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Abstract: A computational study on the origin of the activating effect for Pd-catalyzed directed
C–H activation by the concerted metalation-deprotonation (CMD) mechanism is conducted. DFT
calculations indicate that strong acids can make Pd catalysts coordinate with directing groups
(DGs) of the substrates more strongly and lower the C–H activation energy barrier. For the CMD
mechanism, the electrophilicity of the Pd center and the basicity of the corresponding acid ligand for
deprotonating the C–H bond are vital to the overall C–H activation energy barrier. Furthermore, this
rule might disclose the role of some additives for C–H activation.

Keywords: directed C–H activation; concerted metalation–deprotonation mechanism; acid effect;
electrophilicity; basicity

1. Introduction

Transition metal-catalyzed C–H activation to synthesize diverse organic molecules
from simple hydrocarbon derivatives has emerged as a powerful tool for C–C and C-
heteroatom bond formation and has received significant attention in recent years [1–7].
However, regioselectivity and reactivity have remained the most significant challenges in
this active research field. Therefore, different strategies, especially directed C–H activa-
tion strategies, have been developed to improve regioselectivity and reactivity for C–H
activation [8–21]. The directing groups (DGs) on substrates can chelate the metal catalyst
and guide it to a specific position. Strong coordinating DGs usually contain strongly
coordinating atoms, such as nitrogen, phosphorus, or sulfur atoms. They could widely
promote C–H activation functionalization [22–24]. However, strong coordinating DGs are
challenging to remove from the final products, limiting the utility of this strategy. Weak
coordinating DGs (e.g., ketones, carboxylic acids, and ethers) are commonly occurring
functional groups on the substrates and usually have much lower reactivity for C–H acti-
vation reaction [25–30]. Yu and co-workers have established several strategies to overcome
the low reactivity of C–H activation by weak coordination, such as using counter cation
effect, auxiliaries and monoprotected amino acid ligands [31–35]. Although impressive
progress has been made, the scope of application of these strategies is still limited [36,37].
Using strong acid is also a widely used strategy to promote C–H activation; for example,
palladium(II)-catalyzed ortho-selective C–H chlorination/bromination has demonstrated
that proper strong acids (TFA, TfOH) could promote the reactivity of ortho-selective C–H
bond cleavage (Schemes 1 and 2) [25–30,38–40]. These experimental results showed that
higher catalytic activity occurred in reactions with lower pKa value acids.

The activating effect of a strong acid on Pd(II)-Catalyzed directed C–H activation has
been known for a long time. Many kinds of C–H functionalization can be promoted by TFA
or TfOH, such as carboxylation, [41] olefination, [42] arylation, [43,44] fluorination, [45]
carbonylation, [46] trifluoromethylation, [47] amidation, [48] and oxygenation [49,50].
However, current understanding of the nature of strong acid-assisted C–H activation is
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still limited [51,52]. Fujiwara proposed that strong acid as a solvent facilitates the gener-
ation of highly cationic species([PdX]+) through ligand exchange (Scheme 3), which are
very electrophilic. Cyclopalladium intermediates can be formed through the electrophilic
aromatic substitution (SEAr) of the C–H bond [53]. Other researchers have had a similar
opinion to Fujiwara regarding the activating effect of strong acid [41–50].
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Besides SEAr, other frequently proposed mechanisms for C–H activation, including
oxidative addition, σ-bond metathesis, and CMD mechanism, do not generate cationic
species ([PdX]+) [54–59]. The CMD mechanism has been widely accepted as the best
pathway for Pd-catalyzed C–H bond cleavage (Scheme 4) [60–65]. Therefore, we carried
out density functional theory (DFT) [66] studies to explore the origin of the activating effect
of strong acid on Pd-catalyzed directed C–H activation.
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2. Results and Discussion

Since C–H activation is usually involved in the rate-determining step (RDS), [8–50]
we hypothesized the relative free energy of transition states of C–H cleavage (∆GTS

6=) can
determine the reactivity. The CMD mechanism was chosen for C–H activation, which
usually has the lowest barrier among the frequently proposed mechanisms [57,58]. The
transition state for the SEAr mechanism could not be located (see Figure S1, Supplementary
Materials). Five substrates with different DGs were chosen; these substrates have previ-
ously been studied by experiments [38–40,49]. Trimeric [Pd(OAc)2]3 was chosen as the
reference point of DFT calculations [67–69]. X-ray crystallography has provided evidence
that when a strong acid such as TFA or TfOH is used, the OAc− in the palladium acetate
can be exchanged with TFA− or OTf− to form Pd(TFA)2 or Pd(OTf)2 [48,70–72]. As shown
in Figure 1, for all of the five substrates, the ∆GTS

6= using three different Pd catalysts is
in the same order: ∆GTS

6=[Pd(OTf)2] < ∆GTS
6=[Pd(TFA)2] < ∆GTS

6=[Pd(OAc)2]. The order
of reactivity is consistent with the experimental results, [38–40,73,74] indicating our DFT
calculation is reliable.
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Next, energy decomposition strategy was used to explore the origin of the activating
effect for directed C–H activation by strong acid [63,75–78]. As shown in Scheme 5, ∆GTS

6=

can be decomposed into two parts: ∆G1 and ∆G2
6=. ∆G1 is the reaction energy caused

by the coordination between the DG and the Pd catalyst. ∆G2
6= represents the energy

needed to proceed with the C–H activation from int1. This strategy can reflect how the
three different Pd catalysts influence ∆G1 and ∆G2

6=, respectively.
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6= can be decomposed into two parts: ∆G1 and ∆G2

6=. They represent coordinating
energy and C–H activation energy barrier respectively.

For all of the five substrates, the order of ∆G1 using the three different Pd catalysts
can be summarized as ∆G1[Pd(OTf)2] < ∆G1[Pd(TFA)2] < ∆G1[Pd(OAc)2] (see Figure 2a),
which is in the reverse order of electrophilicity of the Pd catalysts: Pd(OTf)2 > Pd(TFA)2
> Pd(OAc)2 [48]. For ∆G1, the conclusion can be drawn that the more electrophilic Pd
catalyst results in better coordination with DGs. For ∆G2

6=, all of the five substrates have the
consistent order: ∆G2

6=[Pd(TFA)2] < ∆G2
6=[Pd(OTf)2] < ∆G2

6=[Pd(OAc)2] (see Figure 2b).
The order of ∆G2

6= is different from that of ∆G1, and the C–H activation energy barrier
of Pd(TFA)2 is the lowest. It was generally believed that a more electrophilic Pd catalyst
would result in a lower barrier for the C–H activation step in the past [41–50]. However,
our results do not support this belief: the electrophilicity of Pd(OTf)2 is strongest, but
its C–H activation energy barrier is not the lowest. Therefore, the reason why the C–H
activation energy barrier of Pd(TFA)2 is the lowest needs further study.
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Scheme 6. The electrophilicity of the metal center and the basicity of the acid ligand in the (a)
intramolecular model and (b) intermolecular model.

As shown in Figure 3, sub5 was chosen as an example for the intermolecular model
study. In each row, the Pd catalyst in the three TSs is the same, but with three different
external acid ligands, i.e., OAc−, TFA− and OTf−. From each row, we can see how the
basicity of acid ligands influences ∆G2

6=. In each column, the external acid ligand in
the three TSs is the same, but with three different Pd catalysts, i.e., Pd(OAc)2, Pd(TFA)2,
Pd(OTf)2. From each column, we can see how electrophilicity of the Pd catalysts influences
∆G2

6=. The three diagonal transition states, which have the same external acid ligand and
the ligand of Pd catalysts, are most similar to our intramolecular mechanism.
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For each row, the C–H activation energy barrier of the intermolecular model decreases
with increasing basicity of the external acid ligand. The Pd(X)2_OAc transition states have
the lowest energy barrier. The energy differences between the OAc− and TFA− ligands
are about 4.6 and 6.3 kcal/mol, and the similar gaps between the TFA− and OTf− ligands
are about 5.6 and 6.8 kcal/mol. For each column, the C–H activation energy barrier of
the intermolecular model decreases with the increasing electrophilicity of the Pd catalyst,
and the Pd(OTf)2_X transition states have the lowest energy barrier. The energy difference
between the Pd(OAc)2 and Pd(TFA)2 catalysts is about 13.9~15.8 kcal/mol, much larger
than the gap of 2.1~3.1 kcal/mol between the Pd(TFA)2 and Pd(OTf)2 catalysts. Therefore,
the Pd(OTf)2_OAc transition state with the strongest basicity of the OAc− ligand and the
strongest electrophilicity of the Pd(OTf)2 catalyst has the lowest energy barrier among the
nine intermolecular models.

However, for the three diagonal transition states with the same external acid ligand
and ligand of Pd catalysts, electrophilicity and basicity show an opposite trend. For
example, although the electrophilicity of the metal center in Pd(OTf)2 is the strongest, the
basicity of the acid ligand (OTf−) is the weakest. The Pd(TFA)2_TFA transition state has
the lowest energy barrier considering the influence of the external acid ligand’s basicity
and the Pd catalyst’s electrophilicity, consistent with the lowest C–H activation energy
barrier of Pd(TFA)2 in the intramolecular CMD process. According to the above discussion,
it can be concluded that for the CMD mechanism, the electrophilicity of Pd catalysts and
the basicity of acid ligands are critical to C–H activation.

Molecules 2021, 26, x 5 of 9 
 

 

From each column, we can see how electrophilicity of the Pd catalysts influences ΔG2≠. 

The three diagonal transition states, which have the same external acid ligand and the 

ligand of Pd catalysts, are most similar to our intramolecular mechanism. 

For each row, the C–H activation energy barrier of the intermolecular model de-

creases with increasing basicity of the external acid ligand. The Pd(X)2_OAc transition 

states have the lowest energy barrier. The energy differences between the OAc− and TFA− 

ligands are about 4.6 and 6.3 kcal/mol, and the similar gaps between the TFA− and OTf− 

ligands are about 5.6 and 6.8 kcal/mol. For each column, the C–H activation energy barrier 

of the intermolecular model decreases with the increasing electrophilicity of the Pd cata-

lyst, and the Pd(OTf)2_X transition states have the lowest energy barrier. The energy dif-

ference between the Pd(OAc)2 and Pd(TFA)2 catalysts is about 13.9~15.8 kcal/mol, much 

larger than the gap of 2.1~3.1 kcal/mol between the Pd(TFA)2 and Pd(OTf)2 catalysts. 

Therefore, the Pd(OTf)2_OAc transition state with the strongest basicity of the OAc− ligand 

and the strongest electrophilicity of the Pd(OTf)2 catalyst has the lowest energy barrier 

among the nine intermolecular models. 

However, for the three diagonal transition states with the same external acid ligand 

and ligand of Pd catalysts, electrophilicity and basicity show an opposite trend. For ex-

ample, although the electrophilicity of the metal center in Pd(OTf)2 is the strongest, the 

basicity of the acid ligand (OTf−) is the weakest. The Pd(TFA)2_TFA transition state has 

the lowest energy barrier considering the influence of the external acid ligand’s basicity 

and the Pd catalyst’s electrophilicity, consistent with the lowest C–H activation energy 

barrier of Pd(TFA)2 in the intramolecular CMD process. According to the above discus-

sion, it can be concluded that for the CMD mechanism, the electrophilicity of Pd catalysts 

and the basicity of acid ligands are critical to C–H activation. 

 

Figure 3. The relative free activation energies (kcal/mol) for the intermolecular models of sub5 

with three different Pd catalysts and three different anionic external acid ligands (OAc−, TFA−,  

TfO−). 

Figure 3. The relative free activation energies (kcal/mol) for the intermolecular models of sub5 with
three different Pd catalysts and three different anionic external acid ligands (OAc−, TFA−, TfO−).

Inspired by the lowest activation energy of Pd(OTf)2_OAc, we hypothesized that
C–H activation via an intermolecular CMD mechanism with a strong electrophilic Pd
catalyst and strong external base may be favored, and some experiments support our
hypothesis. In Yu’s work, the combination of Pd(OTf)2 and N-Methyl-2-pyrrolidone (NMP,
a stronger base than TfO−) is crucial for C–H fluorination [45]. Our calculations indicate
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that the NMP-assistant intermolecular C–H activation process is about 9 kcal/mol lower in
energy than the intramolecular C–H deprotonation by TfO− (see Figure 4a). Buchwald and
coworkers found that the combination of Pd(OAc)2/TFA and DMSO can improve the yield
of C–H arylation [44]. They proposed that palladium black formation could be slowed by
the addition of DMSO (10 mol%). Our calculations indicate that DMSO, a stronger base
than TFA−, can also promote intermolecular deprotonation (see Figure 4b). As shown in
Figure 4 and Figure S3 (Supplementary Materials), our calculations demonstrated that
the intermolecular mechanism is more favorable than the intramolecular mechanism
for the above two studies. Our findings might disclose the role of some additives for
C–H functionalization.
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3. Conclusions

In summary, the activating effect of strong acid for Pd(II)-catalyzed directed C–H
functionalization was investigated with DFT calculations. Our results were consistent with
previous experimental results and disclosed that the origin of the activating effect by strong
acid comes from two parts: ∆G1 (coordination energy between the DG and the Pd catalyst)
and ∆G2

6= (C–H activation energy). For the CMD mechanism, the electrophilicity of the Pd
center and the basicity of the related acid ligand for deprotonation of the C–H bond is vital
to the overall C–H activation energy barrier. This rule can be used to explain the role of
some additives for C–H activation. It is hoped that our study could be used to improve the
reactivity of some C–H functionalization reactions.

Supplementary Materials: Figure S1: The scan of C–H bond of cationic species ([PdOAc]+), Figure S2:
The relative free energy of different intermediates of sub2, Figure S3: The relative free energy barrier
of the intermolecular model.
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