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Abstract

We introduce a methodology to efficiently exploit natural-language expressed biomedical knowledge for repurposing
existing drugs towards diseases for which they were not initially intended. Leveraging on developments in Computational
Linguistics and Graph Theory, a methodology is defined to build a graph representation of knowledge, which is
automatically analysed to discover hidden relations between any drug and any disease: these relations are specific paths
among the biomedical entities of the graph, representing possible Modes of Action for any given pharmacological
compound. We propose a measure for the likeliness of these paths based on a stochastic process on the graph. This
measure depends on the abundance of indirect paths between a peptide and a disease, rather than solely on the strength
of the shortest path connecting them. We provide real-world examples, showing how the method successfully retrieves
known pathophysiological Mode of Action and finds new ones by meaningfully selecting and aggregating contributions
from known bio-molecular interactions. Applications of this methodology are presented, and prove the efficacy of the
method for selecting drugs as treatment options for rare diseases.
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Introduction

In pharmaceutical research the subject of drug repurposing is

rapidly raising significant interest. Repurposing means redirection

of clinically advanced or marketed products into certain diseases

rather than in the initially intended indications. A significant

advantage of repurposing drugs is their demonstrated clinical

pharmacological efficacy and safety profile. Repurposing is

especially interesting in the area of life-threatening Rare or

Orphan diseases with high unmet medical need. The hypothesis

for drug repurposing is based on the drugs’ side effects profiles,

indicating interaction with more than one cellular target. These

pathway interactions open up the opportunity to exploit existing

medicines towards other diseases.

Extensive data sets describing drug effects have been published

globally, resulting in a huge amount of information publically

available in large on-line collections of bio-medical publications

such as PubMed (http://www.ncbi.nlm.nih.gov/pubmed/).

This is an opportunity for literature-based scientific discovery;

see [1–15,54], [2] and [3]. However, important pieces of

information regarding chemical substances, biological processes

and pathway interactions are scattered between publications from

different communities of scientists, who are not always mutually

aware of their findings. In order to generate a working hypothesis

from such a body of literature, a researcher would need to read

thoroughly all the relevant publications and to pick among them

the relevant items of information. Search engines help scientists in

this endeavour, but are unable to semantically aggregate

information from different sources, leaving all the initiative to

researchers; complex relation-focused and graph-like representa-

tions (ontologies) have been extensively produced and used to fill the

gap, since their introduction for the Semantic Web; see [16] and

[17]. Yet ontologies need to be man-made and they are difficult to

integrate each other and to maintain; see [18].

Here we propose an approach to literature-based research

ultimately based on the distributional hypothesis of linguistic theory (see

[19] and [20]) - whose analysis relates the statistical properties of

words association to the intrinsic meaning of a concept - and

network theory (see [21,22,54]) - a collection of versatile mathemat-

ical tools for representing interrelated concepts and analyse their

connections structure.

Main aim of this work is to provide a methodology for creating

network knowledge representations, capturing the essential entities

occurring in a variety of publications and connecting them into a

graph whenever they co-occur in a given sentence. The knowledge

graph thus created can then be analysed in order to identify and
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rank statistically relevant indirect connections among prospect

medicines and diseases. We show that with a suitable set of

concepts, specifically compiled in a dictionary, the linked

biochemical entities in the network can be connected along paths

that mimic a chain of reasoning and lead to prospect inferences

about the mechanism of action of a chemical substance in the

pathophysiology of a disease.

In this paper we introduce a method to rank the relevance of the

inferences, introducing a measure based on a stochastic process

(random walk) defined on the graph: this measure takes into

account all paths connecting two concepts and uses the abundance

and redundancy of these paths, together with their weights, as a

measure of the strength of the overall relation between the

concepts.

The paper is organized as follows: we first discuss the

construction of the knowledge graph; we then introduce the tools

to analyse this graph and extract possible mechanisms of action;

relevant emerging indirect links between peptides and sarcoidosis

are then discussed in the ‘Results’ section. A clinical reader might

skip the methodological part and go directly to the ‘Results’

section.

Methods

Construction of the knowledge graph
In the field of linguistics it is commonly accepted that the

meaning of a word must be inferred by examining its occurrences

over large corpora of text. Adopting this perspective (see [23–25]),

one can say that the meaning of a word ultimately depends on the

words it mostly goes along with: this is the basis of the so-called

‘‘Distributional Hypothesis’’ introduced by Firth in 1957. The

general idea shows that there is a correlation between distribu-

tional similarity and meaning similarity, which allows exploiting

the former in order to derive the latter. This hypothesis suggests

the assumption that concepts occurring in the same unit of text are

in some way semantically related. Let us note that co-occurrence is

nowadays a common method to find a relationship between

biomedical concepts; co-occurrence methods are commonly used

to discover new and hidden relations, following the seminal work

of Swanson (see [15], [25] and the more detailed works [26–30]).

Some authors (e.g. see [31–36]) use networks to map specific

biomedical entities such as protein-protein interactions, gene

regulatory events and links between proteins and phosphorylation

or genes interactions. Our aim is to build and use a co-occurrence

network of biomedical concepts to produce inferences that are new

hypotheses for drug repurposing. The key idea exploited in this

paper is that hopping through this knowledge network and

drawing a path between any two non-adjacent concepts can be

interpreted as suggesting a possible ‘‘sentence’’ that has never

actually been uttered but that can implicitly carry a new and

correct idea.

Let us here start by describing in details how our knowledge

network of peptides, related biological processes and rare diseases

is built (see Fig. 1). We have extracted three million PubMed paper

abstracts – out of a total of more than 20 million – using keyword

searches on a list of 1606 concepts, comprising 127 peptides, 300

rare diseases and 1179 other biological entities such as chemical

compounds, proteins, receptors, enzymes, hormones and physio-

logical entities (e.g. cells, organs, tissues, pathways, processes).

Every abstract has then been broken down into its constituent

sentences. The full list of concepts and the full list of paper IDs are

provided as File S1 and File S2. Entity recognition has been

carried out on every sentence, following a dictionary-based

approach (see [12,25]). Specifically, we built a dictionary,

enriching each item of our biomedical item list with a set of

acronyms, synonyms and other identifying phrases gathered from

MeSH (Medical Subject Headings), Orpha.net and the ‘‘cope with

cytokines’’ web site. Of course different concepts may share some

of the identifying expressions. This is the polysemy problem, i.e. the

capacity for a word or a phrase to have multiple meanings that

leads to the necessity of disambiguation (see [25], [37]). This is a

very complex problem in general and, to tackle with disambig-

uation, we employed a version of the Lesk algorithm (see [38]).

Whenever disambiguation fails, we have chosen to keep both the

possible concepts: this option reduces precision but maximizes

recall – i.e. the quantity of relevant concepts that are retrieved.

Many other errors in the detection of co-occurrences arise beyond

the ones due to failed disambiguation: a sentence boundary may

be misplaced, one of the occurrences may be a false positive or the

occurrences may be just part of a list (and therefore not

semantically related). It is expected though that as more and

more papers are analysed the meaningful co-occurrences will

outgrow the spurious ones: in fact ‘‘real’’ co-occurrences are

repeated consistently as more and more literature is considered,

while spurious ones become statistically insignificant because the

same concept is linked randomly to a great number of other

concepts. In a figurative manner we may think of a ‘‘noise’’ in the

co-occurrence detection that becomes negligible as a large number

of papers are considered. We thus obtain a co-occurrence network

(Fig. 2a) where the biomedical concepts of our dictionary are the

nodes and the co-occurrence frequency is the weight of the edges.

The resulting network is sparse with a small number of links

(158,428) compared to the complete graph (12.7%) but, nonethe-

less, only 30 concepts are not connected to the giant component of

the network, thus comprising 1576 nodes (98.13% of the total).

The diameter (i.e. the maximum distance between any two nodes)

of this network is 4 with an average path length (i.e. average

distance between any two nodes; see [9,10]) of 1.95. It is observed

that the graph contains hubs interpreted as physiological processes

typical of diseases (e.g. inflammation, proliferation, necrosis),

immune system-related items (e.g. white blood cells, cytokines) and

the major organs – especially the ones dealing with chemical

elaboration of drugs (e.g. kidney, liver). A number of direct

connections of ‘‘peptides – diseases’’ are present, such as ANGIO-

TENSIN – SARCOIDOSIS or ANGIOTENSIN – DIABETIC

NEPHROPATHY (see Fig. 2b). The relations between those

peptides and diseases are already known as we expected on the

ground that they appear together in a predicate. Indeed,

Angiotensin is known to worsen Sarcoidosis symptoms, while it

is of aid in diabetic nephropathy. These features are interpreted as

a positive feedback on the meaningfulness of the knowledge graph.

Analysis of the knowledge graph
Once the Knowledge Graph is built, we are in the position to

analyse it in order to highlight new scientifically analysable

relations between a peptide and a rare disease. We search for

indirect relations in the network (Fig. 2a) and therefore for a path

(see [21,22]) between a peptide and rare disease (Fig. 2b). Since all

nodes in the network are connected, these paths always exist: the

challenge is to rank them (in order to find the most significant

ones) and to explore and choose those paths that suggest

understandable and yet non-trivial inferences.

Shorter paths must be considered more relevant, as more steps

introduce new levels of indirection and magnify the effects of

randomness and noise. Yet the paths cannot be too short, because

they must be ‘‘verbose’’ enough to suggest a rationale to indicate

the biological Mechanisms of Action (MoA), i.e. a specific bioche-

mical interaction through which a drug substance produces its

Graph Theory Enables Drug Repurposing
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pharmacological effect amongst molecular targets like cell

receptors, proteins or enzymes; in other words the MoA explains

why and how a drug substance works. Specifically, when dealing

with peptides, the MoA, that we aim to replicate, is the one where

a peptide binds to its specific receptors, thus activating or

modulating a physiological process involved in the disease. To

achieve such characteristics, we consider specific interactions

(links) among nodes, filtering out unwanted information. For

instance, a peptide may be connected to any node but since we

look for mechanisms of actions, only links in the form of peptide–cell

receptor are allowed and therefore considered in the graph.

Similarly, a receptor can be either involved in a pathway or

influence directly a biological process, thus only links in the form

cell receptor–process or cell receptor–protein are allowed. To this purpose,

every item in our dictionary is assigned to one of the following

categories: AMINOACID, BACTERIA, CELL, DISEASE,

DRUG, ENZYME, GENE, HORMONE, NUCLEOTIDE,

ORGAN, OTHER, PATHWAY, PEPTIDE, PROCESS, PRO-

TEIN, RECEPTOR, VITAMIN.

From the mathematical perspective, co-occurrences define the

coefficients of the similarity matrix A representing the weighted

graph. Through a suitable normalization of A we are able to find a

probabilistic interpretation for the link weights. Specifically, posing

wij~
aijP
k aik

where aij is the i,j element of the similarity matrix, which is zero if

the vertices i,j are not directly connected and equal to the edge

weight otherwise (see also [54]). Therefore we interpret the

components wij as the conditional probability p(jDi) of finding

concept j in a co-occurrence containing concept i. Since the

coefficients of the matrix W are in the range (0,1], we can also

introduce a dissimilarity measure

d(i,j)~{ log (W )

which is correctly defined in the range d(i,j)[ 0,?½ Þ and,

Figure 1. Conceptual outline of the knowledge graph building process. (A) Every document is split into its constituent sentences and each
of them is scanned to identify expressions registered on the dictionary. In the figure, two sentences are highlighted and the matching expressions are
enclosed in coloured boxes. Every one of these expressions is associated to a concept in the dictionary. (B) The concepts co-occurring in a sentence
are connected pairwise. A sentence is therefore abstracted as a complete graph where the occurring concepts are the nodes and a single co-
occurrence is a link. The weight of a link is increased if more instances of the same co-occurrence are present. (C) The sentence graphs are then
merged in such a way that each node (concept) appears only once in the graph. In the figure it is evident that the «LAM» node (abbreviation for
Lymphangioleiomyomatosis – a rare disease) appears in every graph and the «Lung» node in two of them. (D) The result of the merging is a new
graph – which is no more complete – where the weight of the link is associated to the frequency of the same co-occurrence.
doi:10.1371/journal.pone.0084912.g001
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oppositely to weights returns larger values for smaller similarities.

This distance representation allows immediate application of the

available algorithms for computing shortest paths (see [22]). With

this definition, the shortest path between two any given nodes i

and j represents the most probable path (and therefore in our

interpretation, the most probable MoA) connecting them. In fact,

the shortest path is the one pij~iv1:::vkj that minimizes the total

distance

D(pij)~d(i,v1)zd(v1,v2)z:::zd(vk,j)

therefore, we have

D(pij)~{ log wiv1
{:::{ log wvkj~{ log ( P

r,s[pij
wrs) ð1Þ

Since wij are conditional probabilities, the above equation (1) is a

product of conditional probabilities (a Markov chain). Therefore

the conditional probability associated to the shortest path is

maximized.

Ranking of paths using random walk
We have seen that shortest paths maximize the probability of a

single MoA, but strong indirect connections between a given

peptide and a given disease may arise also from a set of paths

which are smaller in weight but that contribute in larger numbers.

We have therefore devised a different ranking algorithm for a

peptide-disease correlation that considers all paths connecting the

two concepts and uses the abundance and redundancy of these

paths, together with their weights, as a measure of the strength of

the overall relation between the concepts.

This can be achieved by measuring the average number of time-

steps required to go from one vertex to the other in the network,

assuming that a walker is moving at random and that at each

discrete time-step it jumps from a vertex to one of its neighbours

with a probability which depends on the number of available links

and to their weights. This random walker produces a distance that is

a function of both the length and the abundance of paths

[55,56,57].

Intuitively, imagine two nodes connected by one short (one step)

path and many longer ones. A random walker trying the route

many times will tread the longer paths more often therefore

perceiving a ‘‘long’’ distance. Instead, if the end points are

connected with a lot of medium-sized paths, the walker will tread

those most of the times and thus perceiving a distance shorter than

the previous one. A common-world example for conveying this

idea: imagine a drunkard trying to go home. He is likely to make

many mistakes at the crossroads effectively selecting the next lane

at random. He is more likely to get home sooner if many roads

converge to his destination rather than if only a short one goes

there and the others lead astray.

From the computational perspective, the random walk distances

can be computed by pure algebraic means. The computation is

carried out defining a vector, where each component is the

likelihood that at a given time a random walker is on a given node.

The step-by-step evolution of this vector is a representation of the

shifting distribution of these walkers in the nodes in their random

wandering.

The probability to walk from vertex i to vertex j is defined in the

random walk theory by the transfer matrix P, computed from the

similarity matrix A with the formula:

pij~
aijP
k aik

~wij i,j~1,:::,N

which is exactly the matrix we have previously denoted W. It has

been shown (see [39]) that the random walk distances of two nodes

i and j are given by:

d(i,j)~
XN

k~1

1

I{B(j)

� �
ik

where I is the identity matrix and B is a square matrix identical to

P having posed

B(j)ij~0 Vi

.The random walk distance built this way is non-symmetric, but for

Figure 2. Paths identification and selection. (A) This figure shows a version of the graph – simplified for illustration purposes – built focusing
onto 300 concepts and with 200,000 documents. (B) This figure shows three automatically retrieved and meaningful paths, identifying three – out of
five – prospect candidate peptides for sarcoidosis. The paths are depicted in a further simplified version of the graph obtained from the first one by
filtering out nodes not relevant to the paths.
doi:10.1371/journal.pone.0084912.g002
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our purposes we symmetrise it by taking the average of the two

directions.

ds(i,j)~
1

2
d(i,j)zd(j,i)½ �

This distance defines an implicit ranking measure for each couple

of distinct nodes and therefore between any peptide-disease

couple.

Such a measure can be interpreted as the probability of finding

that path, and thus the MoA, within the document base.

Results

In this paper we show examples of rationales produced by our

methodology with regard to a) the granulomatous disease

Sarcoidosis and its pulmonary pathology, and b) Imatinib, a

targeted-therapy agent against cancer cells, well known for its

apoptosis action.

Sarcoidosis is a disease in which abnormal collections of chronic

inflammatory cells form as nodules (granulomas) in multiple

organs. Sarcoidosis is present at various level of severity in all-

ethnic and racial groups and is mainly caused by environmental

agents in people with higher genetic sensitivity. The disease is a

chronic inflammatory disease that primarily affects the lungs but

can affect almost all organs of the body. Sarcoidosis is a complex

disease displaying incorrect functionalities within immune cells,

cytokines, and antigenic reactions; see [40]. Fig. 3 shows a

subgraph of the knowledge network comprising the concepts

related with Sarcoidosis.

We were interested in using peptides to treat Sarcoidosis.

Therefore a number of rationales have been obtained from a pool

of peptides against sarcoid pathologies, and the most relevant

findings are listed below, ranked according to the random walk

distance:

1. VIP – VIPR1 – INFLAMMATION – SARCOIDOSIS

2. a-MSH – HGFR – INFECTION – SARCOIDOSIS

3. CNP – NPRB – GUANYLIN_CYCLASE – INFLAMMA-

TION – SARCOIDOSIS

The Match VIP – SARCOIDOSIS
Vasoactive Intestinal Peptide - VIP (also known as Aviptadil), is

an endogenous human peptide. It is predominantly localized in the

lungs where it binds specific receptors (VPAC-1, VPAC-2), which

transform the signal into an increased production of intracellular

cyclic adenosine monophosphate (cyclic AMP or cAMP), as well as

into the inhibition of translocation of NF-kB from cytoplasm into

the nucleus. This process regulates the production of various

cytokines responsible for the inflammatory reaction, such as TNF-

a. Hence, VIP is responsible for preventing or attenuating a wide

variety of exaggerated pro-inflammatory activities; see [41].

The path in Fig. 4 shows that VIP is affecting the inflammation

processes related to Sarcoidosis.

The scientific evidence clearly suggests VIP as a potential

treatment option for Sarcoidosis: the system has been able to

retrieve the main receptor of VIP and its relevance in the

inflammation process.

Figure 3. The Sarcoidosis knowledge network. A portion of the knowledge network showing the neighbourhood of Sarcoidosis. The figure is
intended as a bird-eye view of the entities the system detected as related with Sarcoidosis
doi:10.1371/journal.pone.0084912.g003
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The Match ALPHA-MSH – SARCOIDOSIS
a-Melanocyte Stimulating Hormone (a-MSH) is an endogenous

peptide originally described for stimulating melanogenesis, mainly

for the pigmentation of the skin. Later it gained roles in feeding

behaviour, sexual activity, immune responses, inflammation and

fibrosis. Upon binding to its specific cell surface receptors it

increases production of cAMP in the target cells and triggers four

signalling pathways leading to the disruption of the transcription of

several pro-inflammatory mediators genes; see [41].

In addition, a-MSH also regulates the MET proto-oncogene

expression in both melanoma cells and in normal human

melanocytes. The MET proto-oncogene encodes for the Hepato-

cyte Growth Factor Receptor (HGFR) that is involved in

melanocyte growth and melanoma development; see [42].

There is evidence of interrelation between Epstein-Barr Virus

(EBV) infection and MET proto-oncogene expression, and at date

several infection agents have been suggested to have an

implication as cause of Sarcoidosis.

A role for a transmissible agent is also suggested by the finding

of granulomatous inflammation in patients without Sarcoidosis

who received heart transplantation from donors who had

Sarcoidosis; see [43] and [44].

The system sees both these processes (as apparent from Fig. 5),

assigning a better ranking to the second one. a-MSH is another

candidate for the treatment of the sarcoid-pathology due to this

double action.

The Match CNP – SARCOIDOSIS
CNP (C-type Natriuretic Peptide) is a human peptide, which

elicits a number of vascular, renal, and endocrine activities,

regulating blood pressure and extracellular fluid volume. When

CNP binds to its receptor, NPRB, on the cell surface it activates a

cell signalling through a Guanyl cyclase that increases intracellular

cGMP level activating specific pathways ultimately modifying

cellular functions. cGMP is known for its potent vasodilatory

action in pulmonary vessels. Depending on the tissues involved,

however, some of its effects are directly opposite to those of cAMP,

which is a potent inhibitor of proinflammatory tumor necrosis

factor (TNF-a) synthesis; see [45].

The inference subtended by the path in Fig. 6 is sound and

correctly traces a biological process. Yet CNP is not considered a

treatment option for Sarcoidosis because of its potential negative

side effects profile due to its systemic vasodilatory characteristics.

The Match Imatinib – Creutzfeldt-Jakob disease
Imatinib (commercialized under the name GLEEVEC) is a

rationally designed pyridylpyrimidine derivative, and a highly

potent and selective competitive tyrosine kinase inhibitor, espe-

cially effective in the inhibition of kinases c-Abl (Abelson proto-

oncogene), c-kit, and PDGF-R (platelet-derived growth factor

receptor); see [46] and [47]. These kinases are enzymes involved in

cellular signal transduction processes, whose dysregulation may

lead to malfunctioning of cells and disease processes, as

exemplified in a variety of hyperproliferative disorders and

cancers. Imatinib has been regulatory approved for chronic

myelogenous leukemia (CML), gastrointestinal stromal tumors

(GISTs), aggressive systemic mastocytosis (ASM), hypereosinophi-

lic syndrome (HES), chronic eosinophilic leukemia (CEL),

dermatofibrosarcoma protuberans, and Acute Lymphoblastic

Leukemia (ALL).

Exploiting our methodology we looked for rationales for the

redirection of Imatinib; on the basis of the results of the stochastic

measure, the system indicates the neurodegenerative transmissible

spongiform encephalopathies – exemplified by the Creutzfeldt-

Jakob disease (CJD) – as promising targets for this drug.

Transmissible spongiform encephalopathies are caused by the

aberrant metabolism of the prion protein (PrP). Prions are

seemingly infectious agents without a nucleic acid genome. Prion

diseases belong to the group of neurodegenerative diseases

Figure 4. The VIP – SARCOIDOSIS path and other closely related concepts.
doi:10.1371/journal.pone.0084912.g004
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acquired by exogenous infection and have a long incubation

period followed by a clinical course of progressive dementia,

myoclonal ataxia, delirious psychomotor excitement, and neuronal

death; see [48].

Moreover, the system selects the path (see Fig. 7) that indicates

the kinase c-Abl effect on cell-apoptosis as key MoA for redirecting

Imatinib towards CJD. In fact, the c-Abl tyrosine kinase is found to

be over-activated in neurodegenerative diseases like Alzheimer’s

disease and Parkinson’s diseases, and overexpression of active c-

Abl in adult mouse neurons results in neurodegeneration and

neuroinflammation; see [49]. There is clear experimental evidence

that activation of c-Abl leads to neuronal cell death and neuronal

Figure 5. The a-MSH – SARCOIDOSIS path and other closely related concepts.
doi:10.1371/journal.pone.0084912.g005

Figure 6. The CNP – SARCOIDOSIS path and other closely related concepts.
doi:10.1371/journal.pone.0084912.g006
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apoptosis in experimental Creutzfeldt-Jakob disease; see [50].

Imatinib has been shown to prevent c-Abl kinase induced

apoptosis in animal models of neurodegeneration; see [51].

Finally, Imatinib was shown to clear prion-infected cells in a time

and dose-dependent manner from misfolded infectious protein

without influencing the normal biological features of the healthy

PrP, and Imatinib activated the lysosomal degradation of pre-

existing misfolded PrP; see [52]. This provides a sound rationale

for the proposed redirection.

The system indicated also Imatinib as a treatment option for

pulmonary arterial hypertension (PAH), via its potent inhibitory

effect on the PDGF Receptor (PDGF-R). For the indication PAH,

the drug is however not approved.

Conclusions

A double-layer methodology is presented, consisting of semantic

analysis – leveraging on developments of Computational Linguis-

tics – and graph analysis – exploiting Graph Theory and

Stochastic Process Theory tools. This methodology has allowed

the screening of more than 3 million abstracts from PubMed-

published biomedical papers and the detection of relevant

concepts identified by dictionary-defined expressions; concepts

have been mapped as nodes of a graph, whose links are defined by

co-occurrence of concepts across roughly 30 million of sentences.

Specifically, the pathophysiological connections between peptides

and diseases have been detected in order to provide inferences for

biomedical rationales for drug repurposing.

The proposed methodology provides an effective instrument to

detect different MoAs of peptides and drugs; though it may not

capture the full-detail of the MoAs, it succeeds in making them

recognizable by a short chain of biomedical entities. Moreover, the

graph representations of biomedical knowledge seen above

produces a sound and meaningful representation of the many

interrelated concepts of the biomedical discipline; such method-

ology successfully allows both the validation of existing rationales

and the discovery of new ones, a feat usually left to serendipity and

intuition. We have translated the scientific rationales in relevant

clinical trial settings into new potential treatment options for the

affected patients in Sarcoidosis.

Our methodology confirmed the result of an open clinical phase

II study, where we treated 20 patients with histologically proven

Sarcoidosis and active disease with nebulized VIP for 4 weeks.

This study is the first to show that VIP has clear, positive, immune-

regulatory effects in sarcoid patients without any obvious side

effects and without systemic immuno-suppression. VIP should

therefore be developed as an attractive therapeutic option for

patients with pulmonary Sarcoidosis; see [53]. We have initiated a

clinical ex-vivo trial to prove a-MSH in a sarcoid pathology.

Preliminary data clearly suggest a beneficial outcome of the

experimentation (unpublished data), clearly suggesting a-MSH as

another potential treatment option for this pathology.

Moreover, the case for Imatinib as a treatment option for the

Creutzfeldt-Jakob disease shows how the system is able to produce

a sound scientific rationale also for non-peptide drugs and with a

mechanism of action quite different from the others, thus proving

a much wider applicability.

Results are more noteworthy if the relative slimness of the

dictionary is taken into account. Better representations are to be

expected defining more detailed and more comprehensive

dictionaries. Furthermore, Graph Theory tools provide quite an

interesting arsenal of instruments to analyse a complex network of

nodes (biological and medical concepts) and highlight hidden

inferences across biochemical compounds, clinical data and

medical concepts.

As it is apparent from this presentation the specific field of

application enters the methodology in the broad selection of the

document base and in the definition of the dictionary: the inner

mechanism of knowledge representation and analysis is quite

independent of it.

We would like to stress that here we have provided only very

general characterization of the knowledge network and focused

onto very well consolidated tools of analysis. But the field of

complex networks is currently under massive development,

Figure 7. Imatinib (GLEEVEC) – Creutzfeldt-Jakob Disease path and other closely related concepts.
doi:10.1371/journal.pone.0084912.g007
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providing ever more subtle indicators of graph features and related

techniques of analysis. We therefore think that our reliance on the

combination of the knowledge network inference with our random

walk rankings poses this method in the best position to exploit this

development and may well prove to make it mainstream in the

field of text mining.

This methodology can be applied to other fields: for sure it can

be extended over broader biomedical research, transcending

peptides to study other chemical compounds and also focusing on

diseases other than rare. We think it can be applied to any field of

research – even outside natural science – provided that a suitable

amount of literature is available and that the main issue be the

association of a great number of particular facts and observation

that do not yet fit into an already understood and comprehensive

scheme.
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