolution analysis to remove obviously non-

significant regulons (RTN package16). For all remaining regulons the EVSE analysis using 

breast cancer GWAS hits was tested against a null distribution based on random 

permutations of the AVS (that is, matched random variant sets). These distributions were 

normalised and centred around the null to obtain the enrichment score, which is the number 

of standard deviations that the observed mapping tally deviates from the null mapping mean. 

From these null distributions p-values were calculated. To gain confidence in our results we 

used cohort I and II of the METABRIC data set separately and only considered regulons that 

were significant in both cohorts. Where different GWAS results were tested (BMD, prostate 

cancer and CLL), each GWAS set was controlled with the appropriate number of random 

SNPs. As threshold for significance a Bonferroni correction was applied.

eQTL analysis—We performed a cis-eQTL analysis for cohort I and cohort II breast 

cancer samples generated by the METABRIC study6. The analysis largely followed that by 

Li et al10. We required probes to map to one of the RefSeq genes according to the annotation 

data obtained from the R package illuminaHumanv3.db45. Probes that map to genes in the 

highly polymorphic human leukocyte antigen region were excluded from the analysis. Genes 

with low expression levels (within 10% quantile of all expression values) were removed. 

Probes mapping to the same gene were treated independently in the eQTL analysis.

Copy number values for each gene of each sample were estimated from the segmented copy 

numbers by averaging the copy number of all segments that fall into the region of the gene 

while using the length of the copy number segments as weights. Gene expression levels were 

adjusted for copy number effects, using the equation

where, Ti is the measured gene expression, CNi is the copy number value, βi is the 

regression coefficient and εi is the residual gene expression level of gene i.
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The eQTL analysis was performed using MatrixEQTL in R46 by correlating the genotypes 

of all remaining SNPs with the residual expression levels of proximal genes, i.e. genes 

within 1 Mb of the SNP. In the case that multiple probes map to a gene, all probes of that 

gene were tested separately. Finally, significant associations were selected based on a 

Benjamini-Hochberg False Discovery Rate (FDR) threshold of 0.1. Only SNPs with minor 

allele frequency (MAF) greater than 0.05 were tested. This is necessary because the effect of 

different genotypes on transcript levels cannot be evaluated if the genotypes at a given SNP 

locus are very homogeneous.

MRA analysis—The master regulator analysis uses a hypergeometric test to assess 

whether a gene list is enriched in a given regulon15. If significant the TF controlling the 

regulon is likely to be involved in the regulation of the gene list. Our experimental design 

compares resting with cycling cells and we therefore removed TFs that were also enriched 

with the Meta-PCNA signature47 (Supplementary Note).

VSE analysis—The variant set enrichment analysis was carried out as previously 

described7 using publically available data4,13,23 (GSE48930, GSE41995, E-MTAB-223, 

GSM1010889, E-MTAB-986). Briefly, VSE analysis tests enrichment of a chromosomal 

annotation, here TF-binding sites, at the AVSs. An overlap between a ChIP-seq peak and a 

SNP in the AVS is counted towards a mapping tally that is tested against random SNPs as in 

the EVSE.

Differential gene expression—Differential gene expression was assessed using 

limma48. Z-scores were obtained by comparing the gene expression values averaged across 

all cell populations in the analysis against averages of subgroups tested in each case. When 

determining significant differences in gene expression across primary cell populations, the 

following contrasts were examined: ALDH+ versus ALDH− cells, ALDH+ versus EpCAM+ 

CD49f− cells and ALDH− versus EpCAM+ CD49f− cells.

Two-tailed gene set enrichment analysis (GSEA)—GSEA49 assesses the skewed 

distribution of a selected gene set (S), here the ESR1 regulon, in a list of genes (L) ranked by 

a particular phenotype, in this case the differential gene expression observed when 

comparing a given tumour with the average expression for all METABRIC tumours. The 

enrichment score (ES) was calculated by walking down the list L, increasing by 1/|S| a 

running-sum statistic when encountering a gene in S and decreasing it by 1/(|L|-|S|) when 

encountering a gene not in S. The ES is the maximum deviation from zero. The two-tailed 

GSEA method is based on the Connectivity Map (CMAP) procedure50. The ESR1 regulon 

was derived by ARACNe from METABRIC cohort I and filtered using genefilter in 

Bioconductor51 to remove uninformative genes, about 15% of the regulon mostly of low 

variance. Feature selection is performed on cohort II and used to filter the regulon in cohort I 

and vice versa. The resultant regulon was split into two subgroups, positive targets (A) and 

negative targets (B) using Pearson’s correlation to assign directionality. The distribution of A 
and B was then tested by the GSEA statistics in the ranked phenotype, producing 

independent enrichment scores for each subgroup. An additional step calculated the 
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differential enrichment (dES=ESA-ESB). The two-tailed GSEA was performed in R using 

the function tni.gsea2 in the RTN package4,16 with 1000 permutations.

Survival data6 were used to plot Kaplan-Meier curves and p-values were calculated using the 

log-rank statistics. On the basis of dES values the patients fell into three groups: those with 

an active ESR1 regulon (dES>0 and ESA>0 and ESB<0), those with a repressed ESR1 

regulon (dES<0 and ESA<0 and ESB>0) and a small group in which the dES values were 

around zero (inconclusive, with ESA and ESB distributions skewed to the same side). The 

two large groups were further subdivided in half.

We tested the response of the ESR1 regulon to estrogen or estrogen plus tamoxifen treatment 

by applying the two-tailed GSEA to gene expression data from Hurtado et al.23 using the 

differential gene expression (estrogen versus vehicle and estrogen versus estrogen plus 

tamoxifen, GSE25316) as the phenotype to rank the gene list (L).

Cell culture

The human breast cancer cells MCF-7 and MDA-MB-453 (HTB 131; ATCC, USA) were 

cultured in DMEM (Invitrogen), ZR751 and T47D were cultured in RPMI (Invitrogen), all 

supplemented with 10% FBS and antibiotics, and MCF10A in DMEM, 5% horse serum, 

5ug/mL insulin, 1 ug/mL hydrocortisone, 100 ng/mL cholera toxin, 20 ng/mL EGF and L-

glutamine. Unless otherwise stated all cells were from the CRUK Cambridge Institute 

biorepository and maintained at 37°C, 5% CO2.

Chromatin immunoprecipitation (ChIP)

ChIP-seq experiments were carried out as previously described52. Cells were seeded at 

~70% confluence into 15-cm tissue culture dishes (4 per treatment). Following overnight 

attachment, cells were starved using base media containing 5% steroid-stripped FBS. To 

ensure steroid depletion prior to treatment, media was changed every day for 3 days; then 

cells were treated for 4 hours with vehicle control (ethanol), 5α-dihydrotestosterone (DHT; 

10nM), medroxyprogesterone acetate (MPA; 10nM). Cells were cross-linked and ChIP-seq 

performed using an AR antibody (N20; sc-816; Santa Cruz Biotech; 10 μg/IP) with 

subsequent data processing as previously described28. Two independent experiments were 

performed in each cell line and consensus AR chromatin binding events determined for each 

treatment condition.

Gene expression analysis after estrogen and FGF10 signalling

MCF-7 cells were plated at 5×105 cells/well in 6-well dishes and left in complete medium 

overnight. Cell synchronisation via estrogen-starvation was then carried out for three days in 

estrogen-free media (phenol red-free media supplemented with 5% charcoal dextran-treated 

FBS and 2 mM L-glutamine), with media changed every 24 hours. Estrogen-deprived cells 

were stimulated with 1 nM β-estradiol (E2; Sigma) or 100 ng/ml FGF10 (Invitrogen) in 

combination with 1 nM E2. 6 hours after cell treatment, total RNA was isolated from 3 

biological replicates, quality controlled and used for cRNA amplification and labeling using 

the Illumina TotalPrep-96 kit (Ambion). cRNA was hybridised to HumanHT-12 v4 

Expression BeadChips according to the manufacturer’s protocol (Illumina WGGX 
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DirectHyb Assay Guide 11286331 RevA). Raw image files were processed and analysed 

using the beadarray package from Bioconductor.

Transient transfection of siRNA

Cell lines were transfected with ON-TARGETplus SMARTpool siRNA (Dharmacon) 

directed against risk-TFs NFIB (L-008456-00), YBX1 (L-010213-00), CBFB 

(L-011602-00), LMO4 (L-012124-00), ELF5 (L-011265-02), TBX19 (L-011910-00) and 

SOX10 (L-017192-00). CEBPB was not included in the analysis as multiple distinct 

isoforms with opposing function may be present in the cell. A custom siRNA was used 

against FOXA123. Knock-down of mRNA was confirmed for each cell line by RT-PCR of 

cDNA 48 hours after transfection (Supplementary Fig. 20c) using the primer pairs shown in 

Supplementary Table 5. 1 μg of total RNA was reverse transcribed using the High Capacity 

cDNA Reverse Transcription Kit (Applied Biosystems) and qRT-PCR performed using 

cDNA obtained from 10 ng of total RNA. qRT-PCR was performed using an ABI 9800HT 

Sequence Detection System (Applied Biosystems) with SDS software version 2.3. 

Amplification and detection were carried out in 384-well Optical Reaction Plates (Applied 

Biosystems) with Power SYBR Green Fast 2× qRT-PCR Mastermix (Applied Biosystems). 

All expression data were normalised to DGUOK expression. Primer-specificity was 

confirmed at the end of each qRT-PCR run through the generation of single peaks in melt-

curve analysis. siRNA against SOX10 did not cause a reduction in mRNA levels and was not 

examined further. A control non-targeting pool of siRNAs (D-001810-01-05) was included 

in each experiment. Transfections were carried out using Lipofectamine RNAiMax Reagent 

(Invitrogen), according to manufacturer’s protocol. Growth was measured in 96-well plates 

using the IncuCyte (Essen BioScience) system every 3 hours. 8 wells were averaged for each 

experiment and at least two repeats were carried out for each cell line (MCF10A n=3, 

ZR751 n=2). The results of knock-downs for TFs in cluster 2 that are not consensus risk-TFs 

are shown in Supplementary Fig. 20). Statistical analysis was carried out using the 

compareGrowthCurves command in the statmod package53 in R, generating BY54 adjusted 

p-values.

Code availability

The source code developed in this study is publicly available from the Bioconductor55 in the 

R packages RTN4 and RedeR56 and the relevant URLs are listed in the appropriate section.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. EVSE-based identification of 36 risk-TFs
Lists of 36 TF-regulons identified in the EVSE analysis, showing enrichment score and p-

value based rank order of risk-TFs for METABRIC cohort I (a) and II (b). The tagging SNP 

for each breast cancer GWAS hit5 is listed above the panel, together with the number of 

markers (SNPs in the AVS for which genotypes were available in METABRIC) for each 

locus. The matrix shows each multivariate eQTL test with a significant result as a grey box. 

Mapping tallies are summed on the right of the matrix. Box plots show the normalized null 

distributions of the enrichment scores (box: 1st–3rd quartiles; bars: extremes). Solid and 
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open red diamonds highlight enrichment scores that satisfy a Bonferroni-corrected threshold 

for significance of P<0.01 and P<0.05, respectively. P-values are based on null distributions 

from 1,000 random AVSs. (c) Computational validation of EVSE analysis for cohort I and 

II. Averages of enrichment scores obtained in the EVSE analysis using different GWAS data 

sets (breast cancer (BCa), prostate cancer (PCa), bone mineral density (BMD) or chronic 

lymphocytic leukaemia (CLL) or random SNPs) shown along the x-axis, using different 

regulons and eQTLs (origin indicated by colour). The grey dotted line highlights the 

Bonferroni-corrected threshold (P<0.05). (d) Mean aberration frequency of the 36 risk-TFs 

compared to sets of 36 random genes (empirical p<0.001, boxplot whiskers extend to the 

99th percentile of the random distribution with 10,000 random sets). Aberration frequencies 

for sets of random TFs and cancer genes12 are also shown.
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Figure 2. Enrichment of risk-TF binding sites at breast cancer GWAS loci
VSE analysis7 of the cistrome of (a) 9 risk-TFs and (b) 9 non-risk TFs defined in the EVSE 

analysis for which ChIP-seq data was available13 in MCF-7 cells. Cells were transfected 

with BAC-fusion proteins (BAC-FP) of the relevant TF and eGFP and grown in full medium. 

Antibodies against eGFP were used in these ChIP experiments. VSE tallies that yielded a 

significant enrichment score are shown in dark grey, those that did not in light grey. (c) VSE 

analysis of ChIP-seq experiments using α-ESR1, α-FOXA1 and α-CEBPB antisera in 

MCF-7 cells. Cells were grown in full medium (FM). (d) VSE analysis of ChIP-seq data for 

AR using the molecular apocrine cell line MDAMB453 stimulated as indicated with DHT: 

5αdihydro-testosterone; MPA: medroxyprogesterone acetate or vehicle treated or grown in 

full medium. Box plots show the normalized null distributions (box: 1st–3rd quartiles; bars: 

extremes). Diamonds show the corresponding VSE scores, either in black or in red for 

mapping tallies that satisfy a Bonferroni-corrected threshold for significance (P<0.01). P-

values are based on null distributions from 1,000 random AVSs.

Castro et al. Page 19

Nat Genet. Author manuscript; available in PMC 2016 May 30.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 3. Regulatory network for breast cancer, showing clustering of breast cancer risk
The network is depicted on the basis of the overlap of regulons, with risk association shown 

in yellow to red (based on cohort I of METABRIC). The 36 consensus risk-TFs identified in 

both cohorts are labelled. The colouring of the edges (shown in light green to blue) indicates 

the overlap as measured by the Jaccard coefficient (JC) and the size of circles represents the 

size of each regulon. Only regulons with JC ≥ 0.4 are shown in the diagram. All regulons 

and a heatmap depicting the overlap of the regulons of risk-TFs is shown in Supplementary 

Figure 13. BCa risk: Bonferroni adjusted p-values obtained for each regulon when 

calculating the enrichment with breast cancer GWAS loci in the EVSE analysis, using cohort 

I for calculating the network and eQTLs. P-values are based on null distributions from 1,000 

random AVSs.
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Figure 4. Correlation of expression of targets shared between TF pairs in breast tumours
(a-c) Correlations of gene expression between a given TF and its targets were plotted for 

three different TF-TF pairs as indicated. Above each panel a cartoon depicts the observed 

interactions. Red circles indicate co-activation, blue circles co-repression. Targets are shown 

in grey if the two TFs have opposing effects on the target. (d) Heat map of the correlation of 

gene expression for targets shared by any pair of the 555 TFs (cohort I, METABRIC) whose 

regulons were of sufficient size to be analysed in the EVSE pipeline. Unsupervised 

clustering was applied to this correlation heat map resulting in the dendrogram shown at the 
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top of the plot. The black bars depict the 36 risk-TFs, which fall into two distinct clusters. 

(e) Enlargement of the correlation heat map for the risk-TFs only. Above the matrix a bar 

with yellow to red colouring depicts the results (BH adjusted p-values) of a MRA analysis 

for the enrichment within each regulon of positive and negative targets that are upregulated 

in ER+ or ER− tumours, respectively, in cohort I of the METABRIC samples. The panel to 

the left of the matrix shows the master regulators identified for the FGFR2 and E2 

responses. (f) Relative gene expression levels of the risk-TFs in ER+ or ER− tumours in 

cohort I of the METABRIC samples: expression levels were averaged in all ER+ and all ER− 

tumours and compared to expression levels averaged across all samples. TFs are shown 

ranked by differential gene expression between ER+ and ER− tumours.
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Figure 5. Tree and leaf representation of correlation matrix reveals two clusters of risk-TFs
(a) Tree and leaf representation of the dendrogram depicted in Figure 4d, where branches 

represent the arms in the dendrogram. The size of regulons is represented by circle size as 

indicated and Bonferroni adjusted p-values for EVSE enrichment of regulons for breast 

cancer GWAS loci in cohort I are shown in colour. Only consensus risk-TFs are labelled. (b) 

Enlargement of cluster 1 and (c) cluster 2 of the correlation heat map. All TFs present in 

these clusters are labelled, independent of risk association. (d-e) EVSE analysis showing 

enrichment score and p-value based rank order of the 36 risk-TFs for cohort I (d) and cohort 
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II (e) using only ER+ tumours from the METABRIC dataset. The mapping tallies are shown 

in Supplementary Figure 17. (f) Relative gene expression levels of the risk-TFs that are 

differentially expressed in a comparison of three primary human luminal mammary cell 

populations18 as listed (P<0.05; BH adjusted from limma comparisons, see methods). 

Expression (Z-score) in each subpopulation is calculated relative to the average in the three 

populations analysed, and ranked by differential expression between the ALDH+ and 

ALDH− cell population.
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Figure 6. Effects of risk-TF knock-down on cell proliferation
Growth curves for (a) ER− cell line MCF10A and (b) the ER+ cell line ZR751 after transient 

transfection of the siRNAs as indicated. Cells transfected with a scrambled siRNA were 

included as a control. Error bars depict the standard error of the mean of 8 wells each in a 

minimum of two independent experiments (methods). The statistical analysis (insets) 

compares the growth curves using 100,000 simulations, with p-values adjusted by the BY 

correction method.
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Figure 7. The ESR1 regulon as read-out of cell state
(a and b) Examples of two tumours for which 2-tailed GSEA was carried out. The ESR1 

regulon is split into targets activated by ESR1 (red bars) and targets repressed by ESR1 (blue 

bars). GSEA is carried out for each group. The running enrichment scores are shown. The 

differential enrichment scores (dES) are obtained by subtracting the maximal deviation from 

zero for the running enrichment score for repressed targets from that obtained for activated 

targets. (c) dES calculated for all tumours in METABRIC cohort I. Black bars indicate the 

ER status, PAM50 subclass and tumour grade for each of the tumours analysed. (d) Kaplan-

Meier survival curve for disease-specific survival for each of the tumour subgroups 

highlighted in c. The number of patients in each section is listed, with the number of patients 

who died in brackets. (e and f) Kaplan-Meier survival curves for immunohistochemically 

ER+ tumours in cohort I and II, respectively, of the METABRIC patients comparing those in 

which the ESR1 regulon is in an activated state (dES>0 and ESA>0 and ESB<0) to those 

with repressed ESR1 regulons (dES<0 and ESA<0 and ESB>0). (g and h) 2-tailed GSEA in 

MCF-7 cells activated by estrogen (E2) or estrogen plus tamoxifen. Phenotypes were 
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defined as differential gene expression between estrogen and vehicle treated cells (g) or 

between estrogen plus tamoxifen and estrogen (h) treatment.
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Figure 8. Schematic model of mammary gland cell populations
In this model we show the predominant expression of cluster 1 versus cluster 2 risk-TFs with 

respect to the cell populations found in the mammary gland and the cancer subtypes that 

arise from them. In the normal mammary gland all three populations have self-renewal 

capacity. Claudinlow tumours were originally classified as basal in the PAM signature, but 

are likely to represent a separate lineage arising from myoepithelial cells40. Basal-like 

cancer is thought to arise from alveolar progenitor cells, (The somewhat misleading term 

‘basal-like’ reflects the fact these tumours not only express epithelial, but also mesenchymal 

cell surface markers that are also highly expressed in the myoepithelial lineage located near 

the basal membrane.) and luminal A/B cancer from ER+ precursors.
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