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Abstract. This study aimed to identify DNA methylation 
markers in oral squamous cell carcinoma (OSCC) and to 
construct a prognostic prediction model of OSCC. For this 
purpose, the methylation data of patients with OSCC down-
loaded from The Cancer Genome Atlas were considered as 
a training dataset. The methylation profiles of GSE37745 
for OSCC samples were downloaded from Gene Expression 
Omnibus and considered as validation dataset. Differentially 
methylated genes (DMGs) were screened from the TCGA 
training dataset, followed by co‑methylation analysis 
using weighted correlation network analysis (WGCNA). 
Subsequently, the methylation and gene expression levels 
of DMGs involved in key modules were extracted for 
correlation analysis. Prognosis‑related methylated genes 
were screened using the univariate Cox regression analysis. 
Finally, the risk prediction model was constructed and vali-
dated through GSE52793. The results revealed that a total of 
948 DMGs with CpGs were screened out. Co‑methylation 
gene analysis obtained 2 (brown and turquoise) modules 
involving 380 DMGs. Correlation analysis revealed that the 
methylation levels of 132 genes negatively correlated with 
the gene expression levels. By combining with the clinical 
survival prognosis of samples, 5 optimized prognostic genes 
[centromere protein V (CENPV), Tubby bipartite transcription 
factor (TUB), synaptotagmin like 2 (SYTL2), occludin (OCLN) 
and CAS1 domain containing 1 (CASD1)] were selected for 
constructing a risk prediction model. It was consistent in the 
training dataset and GSE52793 that low‑risk samples had a 
better survival prognosis. On the whole, this study indicates 
that the constructed risk prediction model based on CENPV, 
SYTL2, OCLN, CASD1, and TUB may have the potential to 

be used for predicting the survival prognosis of patients with 
OSCC.

Introduction

Oral cancer is a type of head and neck cancer arising in the oral 
cavity, such as the lips, the anterior two‑thirds of the tongue, 
sublingual region and the hard palate (1,2). There are several 
histological types of oral cancer, and >90% of oral cancers 
are squamous cell carcinomas. Oral squamous cell carcinoma 
(OSCC) is the eighth most common type of cancer worldwide, 
leading to 144,000 deaths annually (3). Despite many advances 
being made in the surgical treatment, chemotherapy and radio-
therapy used in OSCC, the survival rate of patients with OSCC 
has not markedly improved (4). Currently, the 5‑year survival 
rate of patients with OSCC is approximately 50% due to the 
tendency for metastasis (5,6). Therefore, exploring biomarkers 
with high accuracy, specificity and sensitivity based on the 
current genome‑based approaches underlying OSCC may be 
helpful for improving its diagnosis, treatment and prognosis.

DNA methylation, mainly referring to the covalent addi-
tion of a CH3 on the 5' position of cytosine, is one of the 
most important epigenetic modifications involved in the 
physiological control of genome expression  (7). Studies 
have demonstrated that abnormal methylation mechanisms 
can result in abnormal gene expression and decreased 
genomic stability, thereby exerting potent effects on cancer 
genes  (8,9). For OSCC, the silencing of death associated 
protein kinase 1 (DAPK1), p16INK4a, cadherin 1 (CDH1), 
O‑6‑methylguanine‑DNA methyltransferase (MGMT) and 
ABO, alpha 1‑3‑N‑acetylgalactosaminyltransferase and alpha 
1‑3‑galactosyltransferase (ABO) has been reported to be 
linked with increased DNA methylation levels of the respec-
tive promoters (10‑12). Usually, DNA methylation is an earlier 
event in the process of cell canceration compared with DNA 
mutation (13). Therefore, it is helpful for diagnostic prediction 
and therapeutic treatments based on characteristics of DNA 
methylation patterns across cancers (14). Screening high‑risk 
populations through methylation detection may improve the 
accuracy of early diagnosis so as to gain more treatment time 
for cancer patients.

In this study, we aimed to screen some important DNA 
methylation markers based on the OSCC methylation data in 
The Cancer Genome Atlas (TCGA). Additionally, a prognostic 
prediction model was constructed using the screened DNA 
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methylation markers and further validated in another dataset, 
GSE52793.

Data and methods

Data collection. The methylation data of patients with 
OSCC, based on the Illumina Infinium Human Methylation 
450 BeadChip platform, were downloaded from the TCGA 
database (https://gdc‑portal.nci.nih.gov/). The Cancer Genome 
Atlas is a public funded project that aims to catalogue and 
discover major cancer‑causing genomic alterations to create 
a comprehensive ‘atlas’ of cancer genomic profiles through 
large‑scale genome sequencing (15). According to the defini-
tion of oral anatomy, 378 oral samples were retained, including 
18 gums, 30 tongue roots, 22 buccal mucosae, 66 mouth floor, 
8 dura, 87 oral cavity, and 156 tongue samples. Among these 
378 oral samples, 312 samples with survival prognosis infor-
mation were used as the training dataset. The average age was 
61.67±12.89 years, the ratio of males to females was 213:99, the 
average overall survival (OS) time was 27.61±27.70 months, 
and the dead to survival ratio was 131:181.

Simultaneously, the GSE52793 (platform: Illumina 
Infinium Human Methylation 450 BeadChip) was downloaded 
from the National Center of Biotechnology Information 
(NCBI) Gene Expression Omnibus (GEO, http://www.ncbi.
nlm.nih.gov/geo/). This dataset contains DNA methylation 
profiles across approximately 450,000 CpGs in oral rinse 
samples from a cohort of 82 OSCC patients who had survival 
prognosis information. This dataset was used as the validation 
dataset. The average OS time was 41.82±17.45 months, and the 
dead to survival ratio was 23:59.

Screening of differentially methylated genes (DMGs). The 
samples in the TCGA training dataset were divided into 
the bad prognostic group (survival time of <12  months 
and died) and the good prognostic group (survival time 
of >36  months and still survived) according to the OS 
time recorded in the clinical information. Subsequently, 
the detected methylation sites were annotated according 
to the platform annotation information and the meth-
ylation sites located in the CpGs regions of the genes were 
selected for differential methylation analysis using the 
limma package  (16) (version 3.34.7, https://bioconductor.
org/packages/release/bioc/html/limma.html) in R3.4.1. 
Limma package is a R‑based open‑source software develop-
ment project in statistical genomics that provides enhanced 
possibilities for biological interpretation of both differen-
tial expression and differential splicing analyses of RNA 
sequencing data (16). False discovery rate (FDR) <0.05 and 
|log fold change (FC)|>0.2 were used as the thresholds.

Co‑methylation gene analysis. In order to evaluate the 
internal correlations between CpG islands, we performed 
co‑methylation analysis of all CpG island methylation data 
using weighted correlation network analysis (WGCNA) 
package (17) (version 1.63, https://cran.r‑project.org/web/ 
packages/WGCNA/index.html) in R3.4.1. The WGCNA 
package is a comprehensive collection of R functions for 
performing various aspects of weighted correlation network 
analysis that includes functions for network construction, 

module detection, gene selection, calculations of topological 
properties, data simulation, visualization, and interfacing 
with external software (17). In this method, the module was 
defined as a group of genes that had similar methylation 
levels. Based on this algorithm, we screened the modules 
that were significantly related to methylation levels. The 
CpGs in the same module highly correlated with the meth-
ylation level.

Subsequently, the screened CpGs were mapped to each 
WGCNA module to calculate the fold enrichment ratio and the 
P‑value of target CpGs in each module significantly correlated 
with the methylation level using the hypergeometric algorithm. 
The formula is f (k, N, M, N) = C (k, M) x C (n‑k, n‑m)/C 
(N, N) (17), where ‘N’ indicates all methylation sites involved 
in the WGCNA algorithm analysis; ‘M’ indicates the number 
of genes in each module obtained from the WGCNA algorithm; 
and ‘n’ indicates the number of significant DMGs. The thresh-
olds for module screening were P<0.05 and fold enrichment 
>1. Finally, the genes in the screened modules were subjected 
to biology process enrichment analysis using the Database for 
Annotation, Visualization and Integrated Discovery (DAVID, 
version 6.8, https://david.ncifcrf.gov/) (18,19). DAVID is an 
online available bioinformatics resources that consists of an 
integrated biological knowledgebase and analytic tools aimed 
at systematically extracting biological meaning from large 
gene/protein lists (18,19).

Correlation analysis between the methylation level and 
expression level. From the TCGA training dataset, the OSCC 
mRNA‑seq samples matching methylation profiles were 
selected. The methylation levels and gene expression levels of 
DMGs involved in key modules were extracted as well. The 
overall Pearsons' correlation coefficients (PCC) (20) between 
the methylation levels and gene expression levels were 
calculated using cor.test (https://stat.ethz.ch/R‑manual/R‑​
devel/library/stats/html/cor.test.html) in R3.4.1. The cor.test 
is a program of R functions that can be used for exploring 
the correlations between variables by Pearsons' correlation 
coefficient (20). The correlation between the methylation level 
and gene expression level of each gene was then calculated 
and the DMGs whose methylation levels negatively correlated 
with the expression levels were selected for further analysis 
(P<0.05).

Screening of prognosis‑related methylated genes. Based on 
the expression levels of the screened DMGs in TCGA samples, 
as well as the clinical survival prognosis information, the 
prognosis‑related methylated genes were screened using the 
univariate Cox regression analysis implemented in survival 
package  (21) (version 2.41‑1, http://bioconductor.org/pack-
ages/survivalr/) of R3.4.1. The log‑rank tested P‑value <0.05 
was considered as the significance threshold.

Establishment of prognostic prediction model based on 
methylated genes. According to the methylation levels of 
the prognosis‑related methylated genes, the optimized prog-
nostic genes were screened by the Cox‑Proportional Hazards 
(Cox‑PH) model  (22) based on L1 penalized regularized 
regression algorithm (23) (version 0.9‑50, http://bioconductor.
org/packages/penalized/) of R3.4.1. The Cox‑PH model is a 
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Figure 1. The significant differentially methylated genes. (A) Volcano plot of significant differentially methylated genes. The red dots represent differentially 
methylated genes; the black dots represent non‑differentially methylated genes; the green horizontal dotted line represents the false discovery rate (FDR) <0.05; 
the two green vertical dotted lines represent the |log2 fold change (FC)|>0.2. A total of 948 DMGs with CpGs were screened out. (B) Log2 Kernel density curve 
based on differentially methylated genes. The proportion of hypomethylated genes in the good prognostic group was 64.56% (612/948), and 35.44% (336/948) 
were significantly hypermethylated. (C) The hierarchical clustering heatmaps of significant differentially methylated genes. The red and green bars represent the 
samples in good and bad prognostic groups, respectively. The samples were clearly divided into 2 groups based on the screened differentially methylated genes.

Table I. The top 20 significant differentially methylated genes (DMGs) with CpGs between bad prognostic group and good 
prognostic group sorted according to false discovery rate (FDR).

Methylation loci	C hr.	 Position	 Genes	 Location	 β‑bad	 β‑good	 Effect	 Pnominal	 FDR

cg03904042	 chr20	 31719152	 NECAB3	 Body	 0.3413 	 0.2296 	‑ 0.5719 	 8.05x10‑7	 2.21x10‑5

cg04488521	 chr5	 178420322	 ZNF354C	 Promoter	 0.3382 	 0.2272 	‑ 0.5737 	 3.42x10‑6	 9.37x10‑5

cg09595479	 chr12	 47975479	 PRPH	 1stExon	 0.4229 	 0.3151 	‑ 0.4244 	 5.31x10‑6	 1.45x10‑4

cg00054702	 chr5	 135556442	 LOC389332	 Body	 0.1967 	 0.1149 	‑ 0.7755 	 8.34x10‑6	 2.29x10‑4

cg07040405	 chr2	 174537121	 SP3	 Promoter	 0.0306 	 0.0383 	 0.3253 	 9.43x10‑6	 2.59x10‑4

cg13146839	 chr3	 192063116	 LOC647309	 1stExon	 0.4032 	 0.5159 	 0.3556 	 1.12x10‑5	 3.08x10‑4

cg00741900	 chr14	 101097550	D IO3	 5'UTR	 0.3288 	 0.2510 	‑ 0.3892 	 1.15x10‑5	 3.14x10‑4

cg27229100	 chr20	 47330667	C 20orf199	 Body	 0.4259 	 0.5299 	 0.3153 	 1.44x10‑5	 3.94x10‑4

cg13316171	 chr2	 187059280	 ZC3H15	 1stExon	 0.0212 	 0.0273 	 0.3649 	 1.56x10‑5	 4.28x10‑4

cg01494348	 chr8	 144731538	 NAPRT1	 Promoter	 0.1567 	 0.0991 	‑ 0.6612 	 1.64x10‑5	 4.50x10‑4

cg24960763	 chr12	 132217389	 ZNF10	 Promoter	 0.0867 	 0.0578 	‑ 0.5848 	 1.90x10‑5	 5.22x10‑4

cg18113994	 chr19	 62817679	 ZNF134	 1stExon	 0.0784 	 0.1796 	 1.1953 	 2.04x10‑5	 5.60x10‑4

cg06815419	 chr15	 81526866	 BTBD1	 Promoter	 0.0215 	 0.0265 	 0.3018 	 2.05x10‑5	 5.63x10‑4

cg25019777	 chr4	 53220160	 USP46	 Promoter	 0.0432 	 0.0641 	 0.5716 	 2.08x10‑5	 5.70x10‑4

cg00004421	 chr17	 7415803	 SENP3	 TSS1500	 0.4066 	 0.4947 	 0.2828 	 2.35x10‑5	 6.44x10‑4

cg01331992	 chr9	 19369118	 RPS6	 Body	 0.2316 	 0.3035 	 0.3899 	 2.95x10‑5	 8.09x10‑4

cg00767496	 chr15	 43458571	 GATM	 Body	 0.5105 	 0.4140 	‑ 0.3020 	 3.00x10‑5	 8.22x10‑4

cg21858255	 chr12	 103133739	 TXNRD1	 Promoter	 0.1570 	 0.0696 	‑ 1.1737 	 3.15x10‑5	 8.64x10‑4

cg02605461	 chr20	 32047137	 RALY	 5'UTR	 0.3931 	 0.4871 	 0.3095 	 3.37x10‑5	 9.25x10‑4

cg26658728	 chr16	 65195711	C MTM3	 5'UTR	 0.1783 	 0.1032 	‑ 0.7891 	 3.38x10‑5	 9.26x10‑4

The first column indicates the cg number of the methylation site; the second column indicates the chromosome number of detected methyla-
tion site; the third column indicates the chromosome position of the detected methylation site; the fourth column indicates the gene name of 
methylation area; the fifth column represents the CpGs location in methylation regional; the sixth and seventh columns represent the average 
methylation level β of CpGs in bad and good prognostic groups; the eighth column represents log2FC (good/bad); the ninth column represents 
the P‑value; and the tenth column represents the corrected FDR value.
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predictive model of overall and disease‑free survival, based on 
demographic and clinical covariates (24).

Subsequently, the risk prediction model was constructed 
based on the prognosis coefficients of optimized prognostic 
genes. The risk score of each sample was calculated as follows: 
Risk score=∑coefgene x Methylationgene, where coefgene repre-
sents the regression coefficient obtained in the previous step, 
and Methylationgene represents the methylation level of the 
corresponding gene.

Finally, the samples in TCGA training dataset were divided 
into the high‑ and low‑risk groups according to the median 
of the risk score. The association between risk model and 
prognosis was assessed by the Kaplan‑Meier (KM) survival 
curve  (25) in survival package (version 2.41‑1). The KM 
survival curve is the probability of surviving in a given length 
of time while considering time in many small intervals (25). 
Moreover, the discriminant efficacy of the prediction model 

on survival prognosis was evaluated through the validation 
dataset GSE52793.

Results

Screening of significant DMGs. A total of 15,654  gene 
methylation sites containing CpGs were obtained through 
the annotation information on the Illumina 450 K meth-
ylation platform. Subsequently, in the TCGA training dataset, 
54 samples were divided into the bad prognostic group and 
46 were divided into the good prognostic group. Finally, a total 
of 948 DMGs with CpGs were screened out and the volcano 
plot is presented in Fig. 1A. The log2 Kernel density curve 
revealed that 64.56% (612/948) of the DMGs were significantly 
hypomethylated in the good prognostic group, and 35.44% 
(336/948) were significantly hypermethylated (Fig.  1B). 
The bidirectional hierarchical cluster heatmap revealed that 

Figure 2. Screening of modules related to gene CpG methylation by weighted correlation network analysis (WGCNA). (A) The modules related to gene CpGs 
methylation. A total of 15 modules were identified, and they were presented by 15 different colors (black, blue, brown, cyan, green, green‑yellow, grey, magenta, 
pink, purple, red, salmon, tan, turquoise and yellow). (B) The number of differentially methylated genes in the brown, blue, black, yellow, turquoise, tan, red, 
purple, pink, magenta, green‑yellow, green, cyan models. (C) Fold enrichment column graph of the brown, blue, black, yellow, turquoise, tan, red, purple, pink, 
magenta, green‑yellow, green, cyan models. The green horizontal dotted line represents a fold enrichment ratio of 1.
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the samples were clearly divided into 2 groups based on the 
screened DMGs (Fig. 1C).

Among the CpGs of the 948 DMGs, 15 were in the tran-
scription start site (TSS) area, 432 in the gene body area, 
104 in the 5'UTR region, 17 in the 3'UTR region, and 380 
in the promoter region. The top 20 DMGs with CpGs sorted 
according to FDR are presented in Table I.

Co‑methylation gene analysis. In the WGCNA algorithm, we 
selected the power value (power=6) when the square value of 
the correlation coefficient reached up to 0.9 for the first time. 
The topological overlap matrix was then calculated to evaluate 
the correlation between the methylation levels of two genes, 
subsequently constructing the system clustering tree. With 
parameters of minSize=100 and cutHeight=0.99, 15 modules 
were obtained (Fig. 2A and Table II). The CpGs gene expres-
sion levels in the modules were significantly associated with 
the methylation levels, apart from the grey module (P<0.05). 
The average of significant correlation coefficients was 0.547, 
ranging from 0.138 to 0.777. The number of DMGs in each 
module and the fold enrichment ratio of each module are 
shown in Fig. 2B and C, respectively. According to the hyper-
geometric enrichment algorithm, 2 (brown and turquoise) 
modules were obtained. There were 208 and 172 DMGs in the 
brown and turquoise modules, respectively. Functional enrich-
ment analysis revealed these 380 DMGs were significantly 
related to 24 biological processes, such as vasculogenesis and 
response to hypoxia (Fig. 3).

Correlation analysis between the methylation level and 
expression level of key DMGs. The overall correlation analysis 
between the methylation levels and expression levels of the 380 

DMGs mentioned above revealed that there was a significant 
negative correlation between the gene methylation and expres-
sion level (Cor.=‑0.3379, P=2.978e‑07; Fig. 4). After searching 
the published studies on line about the correlation analysis 
between the methylation levels and expression levels, some 
correlation coefficients of revealed significant correlations 
were below 0.5. For example, in the study by Győrffy et al, 
the significant correlations between the methylation of gene 
regions and expression levels among prognostic genes in the 
internal cohort of breast cancer patients revealed that most of 
the absolute correlation coefficients were <0.5 (26). Therefore, 
the results may be not lower than expected. The analysis of the 
correlation between the methylation and expression levels for 
each gene revealed that the methylation levels of 132 genes 
negatively correlated with the expression levels (data not 
shown).

Screening of prognosis‑related methylated genes. Based 
on the methylation levels of CpGs in these 132 genes in the 
TCGA samples and the clinical survival prognosis of samples, 
we identified 27 methylated genes that were significantly 
associated with prognosis. Subsequently, 5 optimized prog-
nostic genes [centromere protein V (CENPV), Tubby bipartite 
transcription factor (TUB), synaptotagmin like 2 (SYTL2), 
occludin (OCLN) and CAS1 domain containing 1 (CASD1)] 
were selected through the Cox‑PH model (Fig.  5A). The 
prognosis coefficients of these 5 genes are shown in Fig. 5B. 
Subsequently, according to the median of the methylated 
signal value, the samples were divided into the hypomethyl-
ation and hypermethylation groups. The KM curves revealed 
that the samples with hypomethylation levels had a better OS 
(P<0.05; Fig. 6). Additionally, according to the median of 

Table II. Information of the 15 modules identified by weighted correlation network analysis.

Color	 #CpGs	C orrelation	 Pcorr	D E CpGs	 Enrichment fold (95% CI)	 Phyper

Black	 290	 0.7553	 5.3x10‑29	 10	 0.2477	 1.439x10‑7

Blue	 468	 0.6377	 3.33x10‑3	 29	 0.4452	 5.483x10‑6

Brown	 430	 0.7665	 8.58x10‑8	 208	 3.4742	 2.200x10‑16

Cyan	 110	 0.7766	 3.93x10‑9	 2	 0.1306	 1.104x10‑4

Green	 334	 0.5926	 7.60x10‑15	 16	 0.3442	 2.647x10‑6

Green‑yellow	 157	 0.6143	 4.24x10‑20	 12	 0.5491	 4.249x10‑2

Grey	 2,667	 0.2203	 7.42x10‑2	 433	 1.1662	 1.408x10‑2

Magenta	 261	 0.6383	 1.38x10‑25	 9	 0.2477	 7.327x10‑7

Pink	 276	 0.6787	 1.27x10‑13	 15	 0.3904	 9.668x10‑5

Purple	 222	 0.6008	 4.42x10‑3	 17	 0.5501	 1.520x10‑2

Red	 333	 0.6209	 6.26x10‑15	 2	 0.0432	 5.343x10‑16

Salmon	 120	 0.2454	 4.37x10‑11	‑	‑	‑  
Tan	 147	 0.1381	 5.75x10‑10	 21	 1.0262	 9.052x10‑1

Turquoise	 585	 0.5115	 1.02x10‑15	 172	 2.112	 3.342x10‑14

Yellow	 410	 0.4044	 4.85x10‑10	 2	 0.03503	 2.200x10‑16

The first column represents the module color; the second column represents the number of CpGs genes in module; the third column represents 
the correlation coefficient between CpGs gene and methylation level; the fourth column represents the P‑value; the fifth column represents 
the number of differentially methylated CpGs gene mapping to each module; the sixth and seventh columns represent Enrichment fold and 
P‑values obtained based on hypergeometric enrichment algorithm. CI, confidence interval. 
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the gene expression level, the samples were divided into the 
high expression and low expression groups. The KM curves 
revealed that the samples with high expression levels had a 
better OS (P<0.05; Fig. 6).

Prognosis prediction model based on optimized methylated 
genes. Based on the Cox‑PH prognostic coefficients of the 
5 genes, the gene‑based risk prediction model was constructed as 
follows: Risk score=(0.2666) x Methylationcg08214689 + (0.2937) x 
Methylationcg09498146 + (1.5954) x Methylationcg02716252 + (0.6491) x 
Methylationcg00562641 + (0.3989) x Methylationcg11341528.

The risk score of each sample was calculated using 
the above‑mentioned formula. In order to evaluate the 
discriminant efficacy of the prediction model on the survival 
prognosis, we divided the samples in the TCGA training 
dataset into the high‑ and low‑risk groups based on the 
median of the risk score. The KM curves of the TCGA dataset 
revealed that the low‑risk samples had a better survival prog-
nosis (P=4.698e‑03; Fig. 7A). Additionally, the discriminant 
efficacy of the prediction model was also evaluated in the 
validation dataset GSE52793, and the results were consistent 
with those of the TCGA training dataset (P=1.466e‑02; 
Fig. 7B).

Discussion

In the present study, we analyzed the methylation data of 
patients with OSCC downloaded from the TCGA database, 
and selected 5 optimized genes (CENPV, TUB, SYTL2, OCLN 
and CASD1) associated with methylation through a series of 
bioinformatics methods. Based on these 5 genes, a prognostic 

prediction model was constructed and its discriminant efficacy 
on survival prognosis was confirmed by the validation dataset 
GSE52793.

Among the 5 genes, SYTL2, OCLN and CASD1 have 
been reported to be associated with tumorigenesis. SYTL2 

Figure 4. The overall correlation analysis between methylation levels and 
expression levels of the 380 differentially methylated genes in brown and 
turquoise modules. The red line is the trend line of point distribution; Cor. 
represents the Pearson's correlation coefficient between the methylation 
levels and expression levels; ‘P’ represents the significance of the correlation. 
There was a significant negative correlation between the gene methylation 
and expression level.

Figure 3. The significantly enriched biological processes for the differentially methylated genes in brown and turquoise modules. The horizontal axis represents 
the number of genes involved in the biological process; the vertical axis represents the name of the biological process; the height of the column represents the 
number of genes involved in biological process; and the color of the column represents P‑value. These 380 differentially methylated genes were significantly 
related to 24 biological processes.
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Figure 7. The Kaplan‑Meier curves for patients based on the risk score prediction model. (A) Kaplan‑Meier curves of patients in TCGA training dataset revealed 
that the low‑risk samples had a better survival prognosis. (B) Kaplan‑Meier curves of patients in the validation dataset GSE52793 were consistent with those of 
the TCGA training dataset.

Figure 6. The Kaplan‑Meier curves for patients with different methylation or expression levels of CASD1, OCLN, SYTL2, TUB and CENPV. According to 
the median of the methylated signal value, the samples were divided into the hypomethylation and hypermethylation groups (upper panels). The KM curves 
also revealed that the samples with high expression levels had a better overall survival prognosis (lower panels). CENPV, centromere protein V; TUB, Tubby 
bipartite transcription factor; SYTL2, synaptotagmin like 2; OCLN, occluding; CASD1, CAS1 domain containing 1.

Figure 5. Identification of optimized prognostic genes through the Cox‑Proportional Hazards (Cox‑PH) model. (A) The lambda parameter curve selected by 
cross‑validation likelihood. The horizontal and vertical axes respectively represent different values of lambda and cross‑validation likelihood. (B) The prog-
nosis coefficients of the 5 optimized prognostic genes (CENPV, TUB, SYTL2, OCLN and CASD1) selected through the Cox‑PH model. CENPV, centromere 
protein V; TUB, Tubby bipartite transcription factor; SYTL2, synaptotagmin like 2; OCLN, occluding; CASD1, CAS1 domain containing 1.
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possesses a C‑terminal tandem C2 domain, N‑terminal Slp 
homology domain and Rab‑binding region  (27), which is 
primarily characterized as an effector of Rab27, a Ras‑related 
small GTPase (28). SYTL2 can regulate tubulogenesis and 
cell signaling by promoting the trafficking of the signaling 
molecule, podocalyxin, to the apical surface through a 
Rab27‑dependent manner (29). Recently, SYTL2 has been 
reported to be implicated in cancer pathogenesis. Ho et al (30) 
analyzed 223 Rab effector genes in bladder cancer and found 
that the Rab27 gene cluster was deregulated in the carcinoma 
in situ pathway and Ta pathway. Specifically, SYTL2 was 
downregulated in the two above‑mentioned pathways and 
was associated with differentiation. More recently, SYTL2 
was demonstrated to serve as an epigenetically regulated 
pro‑metastatic factor and to be associated with a poorer 
survival in patients with ovarian cancer (31). These findings 
suggest that SYTL2 plays critical roles in human cancers, 
although its role in OSCC has not been reported previously, 
at least to the best of our knowledge.

OCLN encodes an integral membrane protein which plays 
an important role in cytokine‑induced regulation of the tight 
junction (32). The disruption of the structure of tight junction 
or occludin is related to cancer invasion and metastasis (33). 
A previous study reported that OCLN downregulation is a 
common feature of epithelial‑mesenchymal‑transition in 
tumors derived from simple epithelial cells  (34). To date, 
the downregulation of OCLN has been reported in breast 
cancer, liver tumors, endometrial carcinoma and lung 
cancer (33,35‑37). Rachow et al  (32) observed the loss of 
OCLN in cutaneous squamous cell carcinoma and suggested 
that OCLN loss was related to cell adhesion, apoptosis and 
proliferation (32). Importantly, OCLN has been demonstrated 
to be methylated in the promoter and endogenous region of 
a breast cancer cell line (38). Therefore, we speculated that 
OCLN might serve as an important prognostic maker in 
OSCC.

A recent study demonstrated that CASD1 is a sialate 
O‑acetyltransferase (SOAT), a key enzyme in the biosyn-
thesis of 9‑O‑acetylated sialoglycans (39). Evidence has also 
indicated an enhanced SOAT activity in the lymphoblasts 
of children with acute lymphoblastic leukemia and SOAT is 
thus considered a possible biomarker for monitoring acute 
lymphoblastic leukemia (40). Currently, its role in other solid 
cancers, particularly OSCC has not been reported, at least to 
the best of our knowledge. According to the results of this 
study, we hypothesized that the methylation of CASD1 may 
be a key predictor for the prognosis of patients with OSCC. 
Taken together, in consideration of the reports associated with 
the functions of SYTL2, OCLN and CASD1 in human cancers, 
it can be concluded that the constructed risk prediction model 
may have the potential to be used in predicting the survival of 
patients with OSCC.

CENPV encodes a centrosome‑associated protein. 
Presently, there are very few specific studies available on the 
role of CENPV in human cancers (41). Notably, there are a 
number of studies available on the other centromere proteins 
in cancers. It has been reported that the enhanced expression 
of centromere protein A is implicated in the poor survival of 
patients with human cancers (42,43). Centromere protein A 
has been considered as a prognostic and predictive biomarker 

in human cancers (44). Additionally, the elevated expression 
of centromere protein F can predict clinical progression and 
prognosis in patients with prostate cancer (45). Importantly, 
human centromere protein H has been suggested to be closely 
linked to the increased or abnormal cell proliferation in 
human OSCC (46). These findings mentioned above suggest 
the critical roles of centromere protein in predicting human 
cancers. CENPV may thus serve as a potential prognostic 
factor in human OSCC.

For the marker gene TUB, it encodes a member of the 
Tubby family of bipartite transcription factors. The Tubby 
proteins are a unique protein family sharing a highly conserved 
C‑terminal domain, playing a role in obesity and sensorineural 
degradation (47). However, the function of TUB in cancers has 
not yet been reported, at least to the best of our best knowl-
edge. In view of the reliability of the risk prediction models in 
the present study, we considered that methylated TUB may be 
a prognostic factor in OSCC.

In spite of these findings mentioned above, there were 
some limitations to our study. Although RNA sequencing 
is able to identify and quantify transcripts, isoforms, novel 
transcripts, gene fusions, and non‑coding RNAs among a 
wide range of samples rapidly and accurately, the meth-
ylation level and expression level of the 5 predicted genes 
should be further detected using laboratory experiments, 
such as PCR. Additionally, the constructed risk prediction 
model should also be applied to other cohorts of patients 
with OSCC to further confirm the discriminant efficacy of 
the prediction model on survival prognosis, even though this 
prediction model has been verified in a validation dataset 
GSE52793.

In conclusion, the present study identified 5 key methyl-
ated genes (CENPV, SYTL2, OCLN, CASD1 and TUB) for 
OSCC based on the methylation data in the TCGA database. 
Moreover, the constructed risk prediction model was vali-
dated in GSE52793 suggesting that this prediction model 
may be helpful for predicting the survival prognosis of 
patients OSCC.
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