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Abstract
Background and objective Acute lung injury (ALI)/ acute respiratory distress syndrome (ARDS) was increasingly recognized 
as one of the most severe acute hyperimmune response of coronavirus disease 2019 (COVID-19). Clofazimine (CFZ) has 
attracted attention due to its anti-inflammatory property in immune diseases as well as infectious diseases. However, the role 
and potential molecular mechanism of CFZ in anti-inflammatory responses remain unclear.
Methods We analyze the protein expression profiles of CFZ and LPS from Raw264.7 macrophages using quantitative 
proteomics. Next, the protective effect of CFZ on LPS-induced inflammatory model is assessed, and its underlying mechanism 
is validated by molecular biology analysis.
Results LC–MS/MS-based shotgun proteomics analysis identified 4746 (LPS) and 4766 (CFZ) proteins with quantitative 
information. The key proteins and their critical signal transduction pathways including TLR4/NF-κB/HIF-1α signaling 
was highlighted, which was involved in multiple inflammatory processes. A further analysis of molecular biology revealed 
that CFZ could significantly inhibit the proliferation of Raw264.7 macrophages, decrease the levels of TNF-α and IL-1β, 
alleviate lung histological changes and pulmonary edema, improve the survival rate, and down-regulate TLR4/NF-κB/
HIF-1α signaling in LPS model.
Conclusion This study can provide significant insight into the proteomics-guided pharmacological mechanism study of CFZ 
and suggest potential therapeutic strategies for infectious disease.
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Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), a highly infectious RNA virus, is responsible 
for coronavirus disease 2019 (COVID-19) [1], which 
has caused more than 5.8 million deaths (February 2022, 
Johns Hopkins University Coronavirus Resource Center) in 
modern history so far. The target of SARS-CoV-2 primarily 
infects the respiratory tract epithelial cells and activates the 
immune system, in turn, leading to cytokine storm (CS) and 
causing fever, cough, breathlessness, etc. [2]. In some cases, 
10–20% of patients with COVID-19 might also develop 
acute lung injury (ALI) or progress to acute respiratory 
distress syndrome (ARDS) and fatal multi-organ dysfunction 
(MODS) and even death [3, 4].

Current management of severe COVID-19 focus on 
symptomatic and supportive treatment [3, 4]. Aside from 
combination therapy, there is no widely available antiviral 
therapies for severe pneumonia. Thus, it is in critical need 
to develop additional therapeutic strategies for COVID-19. 
Recently, clofazimine (CFZ) has raised some interest, which 
simultaneously inhibits viral activity and alleviates the 
symptoms in COVID-19 patients [5]. Previously, it has been 
used in treating leprosy, and more recently in multidrug-
resistant tuberculosis [6, 7]. Accumulated evidence points 
out that CFZ displays an important immunomodulatory 
activity and anti-inflammatory property in immune 
disease, including discoid lupus erythematosus, chronic 
lymphocytic leukemia, Crohn disease, ulcerative colitis, 
etc. [5, 8–11]. In addition, it is anti-bacteria by generating 
reactive oxygen species (ROS), particularly superoxide and 
hydrogen peroxide  (H2O2) [12, 13]. Up to now, despite the 
aforementioned interesting findings in the literature, there 
is still much to be understood about the role of CFZ in ALI/
ARDS.

Lipopolysaccharide (LPS)-induced inf lammatory 
responses are an ideal model closely resembling ALI/ARDS 
[14–16]. Raw264.7 macrophage, a critical immunological 
cell, plays a hub role in the pathogenesis of ALI/ARDS 
[17]. Here, the first proteomic study is presented to assess 
the effects of CFZ on Raw264.7 macrophage cells and 
validate the mechanisms involved in the anti-inflammatory 
effect in LPS-induced ALI/ARDS model. In this study, 
a rich resource for data mining and guidance for clinical 
validation is provided. Data analysis and experimental 
research workflow is detailed in Fig. 1.

Materials and methods

Cell and reagents

Raw264.7 macrophage cell lines were acquired from the 
Beijing Proteome Research Center, National Center for 
Protein Sciences (Beijing, China). Fetal bovine serum (FBS), 
Dulbecco’s modified Eagle’s medium (DMEM), penicillin 
and streptomycin were purchased from Thermo Fisher 
Scientific. Lipopolysaccharide (LPS) from Escherichia coli 
0111: B4 (in vitro) and O55: B5 (in vivo) were purchased 
from Sigma-Aldrich. Clofazimine (CFZ, Fig.  2a) was 
purchased from the Cayman Chemical. Cell Counting Kit-8 
(CCK-8) was obtained from Gene-Protein Link. Mouse 
TNF-a, and IL-1β enzyme-linked immunosorbent assay 
(ELISA) kits were purchased from Sigma-Aldrich. COX-
2, Aim 2, TLR4, NF-κBp65, p-NF-κBp65 and HIF-1α 
were purchased from Cell Signaling Technology. All other 
chemicals were of reagent grade.

Cell culture

Raw264.7 cells were grown in culture media (DMEM), 
supplemented with 10% FBS and 1% penicillin/
streptomycin. Cells were cultured at 37 °C in a 5%  CO2 
humidified incubator, and grown to 80% confluence before 
use.

CCK‑8 assay

A CCK-8 test kit was used according to the manufacturer's 
instructions. Briefly, Raw264.7 cells were inoculated into 
96-well plates at a density of 6 ×  103 per well for 24 h. Then, 
the cells were treated with CFZ and (or) LPS for 24 h. 10% 
of CCK-8 solution was added into the well and incubated for 
1 h at 37 °C away from light. The absorbance was measured 
at 450 nm by a microplate reader (Bio-Rad) to assess the 
half-maximal inhibitory concentration  (IC50) value and cell 
proliferation.

Sample preparation for proteomics analysis

First, cells were plated in triplicate wells in six-well plates. 
After adherence, CFZ (4 μM) or LPS (100 ng/ml) were 
added to cells and incubated at 37 °C for 0 h, 2 h, 8 h, and 
24 h. Then, samples were lysed in lysis buffer supplemented 
with phosphatase inhibitors and incubated at 95 ℃ for 
15 min. After sonication, the lysates were centrifuged at 
16,000×g at 4 ℃ for 10 min and the supernatants were 
collected as whole cell extract. Next, protein concentration 
was determined by NanoDrop (Thermo Fisher Scientific). 
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Fig. 1  The general workflow of quantitative proteomics and molecular biology analysis
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Subsequently, samples (100 μg per sample) were digested 
with trypsin (2  μg per sample) overnight at 37 ℃. 
Then, peptides were eluted, separated and desalted into 
fractions. Finally, the samples were vacuum-centrifuged 
to dryness (Thermo Fisher Scientific), and used for liquid 
chromatography tandem mass spectrometry (LC–MS/MS) 
analysis.

Subsequently, peptides were analyzed on an Orbitrap 
Q-Exactive HF Mass Spectrometer (Thermo-Fisher 
Scientific) operating in the data-dependent acquisition 
(DDA) mode. The Proteome Discoverer (Thermo Scientific) 
was used to analyze the raw MS files against the mouse refseq 
protein database. Enzyme specificity was set to trypsin. The 
search set none as a fixed modification, while acetylation 
(Protein N-term), oxidation (M), and carbamidomethylation 
(C) were considered variable modifications. Charges of 
precursor ion were limited to + 2, + 3, and + 4. The protein 
quantification was represented in intensity-based absolute 
quantification (iBAQ).

Bioinformatics analysis

Proteins with a probability p value < 0.05, fold change > 2 
or < 0.5 and false discovery rate (FDR) < 0.01 were chosen 
as the mostly affected proteins. Then, the expression pattern 
of six clusters of dynamic proteins were analyzed by Mfuzz 
(Kumar and Futschik, 2007). Hierarchical cluster and 
heatmap analysis of differentially expressed proteins were 
performed using the ward.D’s hierarchical clustering and 
heatmap function in the R package. The volcano plots were 
visualized in Hiplot analysis with the website (https:// hiplot. 
com. cn/ advan ce). Enrichment analysis using Gene ontology 
(GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG), and the Database for Annotation, Visualization 
and Integrated Discovery (DAVID, https:// david. ncifc rf. gov/ 
home. jsp) were available. Correlation analysis was carried 
out using Pearson’s correlation. Enrichment p values in 
GO, KEGG, and correlation analysis less than 0.05 were 
considered significantly enriched.

ELISA assay

RAW 264.7 macrophage cells were cultured in six-well 
plates, and four groups were set including control group, 
LPS group, CFZ group, LPS + CFZ group. The cells were 
then treated with freshly prepared Escherichia coli LPS 
(100 ng/ml) and CFZ (4 μM) for 24 h. Control group was 
treated with equivalent endotoxin-free PBS. According to 
manufacturer’s protocol, cell free supernatant was obtained 
after 24 h incubation, and enzyme-linked immunosorbent 
assay (ELISA) was employed to determine the levels of 
TNF-α and IL-1β.

LPS‑induced ALI/ARDS model in mice

Six-week-old female C57BL/6 J mice (weighing 20–22 g) 
were purchased from Beijing Vital River Laboratory Animal 
Technology Co., Ltd. They were housed in pathogen-
free cages with free access to food and water with a 12-h 
light/dark schedule at 22 ± 2 °C. All study protocols were 
accredited by the Institutional Animal Care and Use 
Committee of National Center for Protein Sciences (Beijing, 
China) (IACUC-20210702-26MT).

Mice were randomly assigned to the following groups 
(n = 5 per group):

• Control group: PBS was administered intraperitoneally 
(i.p.) without LPS stimulation.

• LPS group: Mice were stimulated with LPS (20 mg/kg).
• CFZ group: Mice were administered intragastrically with 

CFZ (25 mg/kg). CFZ was suspended in a 0.05% (w/v) 
agarose solution.

• LPS + CFZ group. Mice in this group were stimulated 
with LPS and then treated with CFZ.

All mice were euthanized (i.p.; 80  mg/kg sodium 
pentobarbital) 8 h after the last challenge. The lung tissues 
were quickly removed for further analyses.

Histological analysis

Lung tissues were collected, fixed and embedded in paraffin. 
Subsequently, the tissues were serially sectioned into 4 μm 
thickness, stained with hematoxylin and eosin (H&E) and 
then mounted in neutral gum. Lung injury scores were based 
on the infiltration of neutrophils (0–4), alveolar oedema 
(0–4), hyperemia or congestion (0–4) and intra-alveolar 
hemorrhage, necrosis (0–4). The severity of lung injury was 
scored as: 0 = normal; 1 = minimal (< 5%); 2 = mild (< 10%); 
3 = moderate (15 - 20%); and 4 = severe (> 25%).

Fig. 2  Variation in cell viability and overview of the LPS and CFZ 
proteomics data in Raw264.7 macrophage cells. a 3d structure of 
CFZ. b CFZ reduced cell viability in a concentration-dependent 
manner. c Cell viability of Raw264.7 cells were exposed to different 
concentrations of LPS for 24  h. d CCK-8 assay was applied to 
detect the effects of CFZ on Raw264.7 cells. e Total number of 
proteins identified in each timepoint (2 h, 8 h, and 24 h) in Raw264.7 
macrophage cells. All values are expressed as mean ± SEM of at 
least three separate experiments. Variation among treatments was 
determined by one-way ANOVA. *p < 0.05; **p < 0.01; ***p < 0.001; 
****p < 0.0001; “ns” indicates no significant difference

◂

https://hiplot.com.cn/advance
https://hiplot.com.cn/advance
https://david.ncifcrf.gov/home.jsp
https://david.ncifcrf.gov/home.jsp
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Pulmonary wet‑to‑dry ratio

The lung tissue from each animal was harvested and placed 
onto pre-weighed tin foil to measure the wet weight (W). 
The tissue was then placed in an incubator at 37 ℃ for 48 h 
and obtained dry weight (D). The W/D ratio of the lung tis-
sue was calculated.

Survival rates and weight of mice

Survival rates were studied in another set of experiments: 30 
mice were randomly divided into 3 groups [Control group; 
LPS (60 mg/kg) group; LPS + CFZ (25 mg/kg) group] as 
described above (n = 10 per group). Mice were weighed 
every 24 h.

Western blot analysis

Lung tissues were washed three times with ice-cold PBS 
and lysed in RIPA lysis buffer. Protein concentration was 
determined using the BCA assay (Thermo Fisher Scientific). 
Samples were run using 10% sodium dodecyl sulfate 
(SDS)—polyacrylamide gels (PAGE) and electro-transferred 
onto nitrocellulose membranes (Bio-Rad). After blocking 
in 5% non-fat dry milk in TBST at room temperature for 
1  h, the membranes were washed and immunoblotted 
with primary antibodies COX-2 (1:1000, #12,282), TLR4 
(1:1000, #14,358), NF-κBp65 (1:1000, #8242), p-NF-κBp65 
(1:1000, #3033), AIM 2 (1:1000, #63,660), HIF-1α (1:1000, 
#36,169) and GAPDH (1:5000, Wuhan Sanying, 60,004-
1-Ig) overnight at 4 ℃. Then incubated with a secondary 
antibody conjugated with horseradish peroxidase (HRP) 
(1:2000; Beyotime, A0208). Enhanced chemiluminescence 
reagent (ECL) detection system (Thermo Fisher Scientific) 
was used to detect immunoreactive bands. All acquired 
images were calculated by Image J (v1.53e).

Statistical analysis

Data were evaluated using GraphPad Prism 8.3.0 (GraphPad 
Software, La Jolla, CA). Differences between the groups 
were performed with Student’s t test or one-way ANOVA 
method. A p value < 0.05 was set at statistically significant.

Results

In vitro study

Effect of CFZ on CCK‑8 assay

First, after 24 h-incubation, the cytotoxic effect of CFZ 
on Raw264.7 cell lines by CCK-8 assay after treatment 
was estimated with different doses. The results showed 
that  IC50 of CFZ in the Raw264.7 cells was 4.1  μM 
(Fig.  2b). The non-toxic concentrations (4  μM) were 
used for the following experiment. Then, after different 
concentrations (0.05, 0.1, 0.25, 0.5, 1, 10 and 100 μg/mL) 
of LPS were applied, the viability of cells remained the 
same after treatment with 100 μg/mL of LPS compared 
to the control group (Fig. 2c). Therefore, 100 ng/mL was 
selected as the optimal concentration of LPS for activating 
the macrophages. Additionally, the results of CCK-8 
assay also revealed that LPS promoted the viability of 
Raw264.7 cells, while CFZ could significantly reduce the 
proliferation of Raw264.7 cells (Fig. 2d).

A dynamic protein expression landscape of CFZ and LPS

To study the damage of LPS and CFZ on the Raw264.7 
cells, shotgun proteomics was utilized to discover the 
alteration of protein expression patterns. 4746 and 4766 
proteins were identified with quantitative information in 
this study (Fig. 2e). Then, the correlation between LPS 
and CFZ proteomic data in each timepoint (0 h, 2 h, 8 h, 
and 24 h) was analyzed by Mfuzz. In total, it is found 
that six distinct clusters of temporal patterns representing 
proteins are regulated differently, indicating different 
expression kinetics. Among the 4746 proteins of LPS, 
clusters 1 represents up-regulated proteins, clusters 2 and 
3 represent down-regulated proteins, whereas clusters 4, 5, 
and 6 represent proteins displaying a bimodal expression 
pattern (Fig. 3a, b; Supplementary Table S1). Among the 
4766 proteins of CFZ, clusters 1 and 3 represent proteins 
are down-regulated, clusters 4 and 5 represent proteins 
are up-regulated, whereas clusters 2 and 6 represent 
proteins displaying a bimodal expression pattern (Fig. 3c, 
d; Supplementary Table  S2). By overlaying Mouse 
Genome Informatics (MGI, http:// www. infor matics. jax. 

Fig. 3  Temporal profiles of protein expression in each timepoint (0 h, 
2 h, 8 h, and 24 h) in Raw264.7 macrophage cells. a Mfuzz clustering 
identified six distinct temporal patterns of proteins expression of 
LPS. b The left pie chart shows the number of proteins of LPS in 
six dynamic expression clusters in (b), the right pie chart shows the 
number of inflammatory proteins of LPS in six dynamic expression 
clusters in (b). c Mfuzz clustering identified six distinct temporal 
patterns of proteins expression of CFZ. d The left pie chart shows the 
number of proteins of CFZ in six dynamic expression clusters in (d), 
the right pie chart shows the number of inflammatory proteins of CFZ 
in six dynamic expression clusters in (d). e Venn diagram shows the 
opposite expression patterns of 30 inflammatory proteins identified 
by LPS (green) and CFZ (purple) comparisons. f KEGG pathway 
analysis of opposite protein clusters

◂

http://www.informatics.jax.org/
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org/) containing primarily inflammatory response proteins 
(IRPs), we found, intriguingly, that IRPs mainly showed 
a low expression level in clusters 1 and 3 of CFZ and a 
high expression level in clusters 1 of LPS (Fig. 3e). These 
proteins play critical roles in regulating inflammation, 
such as SYK, GSDMD, CELF1, NFκB1, MYD88, AIM 
2, PTPN2, STAT5A, IL16, NCF1, PIK3AP1, DDX3X, 
RIPK1, FCGR1, COX2, etc. (Supplementary Table S3). 
The enrichment of the KEGG pathway included the 
leishmaniasis, NF-kappa B (NF-κB) signaling pathway, 
hepatitis B, osteoclast differentiation, tuberculosis, B cell 
receptor signaling pathway, toll-like receptor signaling 
pathway, measles, epstein–barr virus infection, etc. 
(Fig. 3f).

Hierarchical cluster analysis of the protein identification 
and functions

Principal component analysis (PCA) results showed that 
each sample within treatment groups shared a similar expres-
sion pattern, whereas it displayed a distinguished pattern 
between each time point (i.e., three samples per treatment, 
LPS and CFZ enriched for four time points, 0, 2, 8, and 24 h, 
p < 0.05; Fig. 4a). To gain better insight into the difference 
of protein expression profiles of LPS and CFZ (0 h, 2 h, 8 h, 
and 24 h), we performed the degree of differential proteins 
in each sample by hierarchical clustering and heatmap. To 
reveal the molecular mechanism of proteins in each cluster 
and understand their biological significance, KEGG path-
way analysis were performed on differentially expressed 
proteins in the LPS and CFZ dataset (ANOVA, FDR < 0.01, 
p < 0.05). The LPS dataset in cluster 1 mainly involves 
ribosome, spliceosome, RNA transport, biosynthesis of 
antibiotics, and phagosome. Cluster 2 proteins participate 
in systemic lupus erythematosus, spliceosome, alcoholism, 
viral carcinogenesis, and proteasome. Cluster 3 is enriched 
in herpes simplex infection, viral carcinogenesis, ubiquitin-
mediated proteolysis, alcoholism, spliceosome. Intriguingly, 
the KEGG analysis of CFZ suggest that cluster 1 is mainly 
enriched in pathways including biosynthesis of antibiot-
ics, spliceosome, RNA transport, carbon metabolism, and 
metabolic pathways. Cluster 2 is involved in systemic lupus 
erythematosus, alcoholism, carbon metabolism, biosynthesis 
of antibiotics, and viral carcinogenesis. Cluster 3 is mainly 
associated with spliceosome, biosynthesis of antibiotics, 
metabolic pathways, carbon metabolism, and citrate cycle 
(TCA cycle). Overall, the CFZ clustering analysis revealed 
that KEGG pathway has similar biological features to those 
obtained from the LPS dataset. (Fig. 4b; Supplementary 
Table S4 and Table S5).

Essential pathways of CFZ in proteome

The distribution of proteins is identified at each time 
point (0, 2, 8, and 24 h), then they are represented in Venn 
diagrams (FDR < 0.01, p < 0.05, fold change > 2 or fold 
change < 0.5; Fig. 5a). Notably, by comparing the expression 
levels of total proteins, the differentially expressed proteins 
(DEPs) at each time point (0, 2, 8, and 24 h) were screened 
(FDR < 0.01, p < 0.05, fold change > 2 or fold change < 0.5; 
Fig. 5b). Volcano plots is a scatter graph used to highlight 
the up-regulated, down-regulated proteins and spatial 
occurrence in large datasets. As shown in Fig. 5c, the great 
alterations in the Raw264.7 proteome were induced by LPS 
and CFZ at the 24 h time point, where 1203 (Supplementary 
Table S6) and 1332 (Supplementary Table S7) proteins 
showed significantly changed expression compared to 
controls, respectively.

To extract molecular mechanisms of proteome from 
the 1332 DEPs of CFZ, gene ontology (GO) and KEGG 
enrichment analysis (Fig. 6) were used. The top enriched 
categories of the biological process (BP) were related to 
generation of precursor metabolites and energy, aerobic 
respiration, cellular respiration, energy derivation by 
oxidation of organic compounds, ATP metabolic process, 
oxidative phosphorylation, carboxylic acid catabolic 
process, organic acid catabolic process, nucleotide 
metabolic process, and purine-containing compound 
metabolic process. The cellular component (CC) terms 
of the DEPs were mitochondrial matrix, mitochondrial 
protein-containing complex, mitochondrial inner membrane, 
organelle inner membrane, oxidoreductase complex, myelin 
sheath, organellar ribosome, mitochondrial ribosome, inner 
mitochondrial membrane protein complex, and respiratory 
chain complex. The molecular function (MF) terms of 
the DEPs were NAD binding, structural constituent of 
ribosome, electron transfer activity, isomerase activity, 
ribonucleoprotein complex binding, iron-sulfur cluster 
binding, metal cluster binding, ATP hydrolysis activity, 
primary active transmembrane transporter activity, and 
ligase activity. The enrichment of the KEGG pathway 
included carbon metabolism, oxidative phosphorylation, 
fatty acid metabolism, HIF-1 signaling pathway, and 
lysosome.

CFZ inhibits TLR4/NF‑kB/HIF‑1α pathway and IL‑1β 
and TNF‑α release

NF-κB pathway has been defined as a key participant in 
LPS infections [18, 19]. Meanwhile, hypoxia-inducible 
factor-1α (HIF-1α) is considered one of endogenous 
ROS's core cellular targets, which further regulates the 
hypoxia signaling in the inflammatory response [20]. To 

http://www.informatics.jax.org/
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Fig. 4  Principal component analysis of temporal proteomic data and their biological functions. a PCA analysis of LPS and CFZ protein. b 
Hierarchical cluster and heatmap show significant values of KEGG pathway describing each of clusters
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further correlate CFZ with inflammation on the levels of 
transduction pathways, key proteins involved in the pathways 
implicated in TLR4/NF-κB/HIF-1α signaling pathway were 
listed (Fig. 7a). Among these protein expressions, there were 
better correlation in TLR4/NF-κB/HIF-1α transduction 
pathway (Fig. 7b).

Next, TNF-α and IL-1β expression was measured in the 
culture supernatants of Raw264.7 cells. It can be seen from 
the results that compared to the control group, the levels 
of TNF-α and IL-1β were significantly increased with LPS 
exposure alone. However, when treated with CFZ, the levels 
of TNF-α and IL-1β in LPS + CFZ group were markedly 
reduced compared with the LPS group (Fig. 8a).

In vivo study

Effect of CFZ on LPS‑induced lung parenchyma

As CFZ treatment significantly improved the pro-
inflammatory cytokines, we examined whether this treatment 
reduced lung injury in mice. Intact structure and clear 
pulmonary alveoli in both control group and CFZ group 
of mice were observed. Following LPS-induced injury, the 
histological examination showed an increase in the areas 
of inflammatory infiltration, collapse of air alveoli, and 
pulmonary congestion. However, CFZ markedly attenuated 
the LPS-induced pathological changes (p < 0.05) (Fig. 8b).

Effect of CFZ on the W/D ratio

Lung edema was a predictive marker of the exudative phase 
of ALI/ARDS [21, 22]. We evaluated it by W/D lung weight 
ratio. After 8 h of LPS administration, a marked increase 
was observed in the average wet/dry ratio of lung tissue 
compared with the control group; however, the LPS + CFZ 
group, in particular, exhibited a significantly lower level of 
W/D ratio than the LPS group (p < 0.05) (Fig. 8c).

Effect of CFZ on survival rate and body weight loss of mice 
challenged with a lethal dose of LPS

The therapeutic effect of CFZ was evaluated on mice 
challenged with the lethal dose of the LPS (Fig. 8d, e). 
The survival rate of the mice in LPS group was markedly 
lower than that in the control group, while the survival rate 
in the LPS + CFZ group was distinctly higher than that in 
the LPS group during 72 h observation (p < 0.05). These 

results showed that CFZ could improve the survival rate of 
LPS-challenged mice (Fig. 8d). The effects of CFZ were 
further validated on LPS-induced ALI in mice. Our results 
suggested that on day 3, mice in the normal group increased 
a considerable weight, compared to day 0. Mice began to 
lose weight on day 1 and all weight loss on day 3 following 
LPS injury. Treatment of CFZ effectively improved the loss 
and presented a slight weight increase on day 3, compared 
to LPS group (p < 0.05).

Effect of CFZ on LPS‑induced COX‑2 and AIM 2 expression

The activation of COX-2 and AIM 2 were detected 
by western blot analysis to investigate the mechanism 
underlying the anti-inflammatory effect of CFZ. As 
expected, LPS application dramatically increased COX-2 
and AIM 2 expression compared with the control group. 
However, compared with the LPS group, CFZ markedly 
decreased the protein expression (Fig. 9a).

Effect of CFZ on LPS‑induced TLR4/NF‑κB/HIF‑1α expression

The protein expression levels of CFZ on TLR4/NF-κB/
HIF-1α pathway were assessed for further investigating the 
anti-inflammatory mechanisms of CFZ. As a result (Fig. 9b), 
the protein levels of three essential proteins, including 
TLR4, NF-κBp65 and HIF-1α were significantly enhanced 
in LPS group. Conversely, CFZ decreased the expression of 
these three essential proteins in LPS + CFZ group (p < 0.05).

Discussion

Today, while most COVID-19 cases are asymptomatic or 
cause only mild symptoms after SARS-CoV-2 infection, 
10–20% of the patients develop severe pneumonia and 
ARDS [23]. ALI is increasingly recognized as one of the 
most severe acute hyperimmune responses of COVID-19, 
which can be manifested as dyspnea and gradually develop 
into ARDS [24]. Numerous studies have also been reported 
that several conditions, including infection, trauma, or 
inflammatory pathways are associated with ALI/ARDS [25, 
26]. Hence, obtaining an additional therapeutic strategy of 
ALI/ARDS remains a significant challenge. Many CFZ-
related articles focus on its antibiotic function, like treatment 
for tuberculosis, leprosy, and Salmonella enterica, but anti-
inflammatory effect has not yet been elucidated. With this in 
mind, this study aims to fill this gap in the literature. Here, 
our results have demonstrated the anti-inflammatory roles of 
CFZ in both Raw264.7 cells and the mice model.

Proteomics has become the mainstay in systematically 
studying the expression, function, and interaction of all 
proteins in cells [27]. This technology can reveal the entire 

Fig. 5  Comparative analyses of the DEPs of LPS and CFZ at each 
timepoint. a Venn diagram of proteins differentially expressed in 
LPS and CFZ data. b Total number of DEPs in LPS and CFZ data. 
c Volcano plots show the DEPs of up-regulated, down-regulated, and 
spatial occurrence

◂
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Fig. 6  KEGG and Gene Ontology biological process analysis of the 
differentially expressed proteins of CFZ. a Top 50 KEGG pathways 
with the lowest adjusted p values. b Top ten significantly enriched 

terms in biological processes (BPs), cellular components (CCs), and 
molecular functions (MFs)
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protein change spectrum under specific biological processes 
and the mechanisms of drugs on the changes of the whole 
proteome [28]. The researchers performed a comprehensive 
proteomic analysis to study the damage of LPS and CFZ 
on the Raw264.7 cells, and they used bioinformatic 
interpretation to identify the potential alteration of proteins 
of LPS and CFZ. As a result, 4746 (LPS) and 4766 
(CFZ) proteins were identified and contained quantitative 
information in this study. In addition, mainly 29 proteins 
showed a low expression level in clusters 1 and 3 of CFZ 
and a high expression level in clusters 1 of LPS, overlaying 
MGI containing primarily inflammatory response proteins. 
As a result, the expression levels of IRPs including SYK, 
GSDMD, CELF1, NFκB1, MYD88, AIM 2, PTPN2, 
STAT5A, IL16, NCF1, PIK3AP1, DDX3X, RIPK1, FCGR1, 
COX-2, etc. Studies have revealed the potential roles of 
SYK, PTPN2, STAT5A, IL-16, NCF1, PIK3AP1, and 
FCGR1 in different inflammatory diseases and autoimmune 
pathologies [29–35]. Additionally, GSDMD, AIM 2, and 
COX-2 have recently been identified as a key role in the 
pathogenesis of sepsis and COVID-19 [36–38]. Celf1 is 
known as an RNA-binding protein [39]. Hu et al. found 
that Celf1-deficiency could improve oxidative stress and 
apoptosis in cardiomyocytes [40]. NFκB1 (p50) is one of 
the five members of the NF-κB family, which is IκB kinase-
like protein [41]. MYD88 is implicated in inflammatory 
signaling downstream of IL-1R and mammalian TLRs 
[42]. Recently, a plethora of studies have implicated that 
massive release of TNF-a, IFN-g, IL-1b, IL-8, MCP-1, and 
IP-10 seen in ALI/ARDS may probably be linked to NLRP3 
inflammasome activation [43]. The stress granule protein 
DDX3X interacts with NLRP3 to drive inflammasome 
activation [44]. Ripk1 is a key pharmacological target of 
regulated cell death as well as in the TNF signaling pathways 
[45]. Then, KEGG analysis suggested that the IRPs were 
also enriched in pathways that are strongly associated with 
NF-kappa B (NF-κB) signaling pathway, B cell receptor 
signaling pathway, and toll-like receptor (TLR) signaling 
pathway. NF-kappa B signaling pathway, B cell receptor 
signaling pathway, and toll-like receptor signaling pathway 
profoundly affect the activation of Raw264.7 macrophage 
cells, and thereby modulate the release of inflammatory 
cytokines and the presentation of immune responses. 
These results indicate that CFZ could serve as potential 
therapeutics on Raw264.7 macrophage cells activation.

The above PCA analysis showed that each sample within 
treatment groups shared a similar expression pattern, 
whereas displayed a distinguished pattern between each 
time point. Based on hierarchical clustering and heatmap, 
the CFZ clustering analysis revealed KEGG pathway with 
similar biological features to those obtained from the LPS 
clustering. Our results also showed that CFZ and LPS 

play a very similar inflammatory and immune function in 
Raw264.7 cell model.

To ensure the accuracy and reliability of our results, 
proteins, which had FDR < 0.01, p < 0.05, and fold 
change > 2 or fold change < 0.5, in each time point (2, 8, and 
24 h) of LPS and CFZ compared with 0 h, was considered as 
significantly expressed proteins. Strikingly, using this cutoff, 
after 24 h of CFZ exposure in Raw264.7 macrophages, a 
total of 1332 proteins were significantly changed, including 
405 up-regulated and 927 down-regulated. After 24  h 
of LPS exposure in Raw264.7 macrophages, a total of 
1203 proteins were significantly changed, of which 537 
were up-regulated and 666 down-regulated. As most 
of the inflammatory pathological features of Raw264.7 
macrophages develop within this time, we focused on the 
phase (24 h) of the 1332 proteins of CFZ. KEGG pathway 
analysis showed that DEPs of CFZ were mainly involved in 
the pathways related to the carbon metabolism, oxidative 
phosphorylation, TCA cycle, fatty acid metabolism, HIF-1 
signaling pathway, and lysosome. The importance of the 
carbon metabolism, oxidative phosphorylation, TCA 
cycle, fatty acid metabolism, HIF-1 signaling pathway, and 
lysosome in physiology and pathophysiology has now been 
confirmed by many experimental studies in LPS models. 
For instance, when Raw 264.7 cells were exposed to LPS, 
several inflammatory reactions could be inhibited by the low 
doses of carbon monoxide (CO) or endogenous CO [46]. 
HIF-1α is induced in LPS-activated macrophages, where it 
is pivotal involved in TCA cycle and glycolytic metabolites 
as well as the induction of inflammatory response, notably 
IL-1β. As the mechanisms for CFZ-mediated macrophage 
protein expression are poorly understood, then key proteins 
involved in the signaling pathways implicated in TLR4/
NF-κB/HIF-1α signaling pathway were listed in this study 
according to KEGG pathway analysis. Among these protein 
expressions, there was better correlation in this signaling 
pathway. These observations suggest CFZ exerted anti-
inflammatory activity via TLR4/NF-κB/HIF-1α pathway in 
macrophages.

Raw264.7 macrophage, an important immunological 
cell, plays a major role in regulating pro-inflammatory 
chemokines, cytokines, and mediators in the pathogenesis 
of ALI/ARDS [47]. Our experiments demonstrated that 
LPS promoted the viability of Raw264.7 cells, while CFZ 
could significantly decrease the proliferation of Raw264.7 
macrophages. We further evaluated the anti-inflammatory 
effect of CFZ in Raw264.7 cells models. It was reported that 
targeting pro-inflammatory cytokines (such as TNF-α and 
IL-1β) was one of the most promising treatments against 
inflammatory response during inflammatory diseases [48]. 
Our study demonstrated that CFZ inhibited TNF-α and IL-1β 
production in the Raw264.7 cells caused by LPS. Similar to 
Yoon et al., they also reported that CFZ decreased TNF-α 
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production and boosted IL-1RA secretion after treatment 
with LPS in macrophages [49].

Animal models can provide highlight ways in the 
complex pathophysiology of human disease. Therefore, in 
the present study, LPS model was also applied to examine 
the effect of CFZ on lung and lethality in mice. In our 
work, it is demonstrated that CFZ treatment decreased 
the severity of LPS-induced lung injury by improving the 
inflammatory infiltration into the lung. Previous studies 

have shown that pulmonary edema is the hallmark of 
ALI/ARDS in LPS model [25, 26]. Alveolar epithelial 
barrier dysfunction in response to inflammatory reaction 
results in lung edema in ALI/ARDS [50]. Our results also 
suggest that CFZ significantly attenuated the lung edema. 
LPS challenge contributed to a 40% survival rate within 
72 h, while administration of CFZ improved the survival 
rate to 80%. Besides, a significant deterioration of weight 
loss for the first 2 days was observed, followed by weight 
recovery in mice treatment with CFZ compared to mice 
receiving LPS. The significance of TLR4/NF-κB/HIF-1α 
in LPS-induced ALI/ARDS model has been previously 
reported. Subsequently, we further investigated the anti-
inflammatory effect of CFZ on TLR4/NF-κB/HIF-1α 

Fig.7  TLR4/NF-κB/HIF-1α transduction pathway revealed in CFZ 
data. a Schematic diagram of CFZ proteomics participating in the 
anti-inflammatory in LPS-induced lung injury. b Correlation on key 
proteins involved in the signaling pathway

◂

Fig. 8  CFZ decreased the pro-inflammatory cytokines and 
ameliorated ALI following LPS. a The TNF-α and IL-1β level was 
detected by ELISA kits. All values were expressed as mean ± SEM 
of at least three separate experiments. b Histopathological changes 
of lung tissue (200 x) and lung injury score (n = 5 mice/group). c 

Pulmonary edema was examined by W/D ratio (n = 5 mice/group). d 
Survival rate of mice (n = 10 mice/group). e Body weight loss (n = 10 
mice/group). Data are mean ± SEM. Variation among treatments was 
determined by one-way ANOVA. *p < 0.05; **p < 0.01; ***p < 0.001; 
****p < 0.0001
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pathway in LPS-induced lung injury mice. COX-2, an 
evolutionary enzyme, plays a central role in controlling 
host defense response to viral and bacterial infections 
[51]. Several lines of evidence demonstrated that COX-2 
inhibitor is one of the major targets in treating ALI model 
induced by LPS in mice [52]. AIM 2, which can be 
expressed in the cytosol, is a member of innate immune 
sensors. During the inflammatory response, expression 
levels of COX-2 and AIM 2 are related to the NF-κB 
pathway [53]. Recent studies have alluded to the fact that 
the NF‐κB and HIF crosstalk. For instance, macrophages 
or mice infected with LPS signaled through NF-κB and 
promoted the inflammatory cytokine to modulate HIF-1α 
expression. We found that LPS activates the expression of 

key proteins involved in TLR4/NF-κB/HIF-1α signaling, 
including the TLR4, NF-κB, and HIF-1α, as well as 
inflammatory enzyme (COX-2) and the inflammasome 
(AIM 2), and its stimulation was reversed through CFZ. 
Taken together, these results demonstrated the strong 
anti-inflammatory effects of CFZ on LPS-induce lung 
injury.

Conclusion

In summary, this project revealed that CFZ markedly 
inhibits LPS-challenged inflammatory response in vitro 
and in  vivo. Through performing a systematically 

Fig. 9  Effect of CFZ on TLR4/NF-κB/HIF-1α pathway in LPS-
stimulated ALI. a Western blot corresponding to COX-2 and AIM 2 
in lung lysates from mice treated with LPS then CFZ 8 h. b Western 
blot corresponding to TLR4, NF-κBp65, and p-NF-κBp65 in lung 
lysates from mice treated with LPS then CFZ 8  h. c Western blot 

corresponding to HIF-1α in lung lysates from mice treated with 
LPS then CFZ 8 h. GAPDH was used for loading control. Data are 
mean ± SEM., n = 5 mice/group. Variation among treatments was 
determined by one-way ANOVA. *p < 0.05; **p < 0.01; ***p < 0.001
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proteomic analysis on Raw264.7 macrophage, the 
progressive alteration of protein expression of LPS 
and CFZ dataset has been explored. Our LPS model 
demonstrated that CFZ decreases the level of pro-
inf lammatory cytokine, attenuates lung injury and 
pulmonary edema, and reduces the lethality of septic 
shock. In particular, our results show that TLR4/NF-κB/
HIF-1α is a critical signaling of CFZ-mediated anti-
inflammatory responses. Thus, the study of quantitative 
proteomic data reveals valuable information to understand 
the anti-inf lammatory effects of CFZ and provide 
potential therapeutic strategies for infectious diseases.
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