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Introduction
Gastric cancer (GC) is one of the most frequent malignant 
tumors, and caused 723,000 deaths in 2012.1 Almost two-
thirds of these cancers occur in developing countries, and 
the incidence in China accounts for approximately 42% of 
all cases.2 Over the last few decades, cancer genomics and 
proteomics have been extensively used in biomedical research 
and clinical applications. After the gene chip and microar-
ray technologies were introduced, many researchers used 
these techniques to find new subclasses in disease states,3,4 

identify new biomarkers associated with diseases,5,6 classify 
subtypes of tumors,7 and predict the outcome of a disease.8 
Gene expression profiling from microarray studies has been 
used to understand the development and mechanism of 
human diseases. However, most of the traditional statistical 
methods are not suitable for processing high dimensionality, 
and high noise, gene expression data.

Unsupervised classification algorithms, an unbiased 
approach to search for subgroups within the expression 
data, were one of the first statistical techniques applied to 
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microarray and gene expression profiling data.9 While these 
techniques may be able to sufficiently cluster individuals with 
a common phenotype, the sensitivity and specificity is often 
significantly reduced when it is applied to individuals out-
side the training set.10 With the development of supervised 
classification algorithms and machine-learning algorithms, 
many researchers started to use these methods to identify fea-
ture gene sets that allow for the classification of the available 
samples. Compared to the unsupervised methods, the genes 
selected by supervised machine-learning algorithms have 
more stable expressed patterns both in training and testing 
samples, thereby allowing a more accurate classification. As 
no single algorithm is widely accepted as the optimal method 
for mining gene expression data,10 here we used several algo-
rithms in combination to mine the gene expression data from 
a small study of GC.

Unfortunately, many of these studies suffer from the 
“curse of dimensionality”11–13 where the number of experi-
mental observations, or features, greatly exceeds the number of 
samples. If the number of features gets too large, the classifier 
can simply fit the available data without providing insight into 
the underlying difference in the samples (eg sick vs. healthy). 
This is related to Ransohoff’s concept of chance.14,15 It has also 
been shown that a sufficiently flexible classifier can efficiently 
fit the available data, even if the number of features used in 
the classifier is much smaller than the number of samples in 
each group.16,17 Care must be taken in choosing the classifier 
because one with a sufficient number of adjustable parameters 
can obtain good results for the training set without containing 
features with biological information.

A previous study used the 22 K-oligonucleotide microar-
ray with optimized experimental protocols and analytical tools 
to identify transcriptional expression profiles of GC from a 
Chinese cohort.18 In that study, GC and normal tissues (NTs) 
were obtained from two different sites. As this was not a paired 
analysis, the authors used a pool containing 20 normal samples 
as a reference and the fold change (FC) was determined for 
the GC and normal samples relative to this pool. Two unsu-
pervised approaches, significant analysis of microarray (SAM) 
and Bayesian analysis of gene expression levels (BAGEL), were 
used to identify the differentially expressed genes (DEGs).  
A total of 1,519 DEGs were identified by comparing 20 intes-
tinal-type GC samples against 20 NTs. This set of 1,519 DEGs 
provides significant research materials for biomarker identifi-
cation that could be associated with the biological characteris-
tics of GC.

In this study, three different algorithms are used to select 
feature genes based on differential expression profiling data of 
GC from the earlier study.18 A total of 29 genes are identified 
by all three algorithms and analyzed individually. Three genes 
(COL1A2, ATP4B, and HADHSC) are selected as candi-
date biomarkers from this GC study. Quantitative real-time 
polymerase chain reaction (qRT-PCR) is used to verify the 
expressed levels of these three genes in 30 new validation 

cases where each individual supplied a GC sample and normal 
adjacent tissue (NAT). Another 29 validation cases contain-
ing GC and NAT are also included for immunohistochemistry 
(IHC) staining.

Materials and Methods
GC tumor and the NAT samples. In addition to the 20 

GC and normal samples used in the initial microarray study,18 
a total of 59 GC and their corresponding NAT samples were 
obtained from the Beijing Tumor Hospital affiliated under 
Peking University School of Oncology. In the study, 30 tissues 
(GC and NAT) are used for the qRT-PCR validation assay, 
and the other 29 tissues are used in IHC.

Machine-learning algorithms. A basic concept of 
selecting feature genes is to examine a gene’s ability to divide 
samples with different phenotypes. Many different filter-
ing algorithms are available, and three different algorithms 
are used in this study. Each filtering algorithm individually 
examines each of the 1,519 genes and determines their ability 
to distinguish the 20 GC samples from the 20 NTs. Unfor-
tunately, this earlier study18 did not use technical replicates, 
and some of the expression levels were not measurable, and 
any missing expression levels were assigned the average of the 
expression across the remaining samples. In this investigation, 
any missing expression level is excluded in the analysis. There-
fore, the significance of certain genes may be determined using 
less than 20 GC and 20 NT samples. The expression level of 
each gene in a given sample is given by the logarithm of the 
FC, log(FC), relative to the pooled set of 20 NT samples.

Classification Information Index (CII) algorithm. The calcu-
lation of divisibility can be computed by examining the simi-
larity of sample properties in the same category (within-class 
distance), as well as the difference of the properties for samples 
in different categories (between-class distance). “Signal to noise 
ratio,” a statistical t-test proposed by Golub and co-workers,19 
embodied in the CII algorithm,20 can better reflect the above-
mentioned ideas and can be served as measures to estimate how 
much classification information each gene contains. The CII 
algorithm consists of two parts. The first part contains “signal 
to noise ratio” indicators, and the second reflects contributions 
caused by different expression levels of the distribution.
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term takes on a minimum value of zero whenever σ σg g+ −=2 2  
and increases as the differences in variance increase.

Information Gain Index (IGI) algorithm. IGI21 is used in 
many decision tree algorithms and measures the phenotypic 
homogeneity of the daughter nodes. As such, this metric does 
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not depend on the value of the FC for a given gene, only the 
rank order of the log(FC) values. Given a total of S states, Ns 
being the total N samples in State s, the probability of being 
in this state is simply

	
P

N
Ns

s=

The Information Entropy of the parent node containing 
all samples is then
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For S states, (S − 1) cut points in the intensity range are 
selected to produce S daughter nodes. If daughter node d con-
tains Nd samples and Ns,d samples from State s, the Informa-
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The overall IGI for feature l is the Information Entropy 
of the parent node minus the Information Entropy of all 
daughter nodes.
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Here, D is the number of daughter nodes and Pd is 
the probability of being in that node (Nd /N). In this appli-
cation, there are only two states (GC and NT), so only a 
single log(FC) cut-value is used to construct two daughter 
nodes. All individuals with a log(FC) above the cut-value 
are placed in one daughter node and those below this cut-
value are placed in the other daughter node. The cut-value 
is selected to maximize the Information Gain of each gene. 
The genes are then ranked from highest to lowest Informa-
tion Gain.

RELIEF algorithm. The RELIEF algorithm evaluates 
the importance of attribute classification based on within-
class and between-class distances.22 This algorithm starts 
from a random sample rather than from the statistical char-
acteristics of the whole class to estimate sample class sepa-
rability. For any learning sample S in the training set, the 
algorithm searches out K (K . 0) same-class samples closest 
to S (nearest hit) and K (nearest miss) heterogeneous sam-
ples. For the attribute Ai, if the difference between S and 
a heterogeneous sample is larger than the difference between 
S and same-class sample, the separability of sample S on 

attribute Ai is greater, and the classification weight of Ai is 
also greater.

The weight associated with the jth gene is the average differ-
ence in the squared distance between each sample point and the 
nearest sample in the same and a different phylogeny (K = 1).

	
W

k
x xj nj nj nj nj

n

k
= − − −

=
∑1 2 2

1

[( ) ( ) ]nearMiss nearHit

In this equation, xnj is the FC of the jth gene for the nth 
sample, k is the number of samples with an expression level for 
this gene, and nearHitnj and nearMissnj are the log(FC) values 
for the nearest neighbor in the same and other philogenetic 
groups, respectively. The larger the weight, the better the gene 
is able to distinguish between the philogenetic groups. To be 
able to compare different genes, a squared Mahalanobis dis-
tance is used—meaning that the log(FC) values are divided by 
the standard deviation.

Real-time quantitative PCR. After approval by the 
Ethics Committee of the Beijing Cancer Hospital, 60 GC 
specimens comprising 30 GCs and matched NATs are used 
in the qRT-PCR validation assay. Total RNA is extracted 
from the tissue samples according to a standard Trizol pro-
tocol (Invitrogen, Carlsbad, CA, USA). In all, 5  µg of total 
RNA are reverse transcribed (RT) to cDNA with 200  U of 
Moloney Murine Leukemia Virus (MMLV) reverse tran-
scriptase (Promega, Madison, WI, USA). The RT reaction 
uses the following conditions: 37 °C for 60 minutes and 72 °C 
for 10 minutes. The primer pairs for COL1A2 are 5′-CCTG-
GTGCCCCTGGTGAAAA-3′ (forward) and 5′-CCA-
CACTTCCATCACTGCCACG-3′ (reverse); for ATP4B, 
they are 5′-TTCGCCCTGTGCCTCTATGT-3′ (forward) 
and 5′-TGTGAGGTCTGCCCAGGTT-3′ (reverse); for 
HADHSC, 5′-GCTAATGCCACCACCAGACAA-3′ (for-
ward) and 5′-CGTCACCTCGTTCATACAGCC-3′ (reverse); 
and for β-actin, 5′-TTAGTTGCGTTACACCCTTTC-3′ 
(forward) and 5′-ACCTTCACCGTTCCAGTTT-3′ (reverse). 
qRT-PCRs are performed in a 20 µL mixture containing 2 µL 
of cDNA, 0.6  µL 20× EvaGreen (CapitalBio Corp., Beijing, 
China), 0.5  µL of each 10  µM forward and reverse primers, 
0.5 µL of 2.5 mM dNTP, 1.5 U Cap Taq polymerase (Capital-
Bio Corp., Beijing, China), 10 µL 2× PCR buffer for EvaGreen, 
and 6.1 µL of H2O. Using the RT-Cycler′ 466 system (Capital-
Bio Corp., Beijing, China), PCRs are carried out with the fol-
lowing programmed parameters: heating at 95 °C for 5 minutes  
followed by 40  cycles of a three-stage temperature profile 
of 95  °C for 30 seconds, 57  °C for 30 seconds, and 72  °C for  
30 seconds. All reactions are performed in triplicates, and the 
final Ct value is determined by the average Ct value of the three 
reactions. The melting curves for each PCR reaction are care-
fully analyzed to avoid nonspecific amplifications in PCR prod-
ucts. The expression of each gene is transformed using the 2− ∆∆Ct 
formula and normalized with β-actin expression.23 Information 
about the primers, and the Ct values for each gene and β-actin 

http://www.la-press.com


Yan et al

70 Biomarker Insights 2014:9

in each sample are available as supplementary information 
(Supplemental Tables 3 and 4, respectively).

Tissue microarray (TMA) and IHC staining. TMA 
blocks are constructed in our laboratory. For each case, we 
sample five tissue cores at 1.0 mm in diameter, including two 
tumor and one matched-adjacent normal mucosa tissues to 
construct the TMA. A total of 29 human gastric specimens 
are obtained from the tumor bank of Beijing Cancer Hospital. 
The patients were fully informed and given consent for the 
collection of clinical samples. IHC staining is performed using 
EnVision + Kit (Dako, Denmark). Commercial antibodies are 
used in our study: anti-COL1A2 (ab72637), anti-ATP4B 
(ab2866), and anti-HADSHC (ab54477). Proper validation 
of the ATP4B, COL1A2, and HADSHC antibodies used 
the same procedure as was described previously.24 The ICH 
was semi-quantitatively scaled in a range from “−” to “+++” 
by evaluating the representative tumor with intensity and per-
centage of cells showing significantly higher immune staining 
than normal matched-adjacent tissues. Samples scoring “++” 
to “+++” were considered as “high expression,” and samples 
scoring “−” and “+” were termed as negative and no expres-
sion, respectively. Three pathological experts participated in 
the results’ evaluation of the IHC experiment. The section 
is incubated with the respective antibody at 4  °C overnight. 
More than 5% stained cells in the tissue is defined as positive 
reaction in this experiment. Unfortunately, some of the GC or 
NAT tissues were missing from the slice used in IHC stain-
ing; thus, the results for each gene did not necessarily contain 
29 GC and 29 NAT samples.

Signature genes ontology analyses. To investigate the 
potential molecular function and associated pathway including 
the signature genes, we used an integrated gene ontology and 
pathway analysis database MAS3.0 (http://www.capitalbio.
com) for this purpose.

Results
Identification of the DEGs based on gene expression 

data of GC. A 22 K-oligonucleotide microarray was previ-
ously used to measure the relative expression levels of human 
genes in 20 GC individuals and 20  NTs from different 
donors. That examination compared the expression levels 
to a common reference that was a mixture of 20 normal 
gastric mucosa tissues from non-tumor patients.18 BAGEL 
was used to analyze the DEGs with non-overlapping 95% 
confidence intervals from the Bayesian analysis dataset with 
P , 0.001. A total of 1,519 DEGs were identified consist-
ing of 593 up-regulated genes and 926 down-regulated genes 
(Supplementary Table 1).

In this analysis, 1,182 of the 1,519 genes were characterized 
with respect to Gene Ontology (GO) terms, while 337 genes 
were undetectable. Among these 1,182 genes, 226 genes were 
cataloged into 60 pathways according to the gene ontology 
and pathway analysis while the remaining 956 genes were not 
related to cancer development (Supplementary Table 2). Our 

study shows that 114 of 226 genes are indeed associated with 
many human diseases including cancers.

Feature gene selection using three machine-learning 
algorithms. The 1,519 genes previously identified are further 
examined using three different machine-learning algorithms. 
In this analysis case-based exclusion is employed; so a sample is 
excluded from the analysis of a particular gene if no expression 
level was available from the previous study.18 The CII algo-
rithm assigns each gene an information index. The genes are 
distributed into five intervals, and the 68 candidate genes with 
high CII value (i . 0.9) are selected (Table 1). An IGI is also 
used to select feature genes. The IGI of each gene is distrib-
uted into four intervals. The 99 candidate genes with the larg-
est IGI values (g . 0.35) are selected (Table 1). Finally, the 
RELIEF algorithm employs the Mahalanobis square distance 
as a classifying index. All 1,519 genes are distributed into six 
intervals, and the 325 candidate genes with high classification 
weight (w . 0.3) are selected (Table 1). These thresholds are 
selected to ensure that a gene that scores the highest with a 
particular algorithm is also included in the list for the other 
two algorithms.

Combining the results from the intersection of the three 
algorithms described above, 29 putative biomarker genes are 
identified in all three machine-learning algorithms (Fig. 1). 
Of these, 23 genes are down-regulated and 6 genes are up-
regulated in GC samples relative to their NAT (Table 2). The 
threshold column in Table 2 is threshold log(FC) that distin-
guishes the GC from NAT samples. This threshold is deter-
mined by finding a value that minimizes the GINI index of 
the two groups,25 a procedure that is used in many decision 
tree algorithms.

Table 1. Feature gene selection using CII, IGI and Relief algorithm.

Algorithms Intervals Gene numbers Percents

CII i , 0.9 1451 95.52%

0.9 , i , 1 24 1.58%

1 , i , 1.5 39 2.57%

1.5 , i , 2 4 0.26%

i . 2 1 0.07%

IGI g , 0.35 1420 93.48%

0.35 , g , 0.45 64 4.21%

0.45 , g , 0.6 33 2.17%

0.6 , g 2 0.13%

Relief w , 0.3 1194 78.54%

0.3 , w , 0.5 214 14.09%

0.5 , w , 0.6 47 3.09%

0.6 , w , 0.8 52 3.42%

0.8 , w , 1 11 0.72%

w . 1 2 0.13%

Abbreviations: i, Classification Information Index of each gene;  
g, Information Gain Index of each gene; w, Relief classification weight  
of each gene.
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Gene ontology analyses. To investigate the potential 
molecular function of the 29  signature genes, we perform 
a GO analysis using MAS3.0. The results show that 18 of 
29 genes are separated into 21 main GO terms, including some 
tumor-related functions such as cell adhesion, anti-apoptosis, 
TGF beta receptor signaling pathway, Wnt receptor signal-
ing pathway, cell differentiation, cell proliferation, and others 
(Table 3). In addition, the GO network shows that COL1A2, 
ATP4B and HADHSC are separated into three sub-networks 
that are not related in molecular function.

Clustering of signature genes. The 29  signature genes 
are then grouped using single linkage clustering based on the 
Pearson correlation of their log(FC) values across all available 
samples. The clustering is stopped at |r| = 0.70, meaning that 
each gene in a given cluster has log(FC) values that correlate 
(positively or negatively) with at least one other gene in the 
cluster to an |r| value of at least 0.70. This is done to ensure 
that candidate biomarkers are selected from different clusters. 
If two or more genes are selected from the same cluster, their 
log(FC) values correlate and only one of the genes contains 
unique information.

The clustering results are shown in Supplemental 
Figure S1. For each gene, the left column of  “+” marks represents 
the log(FC) values for the GC samples; the log(FC) values for 
the NT samples are shown in the right column. The number 
below the columns represents the minimum log(FC) value 
for that gene, whereas the number at the top is the maximum 
log(FC) value. Figure S1A shows that one cluster contains 16 of 
the 29 signature genes. The next two clusters (Fig. S1B,C) each 
contained three signature genes, and seven signature genes reside 
in singleton clusters (Fig. S1D). This means that each of the genes 
listed in Figure S1D has log(FC) values that do not strongly cor-
relate with any of the other 28 signature genes (|r| , 0.70).

Extracting putative biomarkers. An examination of 
Table  2  shows that two genes, HADHSC and COL1A2, 
have both sensitivities and specificities of 100%. HADHSC 
is a member of the second cluster (Fig. S1B) and distinguishes 
all 20 GC samples (log(FC) values vary from −1.620 to 
−0.305) from the 20 NT samples (log(FC) varies from −0.235 
to 6.172). The Bonferroni corrected probability of randomly 
observing a gene where all 20 GC samples have a lower expres-
sion level than the 20 NT is 1.60 × 10−7. COL1A2 is a mem-
ber of a singleton cluster (Fig. S1D) and also distinguishes 
the GC samples from the NT. log(FC) for the GC samples 
varies from 0.903 to 3.721, while the values for the NT vary 
from –0.638 to 0.844. The Bonferroni corrected probability 
of randomly observing a gene where all 20 GC samples have 
a higher expression level than the 19  NT samples (missing 
one expression data on one of the NT) is 3.20 × 10−7. These 
two genes obtained the top scores with the IGI and RELIEF 
algorithms, respectively (Table 4). ATP4B, also a member of 
a singleton cluster, obtains a significantly better score than all 
other genes using the CII algorithm, so it is also selected as a 
putative biomarker. Although ATP4B does not have as high 
of a sensitivity and specificity as HADHSC and COL1A2, 
its total range of log(FC) is definitely larger. It is important 
to note that the three selected genes have expression levels 
with a small Pearson correlation (|r| , 0.7) and therefore may 
represent independent aspects of GC.

Validation of the feature genes using real-time quanti-
tative PCR and IHC staining. To validate the feature genes 
(COL1A2, ATP4B, and HADHSC) from our prediction 
model, qRT-PCR is used to measure the level of expression 
using an additional 30 validation cases containing 30 GC 
samples and their paired NAT. The results show that COL1A2 
is up-regulated in GC samples comparatively to their NAT 
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samples while ATP4B and HADHSC are low expressed in the 
GC samples and highly expressed in the NAT samples. When 
the 2− ∆∆Ct values for the GC and NAT samples are treated as 
independent values, a GINI index25 can be used to separate the 
samples into two groups. Table 5 shows that for ATP4B, the 
optimum threshold value is 0.044. In all, 25 of the 30 GC sam-
ples have 2− ∆∆Ct values below this threshold, whereas 27 of the 
30 NAT samples have values above this threshold. This yields 
a sensitivity of 89.3% and a specificity of 84.4%; the positive 
and negative predictive values are 83.3 and 90.0%, respectively. 
For COL1A2, 23 GC samples have values above 1.027 and 
22 NAT samples have 2− ∆∆Ct values below this threshold. This 
yields a sensitivity and specificity of 74.2 and 75.9%, respec-
tively, and a positive and negative predictive value of 76.6 and 
73.3%, respectively. The threshold value for HADHSC is found 
to be 3.052, but this gene is not a good classifier for the NAT 
samples. In all, 17 samples have value below the threshold and 

13 above. In contrast, 29 of the 30 GC samples have 2− ∆∆Ct 
values below this threshold, yielding a positive predictive value 
of 96.7%, but a sensitivity of only 63.0%.

As each GC and NAT sample is obtained from the same 
individual, the ratio of their 2− ∆∆Ct values can be used. For 
ATP2B, if the ratio of NAT-to-GC is set to 5.0, 23 of the 
30 GC individuals (76.7%) are identified. If the ratio of GC-
to-NAT is set to 2.0 for COL1A2, only 14 of the 30 GC 
individuals (46.7%) are identified, while for HADHSC a 
NAT-to-GC ratio of 2.0 identifies 18 of the 30 GC individu-
als (60.0%). If the rules for ATP4B and COL1A2 are both 
used so that at least one of the rules must be satisfied, then 
28 of the 30 GC individuals (93.3%) are identified. Including 
HADHSC into the set of rules does not improve the results, 
meaning that two of the individuals failed all three tests.

An additional 29 GC and normal paired samples are 
used for IHC staining. The results (Fig. 2, Table 6) show that 

Table 2. 29 candidate feature genes selected by CII, IGI and relief algorithm.

Accession# Gene Change Thresholda Sensitivity Specificity Range[log(FC)]

NM_005327 HADHSC down 0.763 100% 100% 7.792

NM_000089 COL1A2 up 2.394 100% 100% 4.359

NM_001275 CHGA down 0.317 95% 100% 4.491

NM_019891 ERO1LB down  0.626 100% 94.7% 5.648

BC014245 CTHRC1 up  2.112 95% 95% 4.343

AK056767 MAFK down  0.395 90% 100% 3.979

NM_012277 NM_012277 down  0.307 90% 100% 10.753

AB033025 KIAA1199 up  2.073 95% 94.7% 7.681

NM_003247 THBS2 up  2.570 100% 85% 3.819

NM_002371 MAL down  0.187 85% 100% 6.361

NM_005672 PSCA down  0.531 95% 90% 5.366

NM_002909 REG1A down  0.314 85% 100% 5.257

NM_032744 C6orf105 down  1.064 100% 85% 4.513

NM_144646 IGJ down 0.486 95% 90% 3.916

AL117382 C20orf142 down  0.369 85% 100% 4.559

NM_020707 C3orf3 down 0.640 85% 100% 4.774

NM_003652 CPZ up 3.155 85% 100% 11.824

NM_000705 ATP4B down 0.169 95% 89.5% 10.026

NM_005136 NM_005136 down  0.287 80% 100% 7.089

NM_005145 NM_005145 down  0.514 80% 100% 6.53

BC015417 MAMDC2 down  0.503 80% 100% 9.76

BC003517 ATXN7L1 down  0.755 80% 100% 10.797

NM_007193 ANXA10 down  0.149 75% 100% 6.131

NM_003657 BCAS1 down 0.301 75% 100% 4.044

NM_018658 KCNJ16 down 1.765 100% 75% 9.853

NM_022129 MAWBP down 0.558 75% 100% 4.693

NM_032471 PKIB down 0.617 100% 75% 9.477

AA513382 IGJ down 0.379 80% 94.7% 3.755

NM_001854 COL11A1 up 4.397 70% 100% 7.699

Note: aThe threshold producing the sensitivity and specificity is selected to minimize the GINI index of the daughter nodes.
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COL1A2 has a high expression in 17 of the 22 GC samples 
that show good results (77.3%) while only 9 of the 22 NAT 
samples show positive staining (40.9%). ATP4B is highly 
expressed in 20 of the 24 normal samples (83.4%), but posi-
tive staining is only seen in 11 of the 25 GC samples (44.0%). 
HADHSC shows 24 of the 26 normal samples with high 
expression (92.3%), whereas only 4 of the 25 GC samples 
show positive staining (16.0%). The IHC results are in agree-
ment with the microarray and qRT-PCR results; COL1A2 
has an increased expression, and ATP4B and HADHSC are 
low-expressed in GC samples.

Discussion
Here we report an optimized data-mining and prediction 
model for biomarker identification based on gene expression 
profiling data of GC. We use three different machine-learning 

algorithms to select feature genes based on differentially 
expressed gene (DEG) profiling of GC from a previous inves-
tigation that contained 1,519 DEGs. The main point to note is 
that the three filtering algorithms use very different criteria in 
selecting putative biomarkers. The CII algorithm depends on 
the values of all the log(FC) values for the GC and NT sam-
ples, because the scoring metric depends on both the mean 
and standard deviation for each group. As such, this algo-
rithm may be highly affected by outliers and an inspection of 
the FC values is warranted. In contrast, the IGI algorithm is 
independent of the magnitude of the log(FC) values and only 

Table 3. Gene ontology analyses of the candidate signatures.

GO Terms Input Symbol P Value

Collagen fibril  
organization

COL1A2;COL11 A1 1.90E-06

Cell adhesion THBS2;COL1A2; 
COL11 A1

0.001965

Anti-apoptosis MAL 0.01571

Ion transport ATP4B;KCNJ16; 
CPZ;ERO1 LB

0.001751

Protein binding MAFK;THBS2;MAL; 
C3orf3;BCAS1

1.63E-06

TGF beta receptor  
signaling pathway

COL1A2 0.009773

Rho protein signal  
transduction

COL1A2 0.010276

Wnt receptor signaling  
pathway

CPZ 0.011365

Cell differentiation MAL 0.106455

Cell proliferation REG1 A 0.025169

Metabolism HADHSC 0.016543

Regulation of  
transcription

MAFK;MAL 0.016968

Protein thiol-disulfide  
exchange

ERO1 LB 5.08E-04

Sensory perception of  
sound

COL11 A1 5.92E-04

Immune response MAL;IGJ 0.002569

Negative regulation of  
protein kinase activity

PKIB 0.005825

ATP biosynthesis ATP4B 0.007507

Blood vessel  
development

COL1A2 0.018041

Nervous system  
development

MAFK 0.067536

Proteolysis CPZ 0.084789

Calcium ion binding CHGA;THBS2; 
ANXA10

2.03E-05

 

Table 4. Genes with the highest scores for each of the filtering 
methods.

CII IGI Relief

Gene Score Gene Score Gene Score

ATP4B 2.41855 HADHSC 0.69315 COL1A2 1.08879

NM_012277 1.77127 COL1A2 0.69282 HADHSC 1.01081

ATP4 A 1.69775 SULF2 0.59264 NM_005145 0.93394

KCNJ16 1.58771 CHGA 0.59264 CHGA 0.86624

COL4 A6 1.53349 RDH12 0.59264 ERO1 LB 0.84882

FAM3B 1.39394 CPZ 0.58432 ATXN7 L1 0.84856

ANXA10 1.39052 SPARC 0.52560 KIAA1199 0.84567

SULT1C1 1.37157 COL18 A1 0.52560 NM_012277 0.84271

PSCA 1.35426 CDC25B 0.52560 APBB1IP 0.82600

NM_005136 1.35310 MAFK 0.52560 NQO3 A2 0.81854
 

Table 5. RT-PCR classification results when the 30 NAT and GC 
samples are treated as independent data. 

A

NAT GC

,0.044 3 25 Sensitivity = 89.3%

.0.044 27 5 Specivifity = 84.4%

NPV = 90.0% PPV = 83.3%

B

NAT GC

,1.027 22 7 Specificity = 75.9%

.1.027 8 23 Sensitivity = 74.2%

NPV = 73.3% PPV = 76.6%

C

NAT GC

,3.052 17 29 Sensitivity = 63.0%

.3.052 13 1 Specivifity = 92.9%

NPV = 43.3% PPV = 96.7%

Note: The threshold values are determined by maximizing the GINI index.  
A, AT4B using a threshold of 0.044 for 2-DDCt. B, COL1A2 using a threshold 
of 1.027. C, HADHSC using a threshold of 3.052.
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depends on their rank order. Therefore, the IGI algorithm is 
independent of the FC value of an outlier. The RELIEF algo-
rithm depends on the distance to the nearest neighbor from 
the GC and NAT phenotypes. As such, this algorithm will 
provide a good score to a feature that produces sub-clusters of 
each phenotype, and again an inspection of the log(FC) values 
is needed. This algorithm should only be affected to a minor 
extent by an outlier.

Our results show that though different algorithms 
selected different feature genes, there is a common set of 
29 genes obtained by all algorithms. Examining these 29 can-
didate biomarkers show that two, COL1A2 and HADHSC, 
completely distinguished GC from NAT. They also have the 
highest scores for two of the three filtering algorithms (IGI 
and RELIEF algorithms). ATP4B has the highest score for 
the CII algorithm and has a larger range in its log(FC) values 
than either COL1A2 or HADHSC. All 29  genes listed in 
Table 2 may represent changes in cellular activity in GC. The 
fact that the three selected genes have uncorrelated expression 
levels suggests that they may be involved in different functions 
and pathways. If two or more of these genes have correlated 

expression levels, then only one of this set would represent 
unique information.

COL1A2 is located on human chromosome 7q22.1, 
encoding the pro-alpha2 chain of type I collagen, which belongs 
to the fibrillar collagen family. Serial analysis of gene expres-
sion (SAGE) results shows that it may be a new biomarker of 
GC.26 Inhibition of type I collagen synthesis has been shown 
to suppress angiogenesis and tumor growth.27 Moreover, we 
have presented a whole genome profile of copy number vari-
ant (CNV) and single-nucleotide polymorphisms (SNPs) in 
10 GC samples. Our data show that 2 out of 10 samples with 
two-fold increase in copy number and two non-synonymous 
positions are detected in COL1A2 (manuscript in prepara-
tion). We propose that type I collagen is an important protein 
that participated in sustaining the stabilization of the physi-
ological structure in normal cells, tissues, and organs.

HADHSC is located on human chromosome 4q22-q26 
and is a member of the 3-hydroxyacyl-CoA dehydrogenase 
gene family. The encoded protein functions in the mito-
chondrial matrix to catalyze the oxidation of straight-chain 
3-hydroxyacyl-CoAs as part of the beta-oxidation pathway. 
Its enzymatic activity is highest with medium-chain-length 
fatty acids. Gene ontology analyses’ results show that this 
gene is closely related to cellular metabolic process, including 
lipid metabolic process; response to hormone stimulus; fatty 
acid metabolic; and beta-oxidation process, and negatively 
regulates insulin secretion. Mutations in this gene cause one 
form of familial hyperinsulinemic hypoglycemia and hyper-
insulinism.28–30 However, there is no research report so far 
about HADHSC in human cancer.

ATP4B is located on human chromosome 13q34, encod-
ing the member of the P-type cation-transporting ATPases. 
This enzyme is a proton pump that catalyzes the hydrolysis of 
ATP coupled with the exchange of H+ and K+ ions across the 
plasma membrane, and is responsible for gastric acid secretion.31 
In a mouse model, it was reported that ATP4B was required 
for normal function, development, and membrane structure of 
mouse parietal cells.32 No previous research has reported that 
this gene was associated with the development of GC, although 
our microarray results showed that it correctly identified 18 of 
the 19 GC samples.18 Meanwhile, the real-time PCR results 
show that ATP4B is down-regulated in 26 of 30 GC samples.

Here we use an optimized method of combined mul-
tiple machine-learning algorithms for data mining in small 
set of gene expression data. We have documented an integral 
and systematically data-mining model for biomarkers identi-
fication based on a small sample-size set of gene expression 
profiling data, and we identified COL1A2, HADHSC, and 
ATP4B as potential biomarkers of GC. These three genes are 
confirmed in 59 validation samples by real-time PCR and 
IHC staining, and are shown to be useful in recognizing the 
biological characteristics of GC.

The probability of a false positive, a gene that appears to be 
a biomarker but is not, increases as the sample size decreases. 

Table 6. IHC staining results for the three selected putative 
biomarkers.

Antibody Types of  
samples

Positive Negative P value

COL1A2 T = 22 17(77.3%) 5(22.7%) 0.0305

N = 22 9(40.9%) 13(59.1%)

ATP4B T = 25 11(44%) 14(56%) 0.0072

N = 24 20(83.4%) 4(16.6%)

HADHSC T = 25 4(16.0%) 21(84.0%) 9.15 × 10−6

N = 26 24(92.3%) 2(7.7%)

COL1A2

A

D E F

B C

100 um

Normal

Tumor

ATP4B HADHSC

100 um 100 um

100 um100 um100 um

Figure 2. Validation of the feature genes using IHC staining. (A) and (B): 
positive staining of COL1A2 appeared in cancer but not in NT. COL1A2 was 
highly expressed in 17 GC samples with the positive rate of 77.3% (17/22). 
(C) and (D): negative staining of ATP4B appeared more often in cancer but 
positive in NT. ATP4B was highly expressed in 20 normal samples with the 
positive rate of 83.4% (20/24). (E) and (F). positive staining of HADHSC 
appeared in normal but not in cancer tissue. HADHSC showed 24 normal 
samples with high expression of 92.3% positivity (24/26).
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In initial studies with small sample sizes, the researcher can 
only hope to find putative biomarkers for further investiga-
tions. In this study, a gene had to be selected by all three fil-
tering methods to be considered further, and only 29 out of 
the 1,519 genes with significant FC pass this criterion. In fur-
ther investigations, only linearly independent genes should be 
examined because multiple genes with strongly correlated FC 
values (|r| . 0.7) do not increase the information content over 
a single gene from this set.

The results presented in Tables 2 and 4 as well as Supple-
mental Figure S1 suggest that other significant genes can be 
further tested as putative biomarkers. CHGA may represent a 
good candidate from the first cluster of genes (Fig. S1A). It is 
ranked fourth by both the IGI and RELIEF algorithms, and 
only misclassifies a single GC sample in the initial training 
set. Though the three genes in the third cluster are selected 
by all three filtering algorithms, Figure S1C suggests that 
there is a significant overlap in the log(FC) values between 
the GC and NT phenotypic groups. ATP4B is selected for 
further investigation because it has the best score with the CII 
algorithm and a large range in the log(FC) values, but three 
other genes have larger log(FC) ranges. CPZ and ATXN7L1 
have the two largest ranges and represent singleton clusters  
(Fig. S1D). CPZ only misclassifies a single GC testing sam-
ple, but this figure shows that the log(FC) values have a high 
density in the intermediate region for both the GC and NT 
groups, suggesting that it may not be a good putative bio-
marker. This is reflected in the fact that it is in the top 10 genes 
of the IGI algorithm, which depends on ranking, and not the 
CII and RELIEF algorithms, which depend on log(FC) dis-
tributions (Table  4). ATXN7L1  should also be excluded as 
a putative biomarker because the log(FC) values for the GC 
group completely encompass the values for the NT group.  
A close inspection of the log(FC) values in Figure S1D shows 
that the NT samples have many values in regions with few 
log(FC) values from the GC group, and it is this type of sub-
clustering that can produce a good score using the RELIEF 
algorithm. Finally, NM_012277 has a larger log(FC) range 
than ATP4B, but it is part of the same cluster as HADHSC 
and therefore yields no new information.

Of these 29 genes, COL1A2, HADHSC, and ATP4B 
are selected because their log(FC) values are uncorrelated 
(|r| , 0.7) and they score the highest by one of the filtering 
methods. Subsequent IHC and real-time PCR investigations 
of independent samples show that a gene with a large range in 
the log(FC) values performed better than the genes with bet-
ter discriminating abilities but a smaller range, as measured 
by microarray, because the discrimination may be easier to 
distinguish with other methods and may be less dependent on 
experimental variability.

This study demonstrates that by combining the results 
of several independent screening methods, it is possible to 
obtain putative biomarkers from a small initial sample set. 
The IGI algorithm only depends on the rank order of each 

sample’s log(FC) value for a given gene, RELIEF depends 
on the local neighborhood of log(FC) values for each sample, 
and CII depends on the distribution of all log(FC) values for 
a given gene for the GC and NT sets. There is no require-
ment that these specific algorithms be used, or be limited to 
three, but only that all filtering algorithms must be indepen-
dent. A putative biomarker should be a good discriminator by 
any reasonable filtering algorithm, and by requiring a gene to 
perform well using all three methods, the selection of a gene 
by chance is greatly diminished. This procedure is not limited 
to small samples sizes and will work just as efficiently with 
significantly larger datasets.

The initial set of 1,519  genes with significant FC val-
ues was reduced to 29  genes using the filtering algorithms, 
with 22 of them clustering into three groups based on cor-
related FC values across the samples. If two or more genes are 
selected from the same cluster, their log(FC) values will cor-
relate and only one of the genes contains unique information. 
This reduces the initial set of 1,519 genes to a set of 10 inde-
pendent genes.

The final point to stress is that the procedure outlined 
here represents a method to identify putative biomarkers. Any 
gene set from this type of analysis should be validated on an 
independent set of samples. The strength of the results pre-
sented here is that the putative biomarkers performed well 
on two independent sample sets using different experimental 
procedures to measure gene expression levels. Using a small 
set of microarray data to generate putative biomarkers that are 
validated using clinical procedures is very promising.

Conclusions
We use three different algorithms (CII, IGI, and RELIEF) 
to select feature genes based on differential expression profil-
ing data of GC from the earlier study and identify 29 genes 
as GC candidate biomarkers. Furthermore, three putative 
biomarkers (COL1A2, ATP4B, and HADHSC) are selected 
and further examined using qRT-PCR and IHC staining in 
two independent sets of GC and NAT samples. The positive 
results show that our approach used in this study might be 
helpful in small sample-size studies to identify biomarkers, 
and the genes selected by our approach may act as candidate 
biomarkers for GC. Future studies should examine whether 
these putative biomarkers are also differentially expressed in 
the bile or urine, thereby affording a less-invasive means of 
identifying GC. In addition, further studies should examine a 
gene from cluster A such as CHGA (Supplemental Figure 1). 
It would also be informative if the change between GC and 
NAT expression levels correlates with the stage of the cancer 
because the early onset of a marker would be extremely useful 
in early diagnosis.
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