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Abstract
Line patterns produced by lamellae- and cylinder-forming block copolymer (BCP) thin

films are of widespread interest for their potential to enable nanoscale patterning over

large areas. In order for such patterning methods to effectively integrate with current tech-

nologies, the resulting patterns need to have low defect densities, and be produced in a

short timescale. To understand whether a given polymer or annealing method might poten-

tially meet such challenges, it is necessary to examine the evolution of defects. Unfortu-

nately, few tools are readily available to researchers, particularly those engaged in the

synthesis and design of new polymeric systems with the potential for patterning, to mea-

sure defects in such line patterns. To this end, we present an image analysis tool, which

we have developed and made available, to measure the characteristics of such patterns in

an automated fashion. Additionally we apply the tool to six cylinder-forming polystyrene-

block-poly(2-vinylpyridine) polymers thermally annealed to explore the relationship

between the size of each polymer and measured characteristics including line period, line-

width, defect density, line-edge roughness (LER), line-width roughness (LWR), and corre-

lation length. Finally, we explore the line-edge roughness, line-width roughness, defect

density, and correlation length as a function of the image area sampled to determine each

in a more rigorous fashion.

Introduction
The ability of block copolymers (BCPs) to self-assemble into periodic structures, with periods
ranging from 5 nm to well over 100 nm, has prompted investigation into their potential appli-
cations for nanopatterning of integrated circuits,[1–4] bit-patterned storage media,[4–7] opti-
cal devices,[8,9] tissue interfacing,[10–12] and others. Lamellar or cylindrical domains of block
copolymers can be used to create linear structures,[13,14] both large[8,15] and small,[16] when
confined in one dimension as thin films on substrates with appropriate wetting characteristics.
[17–19] Such patterns can be used as lithographic masks through etching or as scaffolds to cre-
ate other nanostructured surfaces and materials.[20,21]
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For application in semiconductor fabrication, the International Technology Roadmap for
Semiconductors (ITRS) has, in its Directed Self-Assembly Critical Assessment (where the term
directed self-assembly is represented by the acronym DSA), identified challenges in 15 metrics,
including:[22] Feature sizes of under 10 nm, the ability to “add, exclude or trim individual
DSA. . .features with simple lithography”,22 a low degree of line edge roughness (LER, 3σ)<
0.6 nm, defect density less than 0.01 cm-2, and an annealing time of less than one minute. In
addition, surfaces require appropriate wetting characteristics and surface energies in order to
enable the process of self-assembly in the desired orientation with respect to the surface plane.
These metrics have been correctly identified as challenges as they are daunting goals, but they
represent very clear, quantified metrics that need to be attained. Lacking, however, is a unified
method of accurately determining each parameter ‘in the field’, with actual samples of surfaces
patterned via block copolymer self-assembly (vide infra).

Much of the work to optimize BCP DSA has been carried out with a narrow range of poly-
mers, namely polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA),[1,23,24] polysty-
rene-block-polydimethylsiloxane (PS-b-PDMS),[2,25–27] and polystyrene-block-poly
(2-vinylpyridine) (PS-b-P2VP).[10,14,28,29] Each of these polymers possesses favorable charac-
teristics for nanopatterning, but many other block copolymer systems still remain to be designed,
synthesized, and investigated, as the exploration of the space of possible systems, including struc-
tural classes and chemical motifs (monomers) is nowhere near complete[16,17,30–34] Dimen-
sions of polymer-space available for exploration include triblock, comb, or other architectures
[32–35] and topologies;[31] alternate chemical moieties such as silicon-containing polymers
other than PDMS,[36,37] and oxygen-rich groups such as oligosaccharides and poly(lactic acid);
[16] or tailoring polydispersity to modify morphological stability and domain sizes.[38–40] A
consequence is that there remains much to be explored synthetically in order to optimize pattern
formation, etch selectivity (or resistivity), polymer reactivity, surface energies, Flory-Huggins
parameters,[41] LER, and annealing conditions. In particular, there is a persistent analytical bar-
rier that synthetic chemists must overcome in order to readily determine whether their polymeric
creations may be applicable to novel DSA applications: they require access to a toolbox capable
of analyzing critical features such as the defect density, correlation lengths, and LER of their pat-
terns in order to determine whether their block copolymers have promise. The dearth of accessi-
ble tools remains a significant obstacle for the area of directed self-assembly.

Defects themselves also warrant a more in-depth investigation, which can only be achieved
by studying defects “in the wild”, in the actual nanopatterns as they progress through various
stages of annealing. While simulations can find matches to thin film defect structures,[42–44]
automated analyses of defects in block copolymer thin films in an experimental setting allow
access to statistical data about the frequency and distribution of various defects. Statistical data is
generally inaccessible viamodeling due to computational limits for defects beyond the simplest
examples.[42] Furthermore, for cylindrical block copolymer domains, defects do not always
have liquid crystal analogues,[43] rendering past defect-detection methods, originally developed
for patterns formed in liquid crystal thin films,[45] inappropriate. Hence identification of struc-
tures beyond simple counting of disclinations and dislocations[46] would be advantageous.

Computerized analyses that are widely used to study images of BCP patterns include to
determination of periodicity using azimuthally averaged fast Fourier transform (FFT) images,
[47] image filtering and regional analysis of domain orientation using FFTs[48] and defect den-
sity measurements. Less commonly measured is LER.[49] Rarely, however, are more than one
or two methods packaged together in a published work, which leaves unanswered questions
since there is typically a trade-off between factors such as defect density, orientation, nano-
structure spacing, line-width, line-width roughness (LWR), LER, and correlation length (i.e.,
grain size). Initially, in the course of investigating the process of microwave annealing of block
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copolymer thin films, we developed an in-house algorithm to quantify defects in block copoly-
mer thin films, utilizing particle analysis and skeletonization to identify defect features.
[28,50,51] Later, while analyzing density doubled cylindrical line patterns, a separate process
for measuring the LER was created, which was limited to analyzing nearly-straight segments of
nanowire structures.[29]

To remedy the lack of a readily available and straightforward analytical tool, we developed
an accessible and free-to-download application for analyzing the defects in BCP thin films
using a combined particle and skeleton based analysis of the pattern, called Automated Defect
Analysis of Block Copolymers, or ADAblock for short (links to the tool provided in S1 Instruc-
tions). The application was constructed using the ImageJ platform, a free, open-source, Java-
based image analysis program, which provides a full and easy-to-understand output.[52,53]
The tool identifies not only the type(s) of defects found in a sample, but also quantifies the den-
sity of defects over a range of length scales, accompanied by additional information regarding
LER and LWR, as well as an alternate means of accessing the correlation length. In this work,
we screened the ADAblock application against a range of nanopatterns prepared via block
copolymer self-assembly and show the effects of polymer molecular weight on the defect densi-
ties of self-assembled BCP films. Additionally, we demonstrate how ADAblock can simulta-
neously track LER, defects, and correlation lengths. To our knowledge, no previous work
analyzing 2D block copolymer line patterns has brought together data on defects, LER, LWR,
and correlation lengths into one application or analysis. We believe that this omission is likely
due, in part, to the lack of readily available, widely applicable, easy-to-use tools for analysis,
and on occasion, may be a result of selection of the ‘makes-it-look-best metric’, rather than a
complete description of pattern quality over larger areas of the sample. In this paper, we show
how such data can ideally be combined to better describe line patterns derived from BCP
assembly in thin films. Images can be deceiving, and we hope that ADAblock will assist
researchers in avoiding pitfalls resulting from performing incomplete defect density analyses.

Results and Discussion
Examples of four different nanopatterns derived from BCP self-assembled templates are shown
in Fig 1. The patterns have been converted into easily visible platinum lines through a well-
described platinization of three different PS-b-P2VP BCPs;[14,28,29] the Pt nanolines are
derived from the P2VP blocks. Although these scanning electron micrographs (SEMs) are sim-
ilar in appearance, each is subtly different, and thus the question to be posed is how to distin-
guish one pattern from another and to determine which is more defective. As shown in Fig 1
and Table 1, the pattern in 1A has 30% more defect pairs than the patterns in Fig 1C or 1D.
Moreover, the correlation length of 1B is shorter than any of the others (in part due to the
shorter period). Additionally, in terms of the line edge roughness (LER), they all appear at first
glance to be quite smooth, but the measured roughness of these lines, as summarized in
Table 1, would put them out of contention for ITRS targets. With respect to LER, the values of
~ 4 nm are significantly larger than the maximum 0.6 nm suggested,[22] but the feature size
here is also ~2x larger than the 10 nm features sought by the ITRS; similarly, the defect density
is ~10,000 times higher than ITRS goals. However the present samples lack any features to
guide alignment, as is the case with graphoepitaxy, which assists in significantly lowering the
observed defect density.[28,44,54]

Outline of the analysis
The analysis is briefly outlined in Fig 2, breaking down the ADAblock sequence into eight
broad stages. Details of each stage are provided in detail, vide infra. The first stage is simply the
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representation of the original SEM image, which must be smoothed to reduce noise, while
retaining all features of interest. Next, the smoothed image is thresholded, in order to produce
a binary image from which data like area, perimeter, and shape can be determined. Next, the
period and line-widths are calculated, followed by particle analysis to determine the shapes of
the binary objects and to classify line and dot features. The line features identified are then iso-
lated and converted into a skeleton, from which the connectivity can be determined. This
resulting structure is groomed and then analyzed for defects. Lastly, the data is recorded and
confirmation images are produced for user inspection. All stages noted in the text correspond
to the stages represented diagrammatically in Fig 2.

Fig 1. Sample SEM images for Pt line patterns derived from 3 different PS-b-P2VP polymers. The following molecular weights correspond to the
polystyrene-block-poly(2-vinylpyridine) block copolymers used: (A) 44k-b-18.5k, (B) 32.5k-b-12k, (C & D) 50k-b-16.5k. Units are in kg/mol, hence 44k is 44
kg/mol. The first three images are taken at 50,000x magnification; the fourth at 25,000x. The orange scale bars all represent 200 nm.

doi:10.1371/journal.pone.0133088.g001

Table 1. Data for each of the four panels in Fig 1, including period, LER, LWR, correlation length, and defect density.

Image Magnification Polymer Period LER (3σ) LWR (3σ) Correlation Length Defect Density

A 50k 44k-b-18.5k 41.4 4.2 6.8 41.5 140

B 50k 32.5k-b-12k 29.9 3.3 5.1 93.7 76

C 50k 50k-b-16.5k 38.5 5.3 9.2 70.1 187

D 25k 50k-b-16.5k 38.6 6.7 10.2 73.8 174

Units are in nm, except for defect density, which is given as defect pairs per μm2. Line-edge roughness (LER) is given as three times the standard

deviation (3σ) in the edge position, relative to the center of the line; line-width roughness (LWR) is three times the standard deviation (3σ) in the width of

the line.

doi:10.1371/journal.pone.0133088.t001
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Stages 1 and 2: Input of original image and smoothing. In order to extract information
regarding defect density and LER (above, Table 1), a number of factors must be taken into
account. Starting with the image itself, basic parameters must be adapted to (1) the image reso-
lution [for instance, determination of how many nanometres are represented by each pixel

Fig 2. A brief visual outline of the analysis undertaken by the ADAblock application, broken into 8
major stages in sequential order. (1) The original SEM image; (2) Smoothing of the image to reduce noise;
(3) Thresholding the image to produce a binary image suitable for particle analysis; (4) Analysis of period and
line-widths in order to set parameters in subsequent analyses; (5) Particle analysis of the binary image to find
lines and dots; (6) Skeletonization of the lines; (7) Grooming and analysis of the skeletons; and (8) Compiling
visual and other data files for output.

doi:10.1371/journal.pone.0133088.g002
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(nm/px)]; (2) the contrast of the image, which can vary considerably image-to-image and
instrument-to-instrument; (3) image noise, which creates artifacts not inherent to the actual
structure under investigation; and (4) the period and line-width of the block copolymer. Given
the nature of block copolymer patterns typically observed, certain presumptions about the
structures observed within the images can be made. To begin, predominant structures within a
given image are primarily limited to dots, lines, and meshes. Classification into the basic fami-
lies of structures in turn constrains certain shape characteristics for the features. Additionally,
the period can be defined for a relatively narrow range (e.g. 20 to 40 nm for the samples
described here, but modifiable for a given system), as block copolymer samples for a given
image data set can be manually selected to those having similar period values. As preliminary
background data, the period of a pattern can be obtained via azimuthal averaging of the image’s
fast Fourier transform before application of ADAblock.[47] The first item, the image resolu-
tion, is frequently embedded within the image’s metadata and hence can be called by the pro-
gram or input by the operator. The preponderance of our BCP pattern images were obtained
using a Hitachi S4800 scanning electron microscope (SEM), which provided information in a
legend at the bottom of the image; the consistency of this feature also provided a means for
automated extraction of resolution parameters.

Combined with its high resolution and high throughput, SEM can be the ideal imaging tool
for BCPs, although it does have some drawbacks: For our work, smoothing was necessary due
to random noise, charging effects, and edge effects. In the case of SEM images, edges can pos-
sess enhanced brightness,[14,28,29,50] and white noise results in speckling of the image with
bright and dark pixels. Without some smoothing, such salt-and-pepper noise can result in
unwanted extra features. SEM owes much of its brilliance to edge effects, which result in objects
protruding from the surface (such as Pt nanowires on Si) appearing much brighter than sur-
rounding substrate.[14,28,29,50] Typically, smoothing images involves trial-and-error, but
linking the smoothing to the period of the pattern and the image resolution gives consistent
results: Gaussian and/or median filtering are automatically applied with filter radii calculated
in proportion to the period of the pattern to avoid under- and over-smoothing. Median filter-
ing typically is best, as it can preserve and even enhance the structure of the line pattern, as
shown in S1 Fig

Stage 3: Threshold to binary. In order to analyze the pattern, the two phases, each corre-
sponding to one of the blocks, must be clearly identified and separated by thresholding. This
assigns each feature in the image to one of the two phases, referred to herein as positive (i.e.
bright) and negative (dark). Contrast enhancement and thresholding typically requires manual
intervention as well. For SEM and atomic force microscopy (AFM) images, which are typically
used for block copolymer thin films and patterns, as well as helium-ion microscopy images, a
bimodal histogram is either typical or attainable given the nature of the pattern. Such a bimodal
histogram can occur either globally (i.e., over the whole image) or locally (over smaller sub-
regions); a suitable thresholding filter can be applied on either scale. Several “auto-local”
thresholding plugins are available for ImageJ; analysis of our images typically works best utiliz-
ing an auto-local threshold which applies Otsu’s clustering method[55] locally across the
image, however, other thresholds implemented in ImageJ are available options.[56] When the
surface is not uniformly covered by features (e.g. featureless regions), however, automated
thresholding can result in additional artifacts, hence subsequent steps are taken to remove
noise and incorrectly phased features.

Stage 4: Initial Line-Width Analysis. The first pieces of data that must be determined are
the dimensions. While period can be readily and automatically measured from azimuthally
averaged FFT patterns,[47] line-widths and spacings cannot be derived directly from the image
of the BCP nanopattern. Profile plots can make for easy manual measurement of these features
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when patterns are regular and aligned, but that is not always the case. Knowledge of the dimen-
sions is useful, even necessary, in contexts where the pattern is poorly ordered. Particle analysis
can measure the area and perimeter of each particle accurately. While Feret measurements (See
S2 Fig) work for simple particles, the tortuous nature of BCP “lines” calls for more nuanced
measurement. Imagine a spaghetti noodle shape confined in 2D; there exists a relationship
between the perimeter of the noodle’s edge and the area covered by the noodle. Using these eas-
ily measurable geometric quantities—particle area and perimeter—the width of lines can be
calculated, straightness and degree of branching notwithstanding. Provided there are enough
lines available, the particle area plotted as a function of perimeter is linear as shown in Fig 3;
the slope of the plot is half of the width of the line.

For lines without junctions and only uniform tips, perimeter, P, can be broken into

P ¼ 2Pt þ 2L ð1Þ

where Pt is the perimeter of each tip region (see Fig 3H) and L is the length of the main portion
of the line. The area can be calculated similarly

A ¼ 2At þ wL ð2Þ

where w is the width and At is the area of the line’s tip region. Area as a function of perimeter
can be calculated by substituting

L ¼ ðP � 2PtÞ
2

ð3Þ

into the area equation, giving

AðPÞ ¼ 2At þ
w
2
ðP � 2PtÞ ð4Þ

AðPÞ ¼ w
2
P þ ð2At � wPtÞ ð5Þ

As previously stated, the slope is 0.5w. For patterns where junctions rather than terminal
points are predominant, Pt becomes zero, and the intercept is positive (due to an additional
area term derived from the junction). In practice the contribution of the ends (thus intercepts)
is negligible relative to the segment lengths (L>> w) for images with junctions. With exclu-
sively semicircular terminal points or triangular junctions, one would expect intercepts of
-0.785w2 and 0.289w2 respectively. (See SI for calculation.)

Intermediate combinations can be avoided by temporarily excluding junctions and breaking
down the binary pattern into smaller, junctionless particles, as shown in Fig 3B. By excluding
the junctions, along with excessively small particles and sections of particles on the edge, a bet-
ter fit can be obtained, providing a better estimate of the line-width. (See S1 Appendix for a
schematic depiction of how junction exclusion achieves this.) The value of the intercept in Fig
3A is given as approximately -200 nm2, which is reasonably close to the predicted value of -250
nm2, detailed in S1 Appendix.

Repeating the process for the negative phase, separately, gives a measure of the spacing
between lines. Summing the two measurements to approximate the period has, in most cases,
been found to come within 5% of the period measured by FFT, usually slightly greater. It
appears that this discrepancy may be due, in part, to the particle perimeters being larger than
non-discrete analogues, and also due to the approximations made herein. Alternatively, knowl-
edge of the line-width and the period would give the line spacing by difference.
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Fig 3. Process for determining line width and period directly from binary patterns. (A) Unmodified
binary image of platinized PS(50k)-b-P2VP(16.5k) and (B) simplified binary image; (C) fit of particle area as a
function of perimeter for the unmodified image and (D) fit for the simplified image. (E) Demonstration that a fit
of 18 nm for line-width is reasonable for the filtered greyscale image, (F) the thresholded binary image, and
(G) a profile of the filtered image. (H) Line diagram showing the relationship between particle area, perimeter,
and length.

doi:10.1371/journal.pone.0133088.g003
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Stage 5: Particle analysis. In the course of annealing spin-coated BCP thin films, the pat-
tern may evolve from a dot pattern, or similarly disconnected collection of features, into an
array of lines, with numerous defect-rich intermediate states. The binary image can be analyzed
using ImageJ’s built-in particle analysis routine to determine characteristics of particle size and
shape descriptors such as circularity and Feret measurements, mean pixel values, and relation-
ships to the image boundary for each feature. Particle analysis is done separately for the positive
and negative phases in order to access all the features. Particle analysis data is then used to sepa-
rate dots (or other objects), which cannot be accurately treated as lines, and identifies them as a
specific type of defect. It can also provide information on the evolution of particles in the course
of the annealing process (e.g. increases in the average size or length of lines). Moreover, the cre-
ation of a binary pattern further enables distinction between noise and misclassified particles.

Stage 6: Skeletonization. The most effective means to analyze the topology of lines and
meshes is via analysing the connectivity of the pattern by creating a skeleton of it. Skeletoniza-
tion reduces lines or meshes to binary objects which maintains the connectivity of the original
by “thinning” the pattern to create a simplified, single-pixel-wide version of the shape, suitable
for pixel-by-pixel analysis. Skeletonization algorithms and skeleton analysis has been widely
used in other fields to study the topology of structures, from text recognition algorithms in
computer science to numerous subfields in biology, including bone analysis (“bonej”),[57] and
studying the structure of neurons, as well as for the recognition of typographic characters. In
all cases, skeletonization is used to simplify collections of interconnected shapes and objects
into networks to study their properties. Although other algorithms do exist, the default tech-
nique is implemented in ImageJ:[58] the skeletonize function in ImageJ uses a lookup table to
progressively thin the structure based on each pixel’s 3x3 neighbourhood, leaving a 1-pixel
wide topological skeleton.[58] At least two other groups have applied skeletonization as a
means to interpret BCP thin film patterns.[59,60] Rehse and coworkers utilized skeletonization
of one phase of the polymer pattern to study frame-to-frame correlations between junctions as
a measure of BCP dynamics;[59] their work followed that of Scherdel[60] and Vigild[61] who
used 3D interpenetrating skeletons to describe gyroidal phases.

The skeletonization process itself is quite straightforward, as shown in Fig 4: to skeletonize a
binary image (Fig 4C), first dots are removed (Fig 4E), leaving only line features, then the
image is thinned as described above (Fig 4G). It is important to skeletonize both phases of the
image, so the original binary image is then inverted (Fig 4D), dots from the negative phase are
removed (Fig 4F), and the inverted image skeletonized (Fig 4F). Overlaying the skeletons with
the binary images (Fig 4B) shows that skeletonization indeed preserves the connectivity found
in the original image (Fig 4A).

In order to actually access the defects in striped BCP patterns, it is necessary to investigate
each phase separately, thus requiring parallel particle analysis and skeletonization of each
phase. It is worth noting that for BCPs, certain kinds of defects will prefer one phase to the
other, resulting in a surplus of terminal points or junctions in either phase. This tends to limit
the frequency of spatially paired defects. Fig 5 shows some examples of this effect. In the images
on the left of Fig 5B, there are ample junctions in the positive phase; in the images on the right,
there are almost no junctions in the positive phase, despite having more defects overall. Simi-
larly in Fig 5C, there is a greater proportion of terminals in the negative phase than in the cor-
responding image on the right side. Such features contribute to the topology of the pattern,
which can be affected by the means of annealing.[62]

Stage 7: Groom and analyze. This stage is the most complicated, and it is divided up into
separate sections, (a)-(d) based upon the type of analysis.

(a) Locating defects. The ideal, defect-free line pattern derived from lamellar or cylindrical
domains of block copolymers, consists of perfectly parallel straight lines extending across the
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entire substrate without interruption, as by breaks or junctions in the lines. It is with respect to
this ideal that topological defects are defined. The analogy between block copolymers and liq-
uid crystals (nematic and lyotropic phases in particular) inspired previous defect analyses[63]
utilizing winding numbers to identify and measure topological defects. While this does work in

Fig 4. Process for the skeletonization of both positive and negative phases of a binary image. (A)
Original image. (B) Overlay of binary and skeletonised images showing retained connectivity. (C) Binary
image. (D) Inverted binary image. (E) and (F) Processed images (C) and (D), with dots in respective phases
removed. (G) and (H) Skeleton images derived from (E) and (F). Images are all 735 nm × 735 nm.

doi:10.1371/journal.pone.0133088.g004
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principle, and many previous analyses have utilized it and other defect-detection methods,
[46,59] these methods typically are published without full working details or code. Kléman sug-
gested in 1983 that defects in two-dimensional line patterns could be simplified to junctions,
terminal points, and dots, shown in Fig 6, rather than the more conventional approach using
winding numbers to determine the type of defect.[64] While such methods correctly describe
the type of defect,[46] high levels of defects and variability of the patterns, including variations
in line-width (or LER) can make it difficult to correctly identify and quantify defects. One
author noted an order of magnitude change in the density of defects for one particular image
depending on the amount of Gaussian filtering applied; the filtering parameters ultimately
selected appeared to be arbitrary.[45] Furthermore, images depicting disclinations and disloca-
tions suggest imprecision in the identification of closely associated dislocations.[46] Moreover,
while such methods provide the magnitude of each defect, they do not provide information
about the connectivity of defects or orientation of surrounding features.

Many frequently encountered defect structures are not isolated dislocations (junction-ter-
minal point pairs immediately adjacent) or disclinations (either terminal points or junctions),
but are part of more complex defect structures. These structures can be broken down into com-
ponent dots, junctions, and terminal points, the elementary components of defects shown in
Fig 6. Dots can be determined best using the particle analysis data, so from the skeleton analysis
we locate and characterize the junctions and terminal points.

At this point in the analysis, the skeleton is a binary object where lines are represented by a
series of 2-connected pixels in any of the 8 directions; terminal points are singly-connected

Fig 5. How the defects, depending on phase (bright = “positive”; dark = “negative”), tend to be of different types. Analysis of two images are shown
in parallel with corresponding images in two columns. (A) The original images. (B) Defects in the positive phase marked. (C) Defects in the negative phase
marked. (D) All defects. Legend at the bottom shows colours and shapes used for each feature: Bright phase: red lines, teal dots, yellow circles at terminal
points, and 3- and 4-connected junctions. Dark phase: navy blue lines, magenta dots, aqua terminal points, and 3- and 4-connected junctions represented by
shapes with an equal number of branches.

doi:10.1371/journal.pone.0133088.g005
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pixels; and junctions occur where more than 2 pixels are neighbouring a given pixel. Dots do
not, however, always reduce to single-pixel objects and hence they are treated separately. Fur-
thermore, junctions exist in numerous possible configurations, often with multiple (3+)-con-
nected pixels per junction, hence there will not be a one-to-one correspondence between
junction pixels and either the number of junctions or junction types (see Fig 7). Identification
of defects is done in a manner, which is, in essence, analogous to playing the minesweeper-type
[65] games: by counting the number of skeleton pixels adjacent to any given pixel that is part
of the skeleton, thus providing a connectivity value for that pixel, as shown in Fig 7.

At its simplest, any connection or disconnection that breaks the 2-connected topology of the
skeleton, resulting in a new local topology (or connectedness), is a defect with a corresponding
value. For junction points (JP), with each additional branch beyond two (which, on its own,

Fig 6. Table of topological defect components typically found in BCP thin film nanopatterns. Shown
are each major type of component defect, as exists in either the positive (e.g. P2VP) phase or the negative
(e.g. PS) phase. For each, 3-branch junctions, terminal points, and dots, examples are given with defects
highlighted by a magenta dot. This analysis is done relative to an ideal striped pattern without any interrupting
features, save for the edge of the image.

doi:10.1371/journal.pone.0133088.g006

Fig 7. Pixels of a typical junction and three associated terminal points showing the counting of adjacent skeleton pixels.Highlighted are pixels
representing (i) terminal points at the end of the line or branch, each adjacent to only 1 pixel, (ii) contiguous points along the line, each with 2 neighbour
pixels, and (iii) junction points where three or more branches meet, having 3 or more neighbour pixels. Similar to minesweeper games, the number of
adjacent pixels determines the value of each skeleton pixel.

doi:10.1371/journal.pone.0133088.g007
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would constitute a line without topological defect), the defect increases in magnitude by ½:

njp ¼ � 1=2 ðB� 2Þ ð6Þ

where B is the number of branches. Typically junctions come with only 3 branches, but 4-way,
or even 5-way, intersections can be found, on occasion, between clusters of dots or other com-
plex features. A 4-way intersection would be njp = -1, which can be imagined as being derived
from two adjacent junctions, each with njp = -½, with a common line-segment, where the inter-
vening line segment’s length decreases to zero; the same approach can be generalized for any
number of additional line segments (as shown in S3 Fig).

Terminal points (TP) possess only one configuration, hence their value is assigned:

ntp ¼ þ 1=2 ð7Þ

Dots can be considered as a line with two terminal points, collapsed to a single point (as
depicted in S3 Fig), hence their value is twice that of a terminal point:

ndot ¼ 2ntp ¼ 2ðþ 1=2 Þ ¼ þ1 ð8Þ

Other more complex structures, such as spirals (containing terminal point dislocations) can
be counted via their component structures in this regard. Large, solid spots in the bright phase
or large regions without any pattern (i.e., large spots in the dark phase) possibly formed due wet-
ting (or other causes) may exist, these regions may be treated as dots with radiating arms, how-
ever, we found it was more effective to separate the core of the dot prior to skeletonization. The
result treats the dot as a kind of enlarged junction, with defects existing only at the periphery.

For all defects to be counted, skeletons for both phases must be generated and connectivity
analyzed separately. This raises an important point for defect analysis: that defects exist in a
particular phase. The phase dependency of defects has not been sufficiently explored, however
hints are seen in the literature, as it directly controls the topology of a system.[66] The dual
phase analysis brings about an addition rule for description of the system: on average, the sum
of all defects in the pattern should be zero. Alternatively, this can be stated that every defect is
“paired”, hence for every junction there is a terminal point; Moreover, for every dot, there will
be two junctions: consider this an analogue of a unit cell (see S7 Fig), as two defect pairs are
produced if spontaneously generated and two are required to cancel out through annihilation.
[46] Typically there exists a small imbalance between the two measures, which others have
observed as well.[45] The pairing of defects does not imply however that the number of defects
in the two phases of the block copolymer will be equal.

Skeletons also provide a description of the connectivity of defects, which merits further
exploration. Defects can also be associated with particles using this method, but perhaps the
greatest benefit is derived from the ability to search for and positively identify particular clus-
ters of defects. One such example is an H-junction, which results from a break in the line or a
bridging of two adjacent lines, shown in S4 Fig These junctions are supposedly not the result of
a defect in the actual thin film structure, but result from (a) incomplete metallization or other
means of pattern transfer, (b) image noise, or (c) the smoothing-thresholding process. Hence it
may be prudent to recognize them and count them separately or to “correct” such errors in the
binary image itself.

(b) Grooming the Skeleton. Grooming the skeleton consists of trimming away short branches,
which may result as artifacts from small “bumps” on the edge of a line. With the dimensions
determined in Stage 5, we can create a metric to selectively prune away any branches resulting
from variations in line-width or simply from sharp points or edge effects that can influence the
skeletonization algorithm. It may be a point for philosophical debate what constitutes a branch,
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justifying a junction and terminal point, but objectivity can be introduced by basing the groom-
ing procedure on the measured LER. For this purpose, any end point separated from a junction
by less than 1.5 × line-width (for a given phase) is considered roughness, rather than an addi-
tional defect pair, and is hence pruned, as shown by the example in Fig 8.

Because any image represents a finite sample of a larger structure, defects at image edges
must be carefully treated. Depending on the resolution of the image and the domain size of the
block copolymer, these can for smaller images, represent a significant fraction of defects; addi-
tionally, in otherwise low-defect patterns, features cut off at the edge may appear as additional
defects. In particular, three rules must be applied:

1. Any “dot” (or sufficiently small object without junctions) touching 2 edges is not a defect.
(See S4 Fig)

2. Lines that run roughly parallel to the edge, touching at all times, are not defects.

3. Lines that terminate at the edge of an image are not defects, as it is not a true terminal point.

The third rule requires some manipulation of skeleton points & component terminal points
near edges, as ImageJ’s native skeletonize algorithm can produce limited edge artifacts. What
these rules do not address is particulate matter; other analysis methods tend to default to man-
ual identification or require equipment unavailable to most researchers.[54]

(c) Line-Edge Roughness and Line-Width Roughness. One of the chief questions posed for
BCP lithography is whether lines can be produced with sufficient uniformity and with
smooth edges. LER measures the variation in the position of the edge of a line, which can
have different frequency components, leading to undulation of the edge and variation in the
width of the line, or LWR (Fig 9). The variation in position is measured as the standard devi-
ation in the position of the edge, and LER is reported as 3σ. Such variations are deleterious
for circuit elements: For transistor gate features with widths < 85 nm, line roughness causes
significant variations in the off-current, as well as affecting threshold voltages.[67,68] For
nanometre-scale interconnects, line roughness increases both resistance and capacitance,
[69,70] resulting in degraded transistor performance.

The line roughness of block copolymer nanostructures has been considered theoretically
and has been shown to depend on χN,[71–73] and polymer polydispersity;[73] results have
suggested that the Flory-Huggins χ parameter may need to be increased by a factor of 3 to 4,
relative to that of PS-b-PMMA,[72] in order to decrease LER sufficiently to accommodate
ITRS targets.[74] It has been specifically noted that there are few reports on the topic of LER/
LWR in the literature;[49] typically, the actual position of the edge is measured relative to the

Fig 8. Grooming the skeleton to remove junctions formed as an artifact from variations in line width or from edge effects. (A) Image of metallized PS
(50k)-b-P2VP(16.5k) nanowire. (B) Image of skeletonized image, with positive lines in red and skeleton in white, and negative lines in black and skeleton in
blue. (C) Detail of region identified by green box in (B), showing a branch, yellow, trimmed from the skeleton. (D) Schematic showing radius-based trimming
of branches: (1) a branch that exceeds the radius does not undergo trimming and (2) a branch that terminates within the radius is trimmed.

doi:10.1371/journal.pone.0133088.g008
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ideal or average edge position for straight or aligned lithographic patterns. In order to achieve
the same measurements for block copolymers, films aligned via graphoepitaxy would typically
be required in order to have linear lines representing ideal edges. However, we[29,75] and oth-
ers[76] have taken the approach of measuring LER for unaligned patterns. One may measure
edge positions relative to the centre of the line, rather than with respect to a linear ideal edge
position; the standard deviation in the edge position will be the same either way. As lines get

Fig 9. Diagrams depictingmeasurement of line-edge roughness and line-width roughness. (A) Sketch
to conceptually demonstrate line edge roughness, where the variation in edge position of the line (shown in
rose with black edge) varies with respect to the ideal (shown overlaid in blue) or, in this case, the average
edge position. Each individual displacement is measured with respect to the average, and the LER calculated
as 3 times the standard deviation. (B) Sketch of line-width roughness, which is the variation in line-width. The
sketch is adapted from the bulges and pinches shown in the SEM image below. (C) SEM image of block
copolymer templated Pt nanowires on a Si wafer, using PS(44k)-b-P2VP(18.5k), annealed at 200°C for 20
minutes.

doi:10.1371/journal.pone.0133088.g009
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narrower, however, the influence of pixel position can begin to slightly increase the measured
LER, up to 0.5 nm in our previous work using high resolution (ca. 100,000x) BCP patterns. We
mitigate this, in part, by smoothing both the centre line of the skeleton and the outer edge,
while constraining the positions of the edge points. Edge-to-skeleton distances are determined
for all points on the smoothed line edge, matching with the nearest points (shown in Fig 10A)
on the smoothed skeleton line which satisfy:

ðxedge � xskelÞ þ slopeskelðyedge � yskelÞ ¼ 0 ð9Þ

As derived from the dot product of the vector on the edge-to-skeleton distance and the
orthogonal vector (1, slope) of the skeleton at that point, an interpolated point on the skeleton
can be obtained (shown in Fig 10B).

Line-width measurements can be made in conjunction with edge-to-skeleton measurements
by finding a line segment on the opposing edge, which is intersected by the vector made
between the edge point and skeleton point of the previous step (shown in Fig 10C). The solu-
tion exists at a point on the line segment formed by the vector between the edge (xedge, yedge)
and the skeleton (xskel, yskel) is scaled by a factor, a, and on the line segment formed by the vec-
tor between two consecutive points on the transverse edge (xtrans1, ytrans1) & (xtrans2, ytrans2),
scaled by a factor, b (shown in Fig 10D). Provided that the two vectors are not parallel, the

Fig 10. Diagram showing relationship between line edge points, skeleton points, and the vectors used
to determine edge positions and line-widths for LER and LWR. (A) Outline of a line, showing edge points
(black dots) and skeleton points (black diamonds) on the centre line. One edge point (xedge,yedge) is selected
and distances to nearest skeleton points are checked. (B) Interpolation to nearest orthogonal point from the
edge point to a point on the skeleton segment. (C) Extension of edge-to-skeleton vector to intersection with
transverse edge segment. (D) Expanded, with parameterization as scalable, intersecting vectors.

doi:10.1371/journal.pone.0133088.g010
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equations[77] for the scalars, a and b, are:

d ¼ ðxtrans2 � xtrans1Þðyskel � yedgeÞ � ðxskel � xedgeÞðytrans2 � ytrans1Þ ð10Þ

a ¼ d�1ððxedge � xtrans1Þðytrans2 � ytrans1Þ � ðyedge � ytrans1Þðxtrans2 � xtrans1ÞÞ ð11Þ

b ¼ d�1ððxedge � xtrans1Þðyskel � yedgeÞ � ðyedge � ytrans1Þðxskel � xedgeÞÞ ð12Þ

An intersection is considered valid when 1< a< 4, indicating that the side opposite would
have a width ranging from 0 to 3 times the width of the first side. The limit, a< 4, prevents iden-
tification of points on parallel segments, as with a hairpin, from being identified as valid; typi-
cally the period is on the order of 2 times the width of a given line, hence 4 times the half-width
of a line. In practice, the values of a are in the range 1.5< a< 2.5, as can be seen typified in Fig
11 via the histograms. The second limit for valid points is that 0� b� 1, which ensures that the
point of intersection is within the line segment formed by the two consecutive edge points.

In order to obtain reasonable measurements of LER and LWR, the blocky structures of
binary lines and skeletons need to be smoothed. The smoothing process, which we have utilized
here, involves 4 stages:

Fig 11. The smoothing process used to partially eliminate roughness resulting from pixelation of the lines. The labels 1, 2, 3, and 4 mark the line
subject to each of the four stages of smoothing described. All images with the cyan-to-red colour scheme show the relative width of the opposite side of the
line, from the skeleton centre, to the edge; if a side is wider in proportion it is shown in red; narrower is shown in cyan. A colour scale is given provided. (A)
The top left shows the edge-to-edge width, following both sides of the edge of the line (C1), hence it is roughly symmetric; (B) the edge-to-skeleton widths are
plotted similarly, but with roughly half of the displacement. (C) Next, the lines are shown replotted in a straightened fashion. Note that the lengths have been
scaled to be equal, as smoothing of the skeleton shortens the length measured along the skeleton, as expected, due to smaller point-to-point displacements.
In the above 3 cases, the more smoothed lines show smaller variations in colour. (D) The histograms represent the edge to skeleton widths relative to the half
widths for each point. € Last, the original skeleton (0), along with the 4 stages of smoothing (1,2,3,4) are shown for a re-drawn line, along with a the
distribution of edge widths via colouration (5).

doi:10.1371/journal.pone.0133088.g011
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A. Centring of the skeleton points by adding 0.5 px to each x and y coordinate. This accounts
for the slight truncation from the skeletonization process and makes the edge-to-skeleton
distances more equidistant on each side.

B. Shifting all edge points to the midpoints between consecutive points. This averaging reduces
roughness introduced by the shape of individual pixels.

C. Smoothing the skeleton by iteratively averaging the positions of points, while limiting the
displacement to within 0.25 pixels. This provides a smooth, continuous, reasonably centred
skeleton line.

D. Smoothing the edges likewise provides a smooth edge while maintaining the shape and
deviations in width, from which roughness can be measured.

Fig 11 shows the data for a single line as it is modified by each of these four smoothing pro-
cesses (A, B, C, D). By the fourth stage (D), the data shows considerably less noise. In particu-
lar, the histograms of edge widths, depicting which edge is further from the skeleton, for each
point on the edge, begins to approach a normal distribution, as one would expect for a line
with random variations in width. Visually, the line becomes sufficiently smooth that pixels are
no longer apparent, while variations in width are in keeping with the original image, and the
sequential widths and edge positions measured do not have large point-to-point changes in dis-
placement. While the skeletonization algorithm is largely effective in finding the centre line, it
is imperfect. In particular for lines with pixelated widths less than 7 pixels, the centre will tend
to be skewed preferentially depending on the orientation of the line. However this does not
affect LWR measurements and smoothing does help to limit the impact on LER.

In order for BCPs to be relevant in industrial manufacturing, they must achieve a low fre-
quency LWR (3σ) of 1.1 nm on features 16 nm wide; in order to “significantly exceed” conven-
tional lithography, the patterns would need to be better than 0.6 nm LWR on features 9 nm
wide.[74] Presently our best measured samples have a LER (3σ) of ~ 2 to 3 nm,[29] however,
no aspect of the process has, as of yet, been explored with respect to minimizing LER or LWR.
To avoid the local effects of junctions and to increase the speed of the calculation, the lines are
modified, as shown in Fig 3B, to render all lines junction-free. Additionally, points where lines
contact image edges are selectively modified, erasing large contacts, to prevent any effects of
the image edge.

(d) Correlation Lengths & Order Parameters. Correlation lengths (or orientational persis-
tence lengths) are typically calculated for large images, often with low resolution (pixels/nm),
by subdividing the area into overlapping squares, for which azimuthal angles are derived from
two-dimensional FFTs of each region.[78] Lack of clarity for such images sometimes necessi-
tates filtering in order to avoid disordered regions. In this work we implemented an alternative
means of determining the 2D correlation function using the skeletonized lines. Skeletons are
groomed to remove junctions and loops are broken to provide isolated lines. Orientation along
the skeletonized lines can be calculated using a rolling average of each line’s tangent to provide
smoothly varying angles along the lines. In a typical image, there can be over 20000 points in
the lines; calculating the correlation length using every point is feasible, however for expedi-
ency, the set of points can be downsampled or randomly sampled to a smaller set of ~ 4000
points, which provides faster calculation with minimal trade-off in terms of accuracy. From the
set of orientation angles, φ(r), the correlation function, C(r-r’), can be calculated.

Cðr � r0Þ ¼ hcos½2fφðrÞ � φðr0Þg�i ð13Þ

Advantages of this method include ease of applicability to higher resolution, smaller-area
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images and images with disordered regions where, due to defects, line segments are particularly
short, and φ(r) might not be determinable via FFT. This is demonstrated in Fig 11.

The correlation function is fit using an exponential function,

Cðr � r0Þ ¼ exp
�r
k ð14Þ

where κ is the correlation length, a characteristic measure of the degree of ordering in the film,
which describes the average distance over which orientational order is preserved. The correla-
tion length should be proportionate to the grain size, as illustrated by the circles in Fig 11,
which are approximately keeping in proportion with the domains visible in the orientationally-
colour-mapped pattern image. However the circles are unquestionably smaller than the
observed domains.

One disadvantage of this method of determining κ via skeletonization is that one observes a
periodic variation (corresponding to the periodicity of the pattern) in the correlation function,
as shown in Fig 12. This periodic variation is a result of features separated by non-integer line
spacings tending toward greater disorder than points separated by integer spacings. This
appears to be due to influence by neighbouring defects. The large undulation in the curve can
be partially compensated by using both the positive phase and negative phase skeletons (thus
reducing the period and amplitude of the variation, however exclusion of non-line areas may
be necessary), by binning measurements, as is typically done in FFT-based methods,[79,80] or
by smoothing, as we apply in the algorithm.

Fig 12. Correlation lengths and orientationmaps for six SEM images of metallized PS-b-P2VP (50k-b-16.5k, 44k-b-18.5k, and 32.5k-b-12k) patterns
with different degrees of thermal annealing. SEMs are shown in false colour to display the angle of each wire as used in the calculation of the correlation
functions, shown right. The raw correlation data is shown in red, the smoothed data is blue, and the calculated correlation length (κ) is marked with a green
line and noted on each plot. Beside each image is a blue circle whose radius is equal to the correlation length, as the correlation length is often given as a
measure of average grain size. Each image is shown cropped here to ~2 μmwide. The scale bar is 1 μm. (See S5 Fig for full images). The labels (A-F)
correspond to the same labelled images in Fig 14.

doi:10.1371/journal.pone.0133088.g012
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Herman’s orientational parameter, S,[81] gives a measure of how uniformly oriented the
lines within an image frame are. It can also be readily calculated using the set of orientational
data:

S2Df0; 1g ¼ 2½cosðφÞ�2 � 1 ð15Þ

The reference angle can be set as the average orientation for the whole image, thus giving
the best orientation parameter for a disordered image. Because it is widely used, we imple-
mented this calculation into our code, however, Herman’s orientation parameter tends to be
less useful than the correlation length, as it can be significantly influenced by the size of the
area sampled. That is to say one can typically choose a sample area small enough to give S2D ffi
1 (perfect net order) or an area large enough to give S2D ffi 0 (no net order). The code may,
however, be adapted to set an angle where a particular direction is induced via processes such
as directional annealing[81] or graphoepitaxy; in such cases, S2D = -0.5 is a possibility for sam-
ples where the line orientation is orthogonal to the desired orientation.[2]

Finally, this skeleton-based approach facilitates generation of pseudo-coloured orientation
maps, as in Fig 12, which also avoid grain-edge averaging problems exhibited with other meth-
ods.[82] Such images may assist researchers in qualitatively grasping the orientational ordering
in their system. Such visual checks, can provide researchers with an accessible means of con-
firming numeric results, as it allows for a qualitative, direct measure of grain size on the image.

Stage 8: Output and confirmation images. Finally, as a result of these considerations, we
seek to provide self-assurance and quality control by creating confirmation images, wherein
features described numerically are mapped onto real images to provide visual feedback of the
accuracy of the measurement, as shown in Fig 13, which shows the defects found alongside the
associated SEM images. This step is ultimately the means to determine whether the defects
identified are (1) a true representation of the pattern and (2) are in the correct location. Such
images of pattern orientation, line roughness, defects, and thresholding provide visual confir-
mation that all stages of the analysis proceeded correctly. Specifically, one can check simulta-
neously whether the thresholding, connectivity, grooming, and defect identification have all
functioned as expected.

Such visual feedback also lets researchers, particularly those presently involved in synthetic
work, to tangibly grasp the important aspects of the pattern quality. By encoding the informa-
tion spatially with colours and shapes rather than relying purely on the abstraction of defect
densities and correlation lengths, ADAblock’s visual feedback can function as a guiding indica-
tor for selection of optimum structures and conditions. The data output, both numerical and
visual, make it possible to engage in exploratory data analysis[83] to discover new trends,
motifs, and outliers in the data available, as demonstrated in Fig 14 and later in Figs 15 and 16.

Application of ADAblock
In order to demonstrate the utility and versatility of this application, two different scenarios
and questions are posed. First, what is the effect of image resolution, and the area sampled, on
the measured defect densities, LER, and other parameters for patterns derived from self-assem-
bled BCP thin films? Secondly, what can we learn from investigating the data provided by these
samples, by examining the relationships between different features, to identify features that
warrant further investigation—and what does this suggest about the resulting properties of a
self-assembled BCP film?

Effect of Resolution and Sampling Area. When measuring defect densities, correlation
lengths, LER, and LWR, the area sampled and the resolution can potentially affect the mea-
sured results. Ideally, for any measurement, the effect of sample size must be analyzed and
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understood in order to obtain reliable results. To develop a general sense of how this and differ-
ent polymer sizes are affected in the analysis, we annealed 5 different polymer types, each with
approximately ideal thicknesses, for 20 minutes at 200°C and imaged the resulting metallized
patterns at different magnifications.

The effect of resolution in the LWR measurements in Fig 15A appears to be minimal,
although there is a slight downward trend with increasing resolution (smaller image area) for
the two smallest polymers, where the LWR (1σ) values decrease from 0.18 to 0.14. The increase
in LWR is primarily observed for those samples with the smallest period, which would likely be
on account of pixelation of the lines, as suggested by S8 Fig. A confounding effect may also
result from the decreased length of line sampled for images of higher resolution. LER data, on
the other hand, shows a more consistent trend of decreasing LER with increasing resolution in
Fig 15B. LER is likely more affected by pixelation due to the inability of the skeletonization pro-
cess to precisely locate the line center, in particular when line-widths are a small, even number
of pixels. In contrast, the line-width is not strongly constrained by the determination of the line
centre. The magnitude of the decrease (-0.03 to -0.05 pixels) here is still small, given that image
area changes by a factor of up to 100.

Sampling effects can be observed in the measurement of defect pair density at various reso-
lutions in Fig 15C. High resolution images, depending on the distribution of defects, can
completely avoid defects or oversample them. Here the smallest BCP (23.6k-b-10.4k) is most

Fig 13. Original and defect analysis images for six SEM images of metallized PS-b-P2VP (50k-b-16.5k, 44k-b-18.5k, and 32.5k-b-12k) patterns with
different degrees of thermal annealing. SEM images on left, and confirmation images with defects identified shown right. These images are spectacular
only upon a close-up. Each image is shown cropped here to ~2 μmwide. The scale bar is 1 μm. (See S5 Fig for full images). The labels (A-F) show
correspondence to the same processed images in Fig 12.

doi:10.1371/journal.pone.0133088.g013
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affected, due to having a larger grain size. The same effect can be observed for correlation
length measurements in Fig 15D, although this affects all of the polymers. In order for the cor-
relation length measurement to be meaningful, the measured value should be significantly
shorter than the dimensions of the image. The decrease in the average measured correlation
length as a function of the image area suggests that one may be able to estimate the true value
based on the size of the image. The plot of 23.6k-b-10.4k is particularly telling because it shows
the effect of sampling within a single grain or few grains (at low resolution) and the sudden
decrease once more grains become involved. The limitation of large grains may be partly
avoided by using automated data collection, combined image stitching, which has been demon-
strated to be effective for imaging large areas with electron microscopy,[84,85] however as
ordering approaches perfection, grain sizes become infinite,[86] and the correlation function
will approach unity.

Feature Relationships. In order to derive lessons from the data, we undertake a form of
exploratory data analysis to chart the relationships of different parameters observed. In partic-
ular, whether parameters such as LER and LWR are independent of the feature size, and how
line-widths, polymers, and periods have a simple relationship.

Taking all of the data (across resolutions) for each polymer, we note that as a proportion of
the line-widths, the standard deviations in the edge position (LER, 1σ) and line-width (LWR,
1σ) stay constant, about 10% and 16% respectively, indicating that the LER and LWR scale
with the line-width dimension of the polymer, as shown in Fig 16A and 16B. The set point may

Fig 14. Relationship between correlation lengths, plotted here as persistence length (κ /Lo) versus the
defect density, normalized per unit period squared. Based on data for a variety of annealed, neat and
blended, cylinder-forming, PS-b-P2VP polymer thin films of a variety of molecular weights including blends,
using images of the metallized P2VP domains on Si substrates. This enables direct comparison between
different polymers, which result in patterns with different periodicities. Defects initially show a dramatic
decrease, as structures move away from dot arrays, for which the normalized, defect metric would be ~1.
Inset displays four representative images. Respectively, their periods are 32, 43, 36, & 37 nm; their
correlation lengths are 19, 43, 65, & 121 nm; their defect densities are 744, 195, 134, & 42 defect pairs�μm-2.

doi:10.1371/journal.pone.0133088.g014
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be a property of a given BCP’s Flory-Huggins parameter, indicating a higher χ required. How-
ever we must caution that other factors, such as the processing, metallization, plasma treat-
ment, and lack of alignment are convoluted with the roughness inherent to the polymer,
preventing a direct conclusion. However this method should enable comparison between poly-
mer templates and patterns translated from the BCP via etching or other means. The values
observed here would however all exceed LWR targets set by the ITRS for LWR (3σ) of less than
6%: 1.1 nm for patterns with 18 nm feature size; or<0.6 nm for patterns with 10 nm feature
size.[22] For aligned patterns, solvent annealed with water as a co-solvent, we have observed
significantly better LER and LWR values.[29] We hypothesize that it may be the result of the
water selectively partitioning inside of the P2VP block during annealing, resulting in a higher
effective χ, leading to a smoother interface than we attain here with thermal annealing.

Line-width in Fig 16C and 16D shows the expected relationship of being proportionate to
the period, although there does appear to be a greater spread in the width of lines than in the
FFT-measured periods. This is likely an effect of thresholding, which needs to be done relative

Fig 15. Data showing effect of sampling area and resolution for BCP patternmetrics: LWR, LER,
defect density, and correlation length. All images had areas of 1280 x 896 pixels, taken with different
magnification factors. Five cylinder-forming PS-b-P2VP block copolymers, each identically treated, were
imaged: PS(23.6k)-b-P2VP(10.4k) [blue circles], PS(32.5k)-b-P2VP(12k) [green triangles], PS(34k)-b-P2VP
(18k) [yellow squares], PS(44k)-b-P2VP(18.5k) [orange pentagons], and PS(50k)-b-P2VP(16.5k) [red
diamonds]. Average values are indicated by dark markers and standard deviation error bars; data from
individual images are shown with light markers. A. Standard deviation for line-width (LWR, 1σ) divided by the
line-width for various resolutions and plotted as a function of real image area, μm2. B. Standard deviation for
line edge position (LER, 1σ) divided by the line-width for various resolutions and plotted as a function of real
image area, μm2. C. Defect pair density as a function of real image area, μm2. D. Correlation length measured
as a function of real image area, μm2; see also S9 Fig, which plots the correlation length as a function of the
number of grains measured.

doi:10.1371/journal.pone.0133088.g015
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to each image. It may be possible for a specific polymer or a series of images to constrain the
threshold, as a fraction of area, in order to obtain a narrower distribution of line-widths.

Limitations of the code. As with any programmed analysis, there are drawbacks and trade-
offs made in analysis to optimize for speed or accuracy. The approximations we implemented
are one reason that necessitates a full sharing of the code. ImageJ’s macro language is interpreted,
hence it is slower in processing compared to plugins or other compiled programs. It is, however,
easily edited and modified, which enables adaptation where modification may be required. The
code was written so that it can be operated in a batch mode to process a folder of images, mean-
ing that a series of images can be processed overnight, or while attending to other tasks. It should
be cautioned that in the present state, as ADAblock continues to be developed, the code may
produce a reproducible error for ~4% of images at present. Further refinement should reduce
this error rate, but at present may limit a series from being completed. With manual interven-
tion, however, the image can be skipped, or the settings modified, and the queue re-continued.

Typically an image with dimensions of 1280 x 896 pixels (the default of our SEM, for exam-
ple) requires ~7 minutes to process when run on the standard personal computers that we used
for testing. Higher pixel-resolution (e.g. 2560 x 1792) images require more time to process,
roughly in proportion to the number of pixels. Given the automated nature of the program, it’s
possible to run a queue of images overnight, rendering the increased processing time irrelevant.

Fig 16. Boxplots of calculated BCP patternmetrics for SEM images with various resolutions for 5
cylinder-forming PS-b-P2VP block copolymers, each identically treated.Data from all resolutions
shown. Data from individual images are shown with dark markers. A. Boxplot of the standard deviation for
line-width (LWR, 1σ) divided by the line-width for various resolutions, grouped by polymer. B. Boxplot of the
standard deviation for line edge position (LER, 1σ) divided by the line-width for various resolutions, grouped
by polymer. C. Boxplot of measured line-widths for polymer groups by polymer. D. Same data, plotted as a
function of BCP period (nm), all resolutions included; the error bars are standard deviations for the line-widths
frommeasuring the lines separately.

doi:10.1371/journal.pone.0133088.g016
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In addition to images showing the locations of defects, the code saves several check images
to act as references to help determine whether any errors have taken place or other undesirable
operations. Consequently, ~ 16 MB is recorded to the disk for each image processed, as pres-
ently conFigd, although non-graphic data only accounts for less than 300 kB. (See S1 Instruc-
tions for a list of files output by the program.)

Conclusions
We have developed a facile, automated, and reliable analysis for striped patterns derived from
the self-assembly of BCP thin films, that integrates both conventional and newly developed
techniques. This analysis is done in order to quantify defects and their types using a skeletoni-
zation-based method; to measure line-edge roughness; and to calculate Herman’s order param-
eter and the correlation length in a novel fashion, based upon the skeletonized structure.
Moreover, the skeletonized structure provides information about the connectivity of patterns.
We expect that this will be of use to others carrying out annealing studies and preliminary
characterizations of novel self-assembling polymeric materials. Finally, for 5 block copolymers
of similar composition, we have found the metallized patterns to have LER and LWR in
roughly constant proportion to the line-width.

Ultimately, no one measurement provides a “complete description” of pattern quality; typi-
cally they are complementary. Hence this work represents an attempt to broaden the scope of
analysis and to make tools which may not be readily accessible to all. Additionally having
shared protocols, or at least protocols derived from a common origin, we might be able to stan-
dardize a broad toolset, providing consistent analysis via fully shared code.[87,88] We hope
this aids comparisons between polymers, between papers, and between scientists seeking to
understand the characteristics of block copolymers, and in addressing the numerous critical
issues associated with block copolymer lithography.[89]

Materials and Methods
PS-b-P2VP block copolymers were obtained from Polymer Source Inc., QC, in weight-aver-
aged molecular weights of 23.6k-b-10.4k, 32.5k-b-12k, 34k-b-18k, 44k-b-18.5k, and 50k-b-
16.5k and all with polydispersity below 1.1. Toluene was purchased from Fisher Scientific; con-
centrated H2SO4 from Caledon Laboratories; 30% H2O2(aq) from Sigma-Aldrich; and
Na2PtCl4�xH2O from Strem Chemicals. Silicon wafers were obtained from University Wafer.

Substrate Preparation
100 mm diameter, single-side polished silicon wafers were diced into squares with dimen-
sions 1.0 cm x 1.0 cm. Prior to cleaning, substrates were scribed, on the unpolished side, with
a diamond-tip, to mark the identity of each substrate as part of a set of 10. The samples were
then immersed in methanol and sonicated for 15 minutes in glass beakers. Next, after rinsing
each substrate square in a series of beakers filled with 18.2 MO�cm water, the substrates were
placed polished-side-up in PTFE beakers, and immersed in 6.0 mL of concentrated H2SO4,
to which was added 2.0 mL of 30% H2O2, before placing the beaker to stand in an 80°C hot
water bath for 20 minutes. The piranha solution was then decanted to a glass flask to cool
prior to neutralization.

Following several rinses with water, the substrates were immersed in aqueous 1% NH4OH
solution for 5 minutes to remove any surface sulfonate groups, prior to a final decant and
replacement of the solution with 18 MO�cm water. Typically samples were stored immersed in
water with the top sealed with paraffin wax.
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Solutions & Spin Coating
Immediately prior to spin coating, each wafer was dried under a nitrogen stream. Once dry, the
sample was analyzed using fixed-angle, single-wavelength ellipsometry (632.8 nm) to determine
the thickness of the thermal oxide at the center; typically 2 nm. Spin coating was carried out
under argon or nitrogen gas. Each substrate’s polished side was evenly coated with 10 μL of 10–
15 g/L BCP solution; any bubbles were manually removed; then the substrates were spun for up
to 15 s, between 3000 rpm and 4000 rpm, with an initial acceleration of 1500 rpm/s. Following
this, the film was reanalyzed by ellipsometry, prior to quartering the sample and annealing.

Annealing
Thermal annealing was carried out in ambient atmosphere on a hotplate covered with a thin
aluminum sheet. Temperature was monitored directly at the wafer using an OSENSA fiber-
optic fluorescence-based temperature probe. For the thickness measurements and for the com-
parison of the 5 polymers, the substrates were annealed for 20 minutes at 200°C.

Metallization
A solution of 20 mM Na2PtCl4 in 0.9 M HCl(aq) was used for metallizing PS-b-P2VP samples.
Samples were submerged for at least 2–3 hours prior to removal and rinsing with 18.2 MO�cm
water.

Plasma processing
Following metallization, sample sets were placed together in a plasma chamber, and the chamber
was evacuated to< 200 mTorr to remove contaminant gases or adsorbates. Finally, O2 gas was
leaked into the chamber to a pressure of ~ 750 mTorr. The RF coils were then energized and a
faint lavender-blue O2 plasma was maintained for ~ 60 s (depending on the film thickness) to
etch the organic materials from the substrate. Finally, samples were imaged using a Hitachi S-
4800 scanning electron microscope, sampling regions near the centre of each substrate.

Computation
For image analysis, ImageJ,[52] version 1.49 and above, was used. It is freely available at http://
imagej.nih.gov/ij/. The code for performing the analyses is available on our institutional reposi-
tory; updated versions will be available on GitHub. Python scripts used in preparing the data
shown here are also available to assist with processing and plotting output from multiple runs.
They are available under an MIT license, allowing users to freely copy, redistribute, and modify
the code.

Supporting Information
S1 Appendix. Calculations of the geometry of line patterns.
(PDF)

S1 Fig. Median filtering and Gaussian filtering used to reduce noise. (A) Sample image with
blue dotted line of (B) intensity profile. The left series (C,E,G) shows the effect of a median fil-
ter; the right series (D,F,H) shows the effect of a Gaussian filter. (C,D) Each filter applied at a
5-pixel radius. (E,F) Histograms of each filtered image. (G,H) The smoothing observed for fil-
tering in a range of 0 to 10 pixels, shown in series: (H) Gaussian-filtered profile loses contrast
more quickly than (G) the median-filtered profile.
(TIF)
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S2 Fig. Feret measurement for curved objects. (A) ImageJ can measure the calliper width of
objects (shown by the arrows), however only using a MinFeret measurement, which is obtained
using a rotating callipers method of rotation the objects perimeter to find the minimum height
occupied by the selection. (B) For curved or bent line objects, this would result in a width
greater than the linewidth, thus making this method inapplicable to highly disordered block
copolymer systems.
(TIF)

S3 Fig. Equivalency justification for determining the defect value for each disclination. (A)
A dot can be thought of as being a junctionless line which has been reduced in length to its
width. The +½ defect value associated with each of the two terminal points can be viewed as
combining to give the +1 value of the dot. This can also be seen when the dots are paired with-
½ defects. The 3-branch junction has a value of-½. Although 3-branch junctions are the most
common, (C) 4-branch junctions (-1) and (C) even 5-branch junctions (-1½) can, on rare
occasion, be observed. For each additional branch, the value decreases by ½; this can be viewed
as being equivalent to sliding an additional branch from a 3-branch junction to increase the
junction by 1 branch.
(TIF)

S4 Fig. Rules regarding defects with regard to their location in the image frame. (A) Dots
not touching the edge are counted in full. (B) Dot-sized features touching the edge are counted
as half-dots, equivalent to terminal points. (C) For line features which lie on the edge, they do
not count, as the terminal points are not within the frame of the image. (D) Dots touching two
edges do not count, as these can be considered equivalent to lines touching two edges as in (E)
and (F), which do not contribute to the defectivity of the image. (G) and (H) Only the terminal
points and junctions within the frame of the image are counted for any given lines.
(TIF)

S5 Fig. Full, processed images shown cropped in Figs 10 and 12 of the paper. Full resolution
images with labels (A-F) corresponding to those in Figs 10 and 12 of the paper.
(TIF)

S6 Fig. Striking image showing blended overlay of analysis with SEM image.Original SEM
image from panel (D) of Figs 10 and 12, and S5 Fig, blended with overlays of defect analysis on
the left and orientation map on the right, all at full resolution.
(TIF)

S7 Fig. Pairing of defects and defect unit cells.Negative defects are noted with magenta dots,
while negative dots are identified with yellow dots. The defect unit cells, shown in yellow, are
drawn to indicate the parts of the defect required for the defect pairs to be part of an otherwise
homogeneous, ideal pattern. (A) Region with an ideal pattern. (B) Region of dot pattern, which
represents the maximum possible defect density for a stripe pattern made from a misoriented
cylindrical BCP. (C) An isolated junction, which cannot be part of a unit cell on its own. (D)
An isolated terminal point, also not part of a unit cell on its own. (E) H-junctions formed either
from a line break or (F) from a bridging of two lines. (G)/(H) Junctions created by two adjacent
lines coming into contact. (H) is similar to (H), except that the defect at the centre is 4-con-
nected. (I) Paired dislocations. (J) Paired disclination pairs, where positive and negative com-
ponents are in the same phase.
(TIF)

S8 Fig. Pattern period in pixels as a function of image area. Using images with constant
dimensions (1280 pixels wide by 896 pixels high), and various image resolutions (500k
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magnification to 20k magnification), pattern periods were determined automatically from azi-
muthally averaged fast Fourier transform images. The relationship, within these constraints,
for each of the 5 polymers is shown, with individual measurements shown as lighter markers;
the dark markers are the averaged data. Dashed lines function as a guide for each set.
(TIF)

S9 Fig. Grain count affects estimates of correlation length. Using data from Fig 15D, the
number of grains in each image is approximated by dividing the image area by the grain size,
taking the average grain area to be a circle with radius equal to the correlation length. Correla-
tion lengths are also normalized, dividing the measured correlation length for each image by
an estimate of the “true” correlation length (listed on each subplot) which would be measured
for an image of the entire surface. A vertical dashed line on each image at 10 grains serves a ref-
erence point. The following values were used as estimates of the “true” correlation length for
each image: PS(23.6k)-b-P2VP(10.4k): 500 nm, PS(32.5k)-b-P2VP(12k): 95 nm, PS(34k)-b-
P2VP(18k): 101 nm, PS(44k)-b-P2VP(18.5k): 58 nm, and PS(50k)-b-P2VP(16.5k): 72 nm.
(TIF)

S1 Instructions. Use of ADAblock.
(PDF)
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