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Abstract Biosphere is a store house of various microor-

ganisms that may be employed to isolate and exploit mi-

crobes for environmental, pharmaceutical, agricultural and

industrial applications. There is restricted data regarding

the structure and dynamics of microbial communities in

several ecosystems because only a little fraction of mi-

crobial diversity is accessible by culture methods. Owing to

limitations of traditional enrichment methods and pure

culture techniques, microbiological studies have offered a

narrow portal for investigating microbial flora. The bacte-

rial community represented by the morphological and nu-

tritional criteria failed to provide a natural taxonomic order

according to the evolutionary relationship. Genetic diver-

sity among the isolates recovered from mushroom compost

has not been widely studied. To understand genetic di-

versity and community composition of the mushroom

compost microflora, different approaches are now followed

by taxonomists, to characterize and identify isolates up to

species level. Molecular microbial ecology is an emerging

discipline of biology under molecular approach which can

provide complex community profiles along with useful

phylogenetic information. The genomic era has resulted in

the development of new molecular tools and techniques for

study of culturable microbial diversity including the DNA

base ratio (mole% G ? C), DNA–DNA hybridization,

DNA microarray and reverse sample genome probing. In

addition, non-culturable diversity of mushroom compost

ecosystem can be characterized by employing various

molecular tools which would be discussed in the present

review.

Keywords Microbial diversity � Cultivation dependent

approach � Non-cultivable approach � Sequencing

Introduction

Mushroom compost is an interesting example of ecosystem

with complex spectrum of microbial diversity. It is a rich

reservoir of microbial types, comprising mesophilic and

thermophilic bacteria, fungi and actinomycetes (Rawat and

Johri 2014). The mesophilic microflora forms the pioneer

community, while thermophiles represent the climax

community. Microbial biodiversity of compost is important

because it takes part in breakdown of organic material. The

fast-growing Pseudomonads and Arthrobacter constitute

the pioneer flora (Hayes et al. 1969; Stanek 1972) that

rapidly degrades high concentration of organic matter,

while Bacilli have been reported to be the dominant bac-

teria of not only mushroom compost (Libmond et al. 1995;

Agrawal et al. 2011) but also of other compost ecosystems

(Strom 1985).

Microbial community succession during composting is a

classical example of how the growth and activity of one

group of organism creates the condition necessary for the

growth of others (Agrawal 2014). Several generations of

microorganisms succeed each other during composting,

wherein each crop of microbial form utilizes the available
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material in the substrate as also the cellular component of its

predecessors for growth, spread and sustenance. The mi-

crobial abundance, composition and activity, changes sub-

stantially during composting; and compost maturity could be

correlated with high microbial diversity and low activity

(Ryokeboer et al. 2003). The study of community structure

and diversity has been instrumental in manipulating the

compost environment to quicken the composting process and

to improve compost quality (Peters et al. 2000).

Approaches to characterize and classify microbial com-

munities by cultivation methods have switched to the

molecular and genetic level. Cultivation-based techniques

have allowedmerely a glimpse ofmicrobial diversity as only

an estimated 1 %of the naturally occurring bacteria has been

isolated and characterized so far (Muyzer 1999). Chandna

et al. (2013) reported Kocuria,Microbacterium, Acidovorax

and Comamonas from agricultural byproducts compost us-

ing culture-based approaches. However, to understand better

the nature of bacterial communities associatedwith compost,

culture-independent molecular approaches based on se-

quencing of 16S rRNA genes were used to describe the

complete bacterial community composition; new genera

Kocuria, Microbacterium, Acidovorax and Comamonas

have been identified from the compost which can be used as

compost inoculants for accelerating the composting process.

Modern molecular approaches have revealed an extraor-

dinary diversity of microorganisms, most of which are yet

uncharacterized because of non-culturable nature of mi-

croorganisms. This poses a great challenge to microbial

ecologists. How could one compare the microbial diversity

of different environments when vast majority of microbial

taxa is usually unknown?Bohannan andHughes (2003) have

reported three statistical approaches to analyze microbial

diversity such as parametric estimation, non-parametric es-

timation and community phylogenetics which are proving to

be promising tools to meet this challenge. Parametric and

non-parametric estimation approaches are used to compare

operational taxonomic unit (OUT) richness among envi-

ronments, while phylogenetic approach compares evolu-

tionary diversity of organisms among environments.

Microbial biodiversity describes complexity and variability

among microorganisms at different levels of biological or-

ganization. It includes genes, species, ecosystems, evolu-

tionary and functional processes that link them (www.for.

gov.bc.ca/pab.publctns/glossary/b.htm). Microbial diversity

constitutes an extraordinary reservoir of life in the biosphere

that has only just begun to be explored and understood (Jain

et al. 2005). Huston (1994) had reported that highest diver-

sity occurred in communities where many different species

were present (richness) in relatively equal abundance

(evenness). Microorganisms represent a rich repertoire of

molecular and chemical diversity in nature as they comprise

the most diverse form of life. Torsvik et al. (2002) have

reported that more than 99 % bacteria from environmental

samples remain ‘unculturable’ in the laboratory. Many of

these unculturable bacteria represent new phylotypes,

families and divisions in domains bacteria and archaea.

‘Unculturable’ bacterial diversity presents a vast gene pool

for biotechnological exploitation and poses a major chal-

lenge to understand their phylogenetic relationship and

ecological significance. Understanding patterns of bacterial

diversity is of particular importance because bacteria may

well comprise the majority of earth’s biodiversity and me-

diate critical ecosystem processes (Cavigelli and Robertson

2000; Torsvik et al. 2002).

Polyphasic taxonomy: methods of studying microbial

diversity

Taxonomy is generally taken as a synonym of systematic

or biosystematics and is traditionally divided into three

parts: (1) classification, i.e., the orderly arrangement of

organisms into taxonomic groups on the basis of similarity;

(2) nomenclature, i.e., the labeling of the units defined in

(1), and (3) identification of unknown organisms, (Staley

and Krieg 1984), i.e., the process of determining whether

an organism belongs to one of the units defined in (1) and

labeled in (2). According to Vandamme et al. (1996), all

genotypic, phenotypic and phylogenetic information may

be incorporated in polyphasic taxonomy (Fig. 1). Species

diversity consists of species richness, the total number of

species present, species evenness, and the distribution of

species (Trevors 1998a, b; Overeas 2000). Methods to

measure microbial diversity in natural environment can be

categorized into two groups—phenotypic-based approach-

es and molecular-based approaches. It is difficult with

current techniques to study true diversity since we do not

know what is present and have no way of determining the

accuracy of extraction or detection methods. The following

review discusses in detail various molecular techniques and

strategies for analysis of microbial diversity in mushroom

compost. However, a brief summary of the phenotypic

methods has been included along with their merits and

demerits for comparison with the molecular methods, and

to elucidate significance of the modern-day approaches.

Phenotypic-based approaches for analyzing microbial

diversity

Plate count

Traditionally, diversity was assessed using the selective

plate method by Boulter et al. (2002) coupled with viable

counts. Direct counting by fluorescent microscopy is re-

ported to give 100–1000 times more than the number
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obtained by plate counting (Johnsen et al. 2001). These

methods provide information on the active, heterotrophic

component of the population (Trevors 1998a, b).

Carbon source utilization profile/community level

physiological profile (CLPP)/BIOLOG

Community level physiological profile is a culture-depen-

dent method of analyzing microbial communities. This

technique takes advantage of traditional methods of bac-

terial taxonomy in which bacterial species are identified

based on their utilization of different carbon sources. CLPP

has been fascinated by the use of BIOLOG which is now

widely available to assess functional diversity of microor-

ganisms in compost ecosystem (Garland and Mills 1991).

Fatty acid methyl ester (FAME) analysis

Phospholipid fatty acid (PLFA) analysis has been used as a

culture-independent method for assessing the structure of

microbial community. Determination of phospholipid fatty

acid (PLFA) profiles provides a broad diversity measure-

ment of microbial community at the phenotypic level

(Chayani et al. 2001). This method provides information on

the microbial community composition based on grouping

of fatty acids. Fatty acids are used as a chemotaxonomic

marker. This is a signature molecule which is present in all

living cells. In microorganisms, phospholipids found in cell

membrane are the key determinant for this purpose. Fatty

acids make up a relatively constant proportion of the cell

biomass and can differentiate major taxonomic groups

within the community. Therefore, change in the fatty acid

profile can represent change in the microbial population in

an environmental sample (Eiland et al. 2001) (Table 1).

Molecular-based approach for analyzing microbial

diversity

Traditional cultivation techniques for the enrichment and

isolation of microbes yield only a limited fraction of all

microorganisms present. Polymerase chain reaction (PCR)-

based molecular methods provide a fast and sensitive al-

ternative to conventional culture techniques. Molecular

methods are based on the analysis of single cells, opening

an opportunity to analyze the microbial community in its

full diversity. To study population structures and dynamics,

genetic fingerprinting techniques are required (Fakruddin

et al. 2013). To understand the diversity and community

composition of natural environment microflora, different

molecular approaches have been developed by taxonomists

that allow rapid profiling of microbial communities and

provide information about specific phylogenetic groups

present. PCR-based fingerprinting methods of microbial

communities consist of:

1. first, the extraction of nucleic acids

2. second, the amplification of rRNA/rDNA, and

3. third, the analysis of PCR products by fingerprinting

techniques (Fig. 2).

PCR-based approaches

Initially, molecular approaches for ecological studies relied

on cloning of target genes isolated from environmental

samples (DeSantis et al. 2007). PCR-based 16S rDNA

profile provides information about prokaryote diversity and

allows identification of prokaryotes as well as the predic-

tion of phylogenetic relationships (Pace 1996, 1997, 1999).

Therefore, 16S rDNA-based PCR techniques such as

Fig. 1 Molecular approach for analyzing microbial diversity
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denaturing gradient gel electrophoresis (DGGE), tem-

perature gradient gel electrophoresis (TGGE), single-strand

conformation polymorphisms (SSCPs), amplified riboso-

mal DNA restriction analysis (ARDRA), terminal restric-

tion fragment length polymorphisms (T-RFLPs) and

ribosomal intergenic spacer analysis (RISA). can provide

detailed information about community structure of an

ecosystem in terms of richness, evenness and composition

and can be used to compare different species present in a

sample such as compost (Rawat and Johri 2014).

Amplified ribosomal restriction DNA analysis (ARDRA)

Amplified ribosomal DNA restriction analysis (ARDRA) is

based on DNA sequence variations present in PCR-am-

plified 16S rRNA genes (Smit et al. 1997). The PCR pro-

duct amplified from environmental DNA is generally

digested with tetracutter restriction endonucleases (e.g.,

AluI and HaeIII), and restricted fragments are resolved on

agarose or polyacrylamide gels. Although ARDRA pro-

vides little or no information about the type of microor-

ganisms present in the sample, the method is still useful for

rapid monitoring of microbial communities over time, or to

compare microbial diversity in response to changing en-

vironmental conditions. ARDRA is also used for identify-

ing the unique clones and estimating OTUs in

environmental clone libraries based on restriction profiles

of clones (Smit et al. 1997)

Amplified ribosomal DNA restriction analysis

(ARDRA) is used to study the microbial diversity that re-

lies on DNA polymorphism. The technique of amplified

ribosomal DNA restriction analysis (ARDRA) is based on

repetitive units of nuclear ribosomal DNA (rDNA) con-

sisting of conserved coding and variable non-coding re-

gions. The coding and non-coding regions are amplified by

PCR, the amplicon is digested by restriction endonucleas-

es, and the restriction fragments are separated according to

their size using gel electrophoresis. Liu et al. (1997) also

have reported that PCR-amplified 16S rDNA is digested

with a 4-base pair cutting restriction enzyme. Pace (1999)

has reported that gel electrophoresis banding patterns can

be used to screen clones and used to measure bacterial

community structure. It has been reported that this is useful

for detecting structural changes in microbial communities

but not as a measure of diversity or detection of specific

phylogenetic groups (Liu et al. 1997). ARDRA is a sen-

sitive technique giving high resolution to provide reliable

genotypic characterization at the community level of

compost bacteria (Heyndrickx et al. 1996). This technique

has frequently been used to understand community struc-

ture from a variety of samples such as feathers (Tiquia

et al. 2005), bacteria present in the self-heating phase of

composting material (Koschinsky et al. 1999), and bacteria

present in the casing (Choudhary et al. 2009; Choudhary

2011).

ARDRA-ITS (also termed ITS-RFLP) uses the universal

primers ITS 1 and ITS 4 (White et al. 1990) which anneal

to the evolutionary stable 18S and 28S rRNA genes. This

attachment with conserved rDNA regions allows the in-

vestigation of fungi without prior knowledge of their

genome organization. The conserved domains are inter-

rupted by the non-coding variable internal transcribed

Table 1 Merits and demerits of microbiological/biochemical methods to study microbial diversity from mushroom compost ecosystem

Method Merits Demerits

Community level physiological profiling (CLPP) Classen et al.

(2003), Garland (1996), Garland and Mills (1991)

• Fast

• Relatively inexpensive

• Highly reproducible

• Differentiate between

microbial communities

• Site-specific carbon sources

can be used for the study

• Only represents culturable fraction of

community

• Represents only those organisms capable of

utilizing available carbon sources

• Represents metabolic diversity rather than

microbial diversity

• More suitable for fast-growing organisms

Fatty acid methyl ester analysis (FAME) Graham et al. (1995),

Siciliano and Germida (1998), Zelles (1999)

• Direct extraction from soil

can be done

• Specific organisms or

communities are followed

• No culturing of

microorganisms required

• Large amount of raw material is required in

case of fungal spores

• Can be influenced by external factors

Plate counts Tabacchioni et al. (2000), Trevors (1998b) • Fast

• Inexpensive

• Ease of handling

• Unculturable microorganisms not detected

• More suitable for fast-growing and non-

fastidious bacteria

• Fungi producing large amount of spores

overgrow other microbes
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spacers ITS I (between 18S and 5.8S) and ITS II (between

5.8S and 28S) which are informative for differentiation.

ARDRA-ITS exhibits differences at the species and sub-

species levels. Studies on indoor basidiomycetes are rare.

In T-RFLP, the stepwise strategy is to extract DNA from

bacterial communities, and use it as a template for PCR

amplification of desired gene(s); 16S rDNA is routinely

used for compost microbes, with appropriate primers. The

amplified DNA is digested with restriction enzymes and

the size of terminal fragment generated by each amplicon

is used for the estimation of bacterial community structure

of the compost without the need of sequencing the terminal

fragments (Choudhary et al. 2009). The abundance and the

size distribution of DNA fragments are used to estimate the

genetic diversity of bacterial community. However, this

method is not pertinent for the estimation of phylogenetic

positions of community members. T-RFLP analysis of

microbial community during composting revealed exten-

sive bacterial diversity. Molecular tools for the identifica-

tion of casing soil bacteria were used and 16S rRNA gene

analysis was intensively used to understand the phyloge-

netic relationships (Choudhary et al. 2009). For the 16S

rRNA gene analysis, amplified ribosomal DNA restriction

analysis (ARDRA) was performed. This molecular tech-

nique has been successfully used for bacterial community

analysis in a great variety of environments. Fifty casing

soil isolates, representing different cropping stages/envi-

ronmental niches (source location) including endotrophs,

were selected based on colony morphology and were

subjected to ARDRA analysis by the digestion of amplified

16S rRNA gene with TaqI, MspI, and AluI. The dendro-

gram of banding patterns was obtained after combination

of three independent digestions. The similarity value ran-

ged widely between 50 and 100 %. The first group was

represented by reference strains, viz., biovars of P. fluor-

escens I–V that showed 100 % similarity, whereas refer-

ence strain P. chlororaphis showed *60 % similarity with

biovars of P. fluorescens. Most groups showed 90–100 %

similarity with some groups delineated at 80–90 % simi-

larity level. This study examined the culturable bacterial

community comprising successive stages of casing soils

and endotrophs using ARDRA and 16S rRNA gene frag-

ment sequencing. Results show considerable diversity of

bacterial community in casing soils based on the large

number of ARDRA patterns obtained. Phylogenetic ana-

lysis revealed that 85 % of the bacterial isolates belonged
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to y-proteobacteria group and other isolates were bacilli. A

single isolate in this study was found to belong to the genus

Sphingobacterium. Two genera, Acinetobacter and Pseu-

domonas were dominant and were sole representative of

y-proteobacteria. Dominance of the genus acinetobacter

was of significance since this had not been reported earlier

from the mushroom casing ecosystem (Choudhary et al.

2009). A total of 46 bacterial isolates, representing differ-

ent stages of mushroom compost viz., pre-wetting, filling,

pasteurizing, conditioning, spawning and drenching, were

selected on the basis of structural and functional potentials

(Agrawal et al. 2011) and were subjected to ARDRA

analysis by the digestion of amplified 16S rDNA gene with

RsaI, and HaeIII. Dendrogram pattern obtained after the

combination of three independent digestions showed 11

groups. The similarity value ranged widely between 30 and

100 %. There were Groups 2, 4, 7, 9 and 10th that showed

100 % similarity among respective isolates. Most groups

showed 90–100 % similarity but some of them delineated

at 70–90 % similarity level.

Random amplification of polymorphic DNA (RAPD)

The analysis of randomly amplified polymorphic DNA

(RAPD) is based on the polymerase chain reaction (PCR)

using short (about 10 bases) randomly chosen single pri-

mers which anneal as reverted repeats to the complemen-

tary sites in the genome (Agrawal and Shrivastava 2013).

The DNA between the two opposite sites with the primers

at starting and end points is amplified by PCR. The am-

plification products are separated on gels, and the banding

patterns distinguish organisms according to the presence/

absence of bands (polymorphism). It is a peculiarity of

RAPD analysis that it discriminates at different tax-

onomical levels, viz., isolates and species, depending on

the fungus investigated and the primer used. Random

amplification of polymorphic DNA (RAPD) is a technique

that makes use of a single random primer at low stringency

for the amplification of polymorphic DNAs (Williams et al.

1990). The primer at low stringency anneals to the target

DNA at different sites whose sequences may not be exactly

complementary to the primer sequence. Several discrete

DNA bands are amplified upon annealing of primer in in-

verted orientation at distances suitable for amplification.

Although RAPD analysis is rapid and convenient it is not

reproducible, even small variations in the batch of Taq

polymerase or buffer may change the fingerprint. The

conditions for the direct amplification of DNA in natural

habitats by RAPD techniques therefore must be optimized

case-by-case, to take advantages and usefulness of the

technique. RAPD analysis of ITS region of 5.8S rRNA

gene from eight H. grisea isolates was carried out by

(Singh et al. 2005). Intra-specific diversity was visualized

in this region. Isolates within these species exhibit genetic

differences which were correlated with morphological

variation. The genetic variation exhibited by Torula–Hu-

micola complex has drawn considerable attention.

Straatsma and Samson (1993) studied the genetic diversity

among S. thermophilum isolates using RAPD analysis and

found that these exhibited distinct amplification pattern.

REP-PCR (BOX element)

Another method to obtain genomic DNA fingerprint of

bacteria is the repetitive extragenic palindromic-PCR (rep-

PCR). This PCR uses primers to match short consensus

repetitive sequences. Three different primers can be used

namely BOX (originally described in Streptococcus pneu-

moniae), ERIC (originally described in Salmonella ty-

phimurium) and REP (originally described in Escherichia

coli) (Gomez et al. 2000). Differences in band sizes rep-

resent polymorphism in the distance between the repetitive

elements of different strains. Repetitive extragenic palin-

dromic-PCR (rep-PCR) is a genotypic method that uses

oligonucleotide primers complementary to repetitive se-

quences dispersed throughout the genome of E. coli (Ver-

salovic et al. 1991). Using PCR, this method amplifies

diverse regions of DNA flanked by ‘rep’ sequences, lead-

ing to amplicon patterns specific for an individual E. coli

strain (Rademaker and de Bruijn 1997). The conserved

repetitive sequences are divided into four types: the repe-

titive extragenic palindromic (REP) sequences, the enter-

obacterial repetitive intergenic consensus (ERIC)

sequences, the BOX sequences and the polytrinucleotide

(GTG) 5 sequences (Versalovic et al. 1994). Five rep-PCR

methods, such as REP-PCR (primer sets Rep1R-I and

Rep2-I); ERIC-PCR (primer sets ERIC1R and ERIC2);

ERIC2-PCR (primer ERIC2); BOX-PCR (primer BOX

A1R); and (GTG)5-PCR [primer (GTG)5], are commonly

used for genotyping of different bacterial strains. The

BOX-PCR is the multilocus analysis and produces higher

degree of resolution among the isolates. The repetitive

sequences in the form of BOX elements are randomly lo-

cated within the whole genome and the BOX primers

amplify genomic regions between the two BOX elements.

Selenska-Pobell et al. (1995) reported distribution of these

repetitive sequences (BOX and ERIC) as nearly a true re-

flection of genomic structure and amplification of inter-

REP elements often detects similarities in a given group of

bacteria. It is anticipated that REP- and ERIC-like se-

quences are virtually ubiquitous in bacteria and facilitate

rapid molecular characterization by PCR-based finger-

printing (Versalovic et al. 1991). REP-PCR has been used

for the identification of bacteria since it provides genomic

fingerprint of chromosome structure which is considered

variable between strains (Choudhary et al. 2009). Both
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prokaryotic and eukaryotic genomes contain dispersed

repetitive sequences that range from 15 to several hundred

base pairs in length. These elements are non-coding but are

present in high copy number relative to the longer repeated

elements, which contain coding sequences. The inter-

spersed repetitive sequences described in bacteria are BOX

elements (154 bp), Rep sequences (386 bp) and ERIC se-

quences (124 bp). These sequences may be diagnostic and

allow differentiation down to the species or strain level. All

bacterial isolates recovered from different stages of

mushroom composting were subjected to REP-PCR ana-

lysis by BOX primer. A distinctive banding pattern was

observed in the BOX element. The dendrogram of banding

patterns based on UPGMA showed significant discrimina-

tory relationship among the isolates. A total of 14 groups

were formed for the 46 isolates used with 30–100 %

similarity. Isolates placed within nine groups showed

100 % similarity within any single group; four groups

showed 37–70 % similarity among respective isolates.

Two groups were quite distinct from other groups since

they had no similarity with other groups.

Ribosomal intergenic spacer analysis (RISA)/automated

intergenic spacer analysis (ARISA)

RISA and ARISA provide riobosomal-based fingerprinting

of the microbial community. In RISA and ARISA, the

intergenic spacer (IGS) region between 16S and 23S ri-

bosomal subunits is amplified by PCR, denatured and

separated on polyacrylamide gel under denaturing condi-

tions. IGS region may encode tRNAs and is useful for

differentiating between bacterial strains and closely related

species because of the heterogeneity of IGS length and

sequence (Ranjard et al. 2000; Fisher and Triplett 1999).

RISA provides a community-specific profile, with each

band corresponding to at least one organism in the original

community. The automated version of RISA is known as

ARISA and involves use of a fluorescence-labeled forward

primer, and ISR fragments are detected automatically by a

laser detector. ARISA allows simultaneous analysis of

many samples; however, the technique has been shown to

overestimate microbial richness and diversity (Fisher and

Triplett 1999). 16S rRNA sequences are highly conserved

among eubacteria (Woese 1987) and analysis of genetic

variation in this region is not appropriate to differentiate

strains within the species. Ribosomal Intergenic Sequence

Analysis (RISA) is also used for analyzing the species

composition in compost ecosystem (Saison et al. 2005). A

total change in fungal community structure in the initial

stage of composting was characterized by employing

F-ARISA and 18S rRNA gene cloning and sequencing

(Hansgate et al. 2004). This technique involves the analysis

of polymorphism of the length of intergenic spacer

between rrs (16S rRNA) and rrl (23S rRNA) genes, whose

sizes may vary from 50 bp to more than 1.5 kb depending

on the species. The subsequent sequencing of amplicons

can also allow taxonomic identification of specific

populations within a community.

Denaturing gradient gel electrophoresis (DGGE)/

temperature gradient gel electrophoresis (TGGE)

DGGE examines microbial genetic diversity based on the

electrophoresis of PCR-amplified 16S rDNA fragments in

compost (Muyzer et al. 1993). DGGE and TGGE were first

developed to detect point mutation in DNA sequences.

DNA is extracted from samples and amplified using PCR

with universal primers targeting part of the 16S or 18S

rRNA sequences. The 50-end of forward primer contains a

35–40 base pair GC clamp to ensure that at least some part

of DNA remains double stranded. Separation on a poly-

acrylamide gel with a gradient of increasing concentration

of denaturants (formamide and urea) will occur based on

the melting behavior of double-stranded DNA. Upon de-

naturation, DNA melts in domains, which are sequence

specific and will migrate differentially through the poly-

acrylamide gel. Molecules with different sequences may

have a different melting behavior, and will, therefore, stop

migrating at different positions in the gel (Muyzer and

Smalla 1998). After this, DNA bands in DGGE/TGGE

profiles can be visualized using ethidium bromide, SYBR

Green I, or silver staining, which are more sensitive than

others but also stain single-stranded DNA; however, which

can be digested by nuclease to reduce the interference.

DGGE/TGGE have been used widely in environmental

microbiology to study community complexity, monitor

population shifts, analyze enrichment cultures, isolate

bacteria, detect sequence heterogeneity of 16S rRNA ge-

nes/18S rRNA, compare DNA extraction methods, screen

clone libraries and determine PCR and cloning biases

(Muyzer and Smalla 1998; Nicolaisen and Ramsing 2002).

DGGE is used to detect non-RFLP polymorphism (Bode-

lier et al. 2000). This technique utilizes sequence variations

in PCR-amplified DNA fragments of identical length and

resolves them on the basis of differences in their mobility

in polyacrylamide gels containing gradient of a denaturing

agent (Muyzer et al. 1993). Initially, the fragments move

according to molecular weight, but as they progress into

higher denaturing conditions, each (depending on its se-

quence composition) reaches a point where DNA begins to

melt. This has been proven to be a valuable approach to

obtain 16S rRNA gene profiles to identify temporal and

spatial differences in bacterial community structure in

compost ecosystem (Takaku et al. 2006; Ishii et al. 2000).

When DGGE analyses of rRNA genes are combined with

hybridization using phylogenetic probes or with
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sequencing, assessment of the phylogenetic affiliation of

numerically dominating members of community can be

obtained. DGGE amplified 16S rDNA fragments have been

used to analyze microbial succession during the laboratory-

scale composting process of garbage (Ishii et al. 2000).

Kowalchuk et al. (1999) detected beta subgroup pro-

teobacterial ammonia oxidizer like sequences in the com-

mercial mushroom compost by separating the product of

PCR and RT-PCR by DGGE and identifying them by hy-

bridization with hierarchial set of oligonucleotide probes

designed to detect ammonia oxidizer like sequence cluster

in genera Nitrospira and Nitrosomonas. The succession and

phylogenetic profile of eukaryotic communities in the

composting process of rice straw were studied employing

DGGE followed by 18S rDNA (Cahyani et al. 2003).

Instead of using a gradient of the denaturant, TGGE uses

a uniform concentration of denaturant in the gel and tem-

perature is increased uniformly with time throughout the

electrophoresis. This may result in more easily repro-

ducible separations than those commonly obtained with

DGGE. The most active bacteria are detected by TGGE of

the rRNA amplicon obtained by RT-PCR (Felske et al.

1998). Bruns et al. (1999) have determined spatial and

temporal diversity of ammonia oxidizers in native, tilled

and successional soils using DGGE and TGGE. The ad-

vantage of DGGE and TGGE compared with T-RFLP is

that each amplicon (band) within a bacterial community

profile can be isolated and characterized by DNA se-

quencing. Thus, samples can be compared not only by their

profile patterns but selected components can also be clearly

identified. But, DGGE can only determine the microbes

that constitute up to 1 % of the total bacterial community

(Zoetendal et al. 2004). Therefore, the separation of am-

plicons by DGGE may not be perfect and amplifying-based

sequence analyses need careful interpretation (Nikolausz

et al. 2004).

Single-strand conformation polymorphisms (SSCPs)

Single-strand conformation polymorphism (SSCP) analysis

is a method used for detecting sequence differences of

single-stranded DNA (ssDNA) by non-denaturing poly-

acrylamide gel electrophoresis (PAGE). In general, the

SSCP process involves PCR amplification of the target

DNA, denaturation of the double-stranded PCR product

with heat and formamide (or other denaturants), and sam-

ple resolution by non-denaturing PAGE (Orita et al. 1989).

During electrophoresis, ssDNA fragments are expected to

fold into a three-dimensional shape depending mainly on

their primary sequence. Several authors have suggested

that even if the difference in the sequence between the

wild-type sample and a mutated fragment is just a single

nucleotide, a unique and distinct electrophoretic mobility

pattern will be adopted by each sequence. Therefore,

complex mixtures of DNA species of the same size can be

separated by non-denaturing PAGE into bands of different

mobilities, due to a difference in their predominant semi-

stable conformations. SSCP-PCR was developed to detect

novel polymorphisms or point mutations in DNA (Orita

et al. 1989). SSCP is a technique to distinguish DNA

molecules of the same size but of different nucleotide se-

quences using gel electrophoresis in non-denaturing poly-

acrylamide gels due to differences in mobility caused by

their folded secondary structure. PCR product of the same

size but different base sequences can be distinguished by

SSCP, which makes this method a promising tool for the

analysis of compost microbial community at the ribosomal

gene level (Rawat et al. 2005). The diversity of bacterial

and fungal communities in the compost was analyzed by

single-strand conformation polymorphisms (SSCPs) of

approximately 400 bp PCR products, which were amplified

with universal primer for 16S rRNA (bacteria) and 18S

rRNA (fungi), with compost DNA as a template. The

generated pattern showed succession of different members

of microbial community during self-heating phase (Peters

et al. 2000). Community succession during 18-day-long

mushroom composting revealed the presence of lactobacilli

at early stage of composting (Peters et al. 2000). This

technique is an alternative and possibly an improvement

over DGGE and TGGE. SSCP does not require the con-

struction of gradient gels thereby increasing the repro-

ducibility of gels. For TGGE, specific equipment is needed,

a temperature gradient incubation system for elec-

trophoretic gels. For SSCP, regular electrophoretic cham-

bers with temperature control can be used. Another

advantage of SSCP compared with DGGE/TGGE is that

compatible primers for SSCP are easier to design, since

consideration regarding the primer bias for the formation of

a GC clamp during the PCR process is not required

(Droffner and Brinton 1995).

PCR-independent approaches

Guanine plus cytosine (G ? C) content Difference in the

guanine plus cytosine (G ? C) content of DNA is used to

measure bacterial diversity of compost. Tiedje et al. (1999)

have reported that microorganisms differ in their G ? C

content and that taxonomically related groups differ only

by 3 and 5 % (Nusslein and Tiedje 1999). Thus, the frac-

tionation of total community DNA can be achieved by

density gradient centrifugation based on G ? C content.

The technique generates a fractionated profile of the entire

community DNA and indicates relative abundance of DNA

(hence taxa) as a function of G ? C content. The total

community DNA is physically separated into highly puri-

fied fractions, each representing a different G ? C content
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that can be analyzed by additional molecular techniques

such as DGGE/ARDRA to better assess total community

diversity. It provides a coarse level of resolution as dif-

ferent taxonomic groups may share the same G ? C con-

tent. G ? C analysis is not influenced by PCR biases and

since it includes all extracted DNA, and uncovers rare

members in microbial population.

DNA-reassociation kinetics and DNA:DNA hybridization

Whole-genome DNA–DNA hybridization (DDH) offers

true genome-wide comparison between organisms. A value

of 70 % DDH was proposed as a recommended standard

for bacterial species delineation (Goris et al. 2007).

Typically, bacterial species having 70 % or greater ge-

nomic DNA similarities usually have [97 % 16S rRNA

gene sequence identity. Although DDH techniques have

been originally developed for pure culture comparisons,

they have been modified for use in whole microbial com-

munity analysis. In DDH technique, total community DNA

extracted from an environmental sample is denatured and

then incubated under conditions that allow them to hy-

bridize or reassociate.

Nucleic acid hybridization is a process wherein two

DNA or RNA single chains (mono-stranded) from different

biological sources form a double catenary configuration,

based on contingent sequence homology between two

sources, resulting in DNA–DNA, RNA–RNA or DNA–

RNA hybrids. The purpose is identification or localization

of certain nucleic acid sequences (genes) in the genome of

some species. Two basic notions are used: the target

molecule representing the DNA, RNA or protein sequence

that has to be identified and the probe molecule that

identifies the target, by hybridization. When hybridization

takes place on a solid carrier, it is named as blotting and is

divided in three categories:

• Southern blotting where DNA molecules are identified

using DNA or RNA probes;

• Northern blotting where RNA molecules are identified

using RNA or DNA probes;

• Western blotting where protein sequences are identified

using specific antibodies.

DNA reassociation is used to measure genetic com-

plexity of the microbial community and has been applied

to evaluate environmental diversity. Total DNA is ex-

tracted from the environmental samples, purified, dena-

tured and allowed to reanneal. The rate of hybridization or

reassociation will depend on the similarity between DNA

sequences. (Theron and Cloete 2000) have reported that as

the complexity of diversity in DNA sequences increases,

the rates at which DNA reassociates decrease. Similarity

between communities of two different samples can be

studied by measuring the degree of similarity between

DNA through hybridization kinetics (Griffiths et al. 1999).

Nucleic acid hybridization using specific probes is an

important qualitative and quantitative tool in molecular

bacterial ecology (Clegg et al. 2000; Theron and Cloete

2000). This approach can be applied on extracted DNA,

or RNA, under in situ conditions. Oligonucleotide or

polynucleotide probes designed from known sequences

ranging in specificity from domain to species can be

tagged with fluorescent markers at the 50 end (Theron and

Cloete 2000). However, dot blot hybridization is used to

measure the relative abundance of a certain group of

microorganisms. It provides valuable spatial distribution

information on microbial community or environmental

samples to which microbial community similarity is

compared.

Broad-scale analysis of community DNA, using tech-

niques such as DNA-reassociation kinetics, provides in-

formation about the total genetic diversity in compost

microbial community (Torsvik et al. 2002). This approach

is based on the assumption that more complex denatured

DNA reassociates at a slower rate than less complex de-

natured DNA, and that the kinetics of reassociation is

proportional to the genomic complexity. The advantage of

this approach is that it may be the only means developed to

date by which total number of bacterial species within a

compost sample can be determined. Requirement of large

quantity of DNA in this technique is the main limitation

because it is technically difficult to obtain high DNA yield

from soil sample. DNA:DNA hybridization provides a

reasonably good means of comparing two microbial com-

munities, although it may suffer from the lack of sensitivity

that makes quantitative comparison of communities pos-

sessing similar structures difficult. Similarly, shift in GC

content can be used to detect changes in bacterial com-

munity but does not provide any information regarding

richness (number of species), evenness (relative abun-

dance) and composition of the microbial community

(Torsvik et al. 2002).

DNA microarrays

DNA microarrays have been used primarily to provide a

high-throughput and comprehensive view of microbial

communities in environmental samples. The PCR products

amplified from total environmental DNA are directly hy-

bridized to known molecular probes, which are attached on

the microarrays (Gentry et al. 2006). After the fluorescently

labeled PCR amplicons are hybridized to the probes,

positive signals are scored by the use of confocal laser

scanning microscopy. The microarray technique allows

samples to be rapidly evaluated with replication, which is a

significant advantage in microbial community analyses. In
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general, the hybridization signal intensity on microarrays is

directly proportional to the abundance of the target or-

ganism. The latest development includes application of

DNA microarrays to detect and identify bacterial species or

to assess microbial diversity (Cho and Tiedje 2001; Green

and Voordouw 2003). This rapidly characterizes the com-

position and functions of microbial communities because a

single array contains thousands of DNA sequences with a

possibility of very broad hybridization with wide identifi-

cation capacity. The microarrays can contain specific target

genes such as nitrate reductase, nitrogenase or naphthalene

dioxygenase to provide functional diversity information or

can contain ‘standard’ of environmental samples (DNA

fragments with less than 70 % hybridization) representing

different species found in the environmental sample (Green

and Voordouw 2003).

Reverse sample genome probing (RSGP)

RSGP is used to analyze microbial community composi-

tion of the most dominant culturable species. RSGP in-

cludes four steps: (1) isolation of genomic DNA from

pure cultures, (2) cross-hybridization testing to obtain

DNA fragments with less than 70 % cross-hybridization,

(3) preparation of genome arrays on a solid support, and

(4) random labeling of a defined mixture of total com-

munity DNA and internal standard. RSGP is a useful

approach when diversity is low, but several molecular

biologists face difficulty while assessing community

composition of diverse habitats (Green and Voordouw

2003) (Table 2).

Phylogenetic analysis and 16S rDNA gene sequencing

Taxonomy based on comparative phylogenetic analysis of

16S rRNA genes, first introduced by Carl Woese, presents

a radical departure from classical taxonomy. Cellular life

forms could be divided into three primary phylogenetic

domains: Archaea, Bacteria and Eucarya (Woese et al.

1990; Olsen et al. 1986). For microorganisms, molecular

data often provide considerable information because mi-

croorganisms such as bacteria simply do not have the di-

versity of form to make morphological characteristics

useful in establishing phylogeny. Aside from derivation of

taxonomies, phylogenetic analyses are important in iden-

tifying similarity between organisms, providing an ability

to understand physiology and ecology of non-culturable

species. PCR-based 16S rDNA profile provides informa-

tion about microbial diversity and allows identification of

microbes and prediction of phylogenetic relationships

(Pace 1997; Song et al. 2001). Initially, molecular ap-

proaches for ecological studies relied on cloning of target

genes isolated from environmental samples (Muyzer and

Smalla 1998). Therefore, 16S rDNA-based PCR techniques

such as DGGE, TGGE, SSCP, ARDRA, T-RFLP, RISA

and others can provide detailed information about com-

munity structure of various ecosystems in terms of diver-

sity, invariability and constitution and can be used to

compare species present in mushroom compost. Nucleic

acid sequencing provides larger discrimination than other

methods and better characterization of a particular member

of community (McCaig et al. 2001). 16S rRNA sequences

have been used most extensively to classify the biodiver-

sity. The difference in sequences can be used to construct a

phylogenetic tree (Swofford et al. 1996). The phylogenetic

approach for the systematic assessment of culturable mi-

crobial diversity up to the taxonomic level using nucleic

acid hybridization and 16S rDNA sequences analysis has

been of immense utility in the phylogenetic reformation of

the classification of prokaryotic organisms (Woese 1987).

A total of 40 isolates out of 46 were selected for 16S rDNA

partial sequencing. Blast database of NCBI was used to

compare the sequence of compost isolates with the known

16S rDNA sequences in the existing data base to search for

homogenous sequences in the gene bank (Altschul et al.

1997). The result obtained was confirmed by comparing the

information with ribosomal database project. The ClustalW

programme, from the European Bioinformatics Institute

(EMBL), was used to align the sequences through BLAST

(http://www.ncbi.gov/BLAST), FASTA (http://www.ebi.

ac.uk/FASTA 31), and ClustalW (http://www.ebi.ac.uk/

ClustalW1). All the sequences obtained from 40 isolates

were aligned with each other to determine genetic diversity

between the bacteria, isolated from mushroom compost.

Comparison of 16S rDNA sequence with reference strain

viz., A. baumannii AY847284, Alcaligene AY346136,

A. arilaitensis AY635865, B. cereus AB190065,

B. licheniformis AJ717380, B. pumilus AY294325, B. sub-

tilis AB190027, B. vallismortis AY484784, Ochrobactrum

sp. AJ920029 and S. maltophilia AJ131781, to which they

matched was performed. A consensus tree was drawn from

aligned sequences using DNAMAN version 4.0. All iso-

lates showed 49–100 % similarity among each other. On

the basis of 16S rDNA sequence homology tree, two major

clusters A and B at 67 % and one small cluster at 49 %

similarity level were found (Agrawal et al. 2011).

A variety of bacilli were reported by from various

phases of mushroom composting process utilizing a DNA

sequence-based approach (Rawat et al. 2005). Dominant

species included Bacillus licheniformis (AY871062),

Bacillus megaterium, Bacillus subtilis (AY940671) and

Alcaligenes sp. (AY871052) from the end of phase 1

compost; Bacillus cereus (AY871057) and Bacillus sub-

tilis (AY871054) from peak heat stage; Bacillus subtilis

(AY871059) from the end of phase II compost and

Bacillus pumilus (AY864923) from drenching. Thus, the
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appearance and disappearance of species of Bacillus

continued throughout the composting period. Other bac-

terial species sequenced were Arthrobacter arilaiti

(AY871060) from the drenching phase. The total DNA or

rRNA extraction from compost sample followed by 16S

(Prokaryotes) and 18S (eukaryote) analyses does not

however always reflect the presence of qualitative and

quantitative diversity (Gurtner et al. 2000; Ishii et al.

2000).

Conclusion

Microbial communities have great potential for temporal or

spatial change, and represent a powerful tool for under-

standing community dynamics in ecological context. Var-

iations in microbial community structure can influence

ecosystem process. This study defines the complexity of

microbial community dynamics and how it affects the

ecosystem process. Application of polyphasic approach

Table 2 Merits and demerits of molecular-based methods to study microbial diversity from mushroom compost ecosystem

Method Merits Demerits

Guanine - Cytosine (G+C) 
Analysis (Nusslein and Tiedje 
1999), (Tiedje et al. 1999)

� Quantitative.
� Not influenced by PCR 

biases.
� All extracted DNA  Included.
� Rare members of community 

are Included.

� Dependent on DNA extraction 
efficiency.

� Requires large quantities of DNA.
� Low level of resolution.

Amplified Ribosomal DNA 
Restriction Analysis (ARDRA) /
Restriction Fragment Length 
Polymorphism (RFLP) (Liu et al. 
1997), (Tiedje et al. 1999)

� Structural changes in 
microbial community can be 
detected.

� Complex Banding patterns obtained.
� PCR biases present.

Terminal Restriction Fragment 
Length Polymorphism (T-RFLP)
(Tiedje et al. 1999), (Dunbar et al. 
2000), (Osborn et al. 2000)

Highly reproducible.
Simpler banding patterns for 
analysis than RFLP.
Can be automated.
Large number of samples can be 
analyzed simultaneously.

� Dependent on DNA extraction 
efficiency.

� Type of DNA polymerase can 
increase variability.

� PCR biases present.
� Choice of universal primers / 

restriction enzymes influences 
fingerprint data

Ribosomal Intergenic Spacer 
Analysis (RISA)/Automated 
RISA (Fisher and Triplett 1999)

� Highly Reproducible.
� Automation possible (ARISA) � Large quantities of DNA required

Single Strand Conformation 
Polymorphism (SSCP)
( Lee et al. 1996), (Tiedje et al. 
1999)

� Rapid, Reliable and 
Reproducible.

� Large number of samples can 
be analyzed simultaneously.

� No gradient required.

� PCR biases present.
� More than one stable 

conformation possible for 
some ssDNA.

Nucleic Acid Reassociation & 
Hybridization ( Torsvik et 
al.1990a,b,), (Cho and Tiedje 
2001)

� Total DNA extracted.
� In situ study of DNA or RNA.
� Not influenced by PCR 

biases.

� Dependent on DNA extraction 
efficiency.

� Low sensitivity.
� Requires high copy number 

sequences for detection.

DNA hybridization Assays & 
DNA Microarrays (Hubert et
al.1999), (Cho and Tiedje 2001), 
(Greene and Voordouw 2003)

� Total DNA extracted.
In situ study of DNA or RNA.

� Not influenced by PCR 
biases.

� Use of DNA fragments 
increases specificity.

� Large number of genes can be 
analyzed.

� Accurate in low diversity 
communities.

� Only detect most abundant 
species.

� Culturing of the organisms 
required.

Denaturing & Temperature 
Gradient Gel electrophoresis 
(DGGE and TGGE) (Muyzer et al. 
1993), (Duineveld et al. 2001), 
(Maarit-Niemi et al. 2001)

� Rapid, Reliable and 
Reproducible.

� Large number of samples can 
be analyzed simultaneously.

� Dependent on DNA extraction 
efficiency.

� Only detects dominant species.
� PCR biases present.
� One band can represent more than 

one species (co-migration).
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(phenotypic and genotypic component) of bacterial diver-

sity, coupled to the utilization of phylogenetic analysis has

permitted deeper insights at subtle changes that result in

biological conditioning of compost to permit mushrooming

and also to suggest where artificial inocula can be used to

hasten the composting process and associated mushroom

yield. Although methods to study diversity (numerical,

taxonomic, and structural) are improving for both bacteria

and fungi, a clear association between diversity and func-

tion is still not known. It is generally thought that a diverse

population of organisms will be more resistant to stress and

more capable of adapting to environmental changes. Be-

sides the above, other tools have been used to characterize

the whole microbial community of mushroom compost

ecosystem to reveal microbial diversity and function.
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