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ABSTRACT Here, we present a draft genome sequence of Nak82, the second ge-
nome sequence available for the Chloroflexi class Ardenticatenia and the first from a
sulfidic terrestrial hot spring. Nak82 is genetically and metabolically distinct from Ar-
denticatena maritima and likely represents a new genus- or family-level lineage lack-
ing high-potential respiratory pathways.

Ardenticatenia is a curious class in the Chloroflexi phylum; it is currently known only
as a single isolate from an iron-rich hydrothermal field in Japan (1). Ardenticatena

maritima is unique among the Chloroflexi for its capacity for iron reduction and
complete denitrification (2). Here, we report the first genome sequence available from
a second Ardenticatenia lineage strain, Nak82, recovered from Nakabusa Onsen in
Japan. Nak82 is most closely related to Ardenticatena maritima but is genetically
distinct at the genus or family level and does not share the diverse respiratory
pathways that distinguish Ardenticatena maritima from other Chloroflexi species.

The Nak82 metagenome-assembled genome (MAG) was recovered from sequencing
of Nakabusa Onsen, a moderately sulfidic hot spring in Japan. The site and metag-
enomic sequencing were described previously (3, 4). In brief, the site is a moderately
sulfidic and alkaline (pH 8.5 to 9) hot spring with source water near 70°C and containing
�0.1 mM sulfide (5). Samples were collected from microbial mats, and DNA was
extracted and submitted to SeqMatic LLC (Fremont, CA) for sequencing with an
Illumina HiSeq instrument. Sequences from four samples were coassembled with
MEGAHIT v. 1.1.2 (6), and genome bins were constructed based on differential coverage
using MetaBAT (7). Genome bins were assessed for completeness and contamination
using CheckM (8) and uploaded to the RAST server for overall characterization (9).

The Nak82 MAG totals 3.49 Mb and consists of 2,942 protein-coding sequences
across 195 contigs. The genome has a 58.7% GC content and is estimated by CheckM
to be 91.74% complete, with 0.64% contamination. Forty-four tRNAs were recovered.

Phylogenetic analysis of Nak82 and other Chloroflexi using the RpoB protein—a
valuable single-copy marker (10)—robustly places this organism as a sister taxon to
Ardenticatena maritima; however, the RpoB sequences of these strains are only 72%
similar, suggesting divergence to at least the genus level.

Nak82 does not have genes that encode the pathways for aerobic respiration and
denitrification found in Ardenticatena maritima. The only dioxygen reductase recovered
in the Nak82 genome is a bd oxidase, which may be used for oxygen detoxification, as
it appears in obligate anaerobes, including some members of the phylum Chloroflexi
class Anaerolineae (4, 11–14). This distribution of respiration genes is consistent with the
acquisition of aerobic respiration and denitrification by Ardenticatena maritima via
horizontal gene transfer after its divergence with Nak82, a pattern consistent with
broader trends in the evolution of metabolic traits in the Chloroflexi (4, 15).
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Genes involved in the synthesis of lipopolysaccharides and outer membrane pro-
teins (e.g., lpxB, omp85, and bamA) were not recovered from Nak82. This is consistent
with other evidence that members of the Chloroflexi lack an outer membrane, in
contrast to members of their sister phylum Armatimonadetes (4, 16, 17).

Accession number(s). This whole-genome shotgun project was deposited in DDBJ/

EMBL/GenBank under the accession number QEXY00000000.
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