
Genome analysis

Indexed variation graphs for efficient and

accurate resistome profiling

Will P. M. Rowe1,2,* and Martyn D. Winn2

1Institute of Integrative Biology, The University of Liverpool, Liverpool L69 7ZB, UK and 2Scientific Computing

Department, The Hartree Centre, STFC Daresbury Laboratory, Warrington WA4 4AD, UK

*To whom correspondence should be addressed.

Associate Editor: John Hancock

Received on March 2, 2018; revised on April 30, 2018; editorial decision on May 2, 2018; accepted on May 10, 2018

Abstract

Motivation: Antimicrobial resistance (AMR) remains a major threat to global health. Profiling the

collective AMR genes within a metagenome (the ‘resistome’) facilitates greater understanding of

AMR gene diversity and dynamics. In turn, this can allow for gene surveillance, individualized treat-

ment of bacterial infections and more sustainable use of antimicrobials. However, resistome profil-

ing can be complicated by high similarity between reference genes, as well as the sheer volume of

sequencing data and the complexity of analysis workflows. We have developed an efficient and ac-

curate method for resistome profiling that addresses these complications and improves upon cur-

rently available tools.

Results: Our method combines a variation graph representation of gene sets with a locality-

sensitive hashing Forest indexing scheme to allow for fast classification of metagenomic sequence

reads using similarity-search queries. Subsequent hierarchical local alignment of classified reads

against graph traversals enables accurate reconstruction of full-length gene sequences using a

scoring scheme. We provide our implementation, graphing Resistance Out Of meTagenomes

(GROOT), and show it to be both faster and more accurate than a current reference-dependent tool

for resistome profiling. GROOT runs on a laptop and can process a typical 2 gigabyte metagenome

in 2 min using a single CPU. Our method is not restricted to resistome profiling and has the poten-

tial to improve current metagenomic workflows.

Availability and implementation: GROOT is written in Go and is available at https://github.com/

will-rowe/groot (MIT license).

Contact: will.rowe@stfc.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Antimicrobial resistance (AMR) remains a significant global threat

to public health, with directly attributable deaths per annum pre-

dicted to rise from 700 000 to 10 000 000 by the year 2050 (O’Neill,

2016). This threat is not restricted to humans, with consequences

also for animal health, welfare and food production (Bengtsson and

Greko, 2014). In an effort to inform policy that can mitigate the

spread of AMR, there has been a recent drive to establish surveil-

lance programmes to monitor the prevalence of AMR

(Public Health Agency of Canada, 2016; World Health

Organization, 2015). These programmes have traditionally used cul-

ture or polymerase chain reaction–based surveillance techniques,

restricting monitoring to a few key genes or organisms. However,

the use of metagenomics for surveilling AMR is gaining traction as

it offers a much greater breadth of testing over these traditional

techniques (Baquero, 2012; Miller et al., 2013).

The use of metagenomics to determine the antibiotic resistance

gene (ARG) content of a microbial community, hereafter referred to

as resistome profiling, has been applied in studies of a wide variety

of biomes (Auffret et al., 2017; Jalali et al., 2015; Ma et al., 2017;

VC The Author(s) 2018. Published by Oxford University Press. 3601

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 34(21), 2018, 3601–3608

doi: 10.1093/bioinformatics/bty387

Advance Access Publication Date: 14 May 2018

Original Paper

https://github.com/will-rowe/groot
https://github.com/will-rowe/groot
https://academic.oup.com/


Munk et al., 2017; Rose et al., 2017; Rowe et al., 2017, 2016; Tao

et al., 2016; Yang et al., 2013). Studies such as these utilize several

well-maintained ARG databases (Gupta et al., 2014; Jia et al., 2017;

Zankari et al., 2012) and ARG-annotation tools (Hunt et al., 2017;

Inouye et al., 2014; Rowe et al., 2015; Yang et al., 2016), of which

only a few are designed for resistome profiling (Fig. 1). These data-

bases and tools are used with assembled metagenomic contigs, or al-

ternatively with metagenomic sequence reads. In the case of the

latter some tools and studies opt to align reads to reference ARGs

and report only fully covered references (Rowe et al., 2017), where-

as some bin reads using BLAST and similarity/length thresholds

(Tao et al., 2016). All of these strategies offer the user a compromise

between ease of use, analysis speed and the accurate typing of ARGs

(ability to detect ARG type/subtype).

One of the main limitations of existing tools for resistome profil-

ing (or profiling of other gene sets) in metagenomes is that high simi-

larity shared between reference sequences can result in ambiguous

alignments, unaligned reads (false negatives), or mis-annotated reads

(false positives); thus reducing the accuracy when typing ARGs

(Petersen et al., 2017). A solution to this has been to cluster the ref-

erence sequences and then use the cluster representative sequences

as a target for read alignment (Rowe et al., 2015); however, this

results in a loss of information as ARG subtypes will be masked.

Likewise, a related approach has been to collapse final annotations

of ARG variants into a common ARG annotation, also masking sub-

types (Munk et al., 2017). The ability to accurately detect ARG

type/subtype, here termed profiling resolution, is important consid-

ering that the variation between subtypes of ARGs can result in dif-

ferent phenotypic activity (Bush and Jacoby, 2010).

Recently non-linear data structures, such as variation graphs,

have been used to encode reference sequences for applications such

as variant calling (Garrison et al., 2017; Paten et al., 2017). In terms

of ARG annotation, the Mykrobe predictor tool applies non-linear

reference representation in the form of a de Bruijn graph to identify

resistance profiles in Staphylococcus aureus and Mycobacterium tu-

berculosis isolates (Bradley et al., 2015). Non-linear reference repre-

sentation reduces redundancy whilst maintaining information that

facilitates classification. Variation graphs, which are directed acycli-

cal graphs (DAGs), are offered as a solution to reference bias in

population genomics as they represent sequence variation within a

population (Garrison et al., 2017). To align a sequence against a

variation graph, the traversals within a graph are indexed. Variation

graph indexing approaches to date have included hash-map and

Burrow-Wheeler transform encoding (Schneeberger et al., 2009;

Sirén, 2016). Index design must balance query length, performance

and index size in order to deal with the complexity of variation

graphs. Efficient indexing is further complicated in the case of mul-

tiple graphs.

We propose that variation graph traversals can be indexed using

locality-sensitive hashing (LSH), allowing for fast and approximate

assignment of a sequence to a specific region of a traversal within

one or more graphs. MinHash is a form of LSH that can be used to

compress sets into smaller representations, called MinHash signa-

tures. MinHash signatures can be used to estimate the similarity of

the original sets independently of the original set size and was first

used for duplicate webpage detection (Broder, 1997, 2000). The

MinHash technique is increasingly being used in bioinformatics

applications for clustering and searching large sequencing datasets

(Brown and Irber, 2016; Ondov et al., 2016) and has also recently

been applied to read alignment algorithms (Berlin et al., 2015; Popic

and Batzoglou, 2017; Quedenfeld and Rahmann, 2017). In applica-

tions such as these, the ability to efficiently compare signatures is es-

sential. Additional LSH indexing techniques can therefore be

applied to reduce dimensionality and facilitate querying of signa-

tures. One such technique is the LSH Forest indexing scheme that

uses multiple prefix trees to store hash tables containing portions of

the MinHash signatures and facilitates self-tuning of index parame-

ters, offering a performance improvement over traditional LSH

indexes (Bawa et al., 2005).

In this article, we present a method for resistome profiling that

utilizes a variation graph representation of ARG databases to reduce

ambiguous alignment of metagenomic sequence reads. We store sets

of similar ARG reference sequences in variation graphs; collapsing

identical sequences whilst retaining unique nodes that allow for ac-

curate typing. By applying an LSH Forest indexing strategy to the

variation graph collection that allows for fast and approximate

search queries, we show that metagenomic reads can be seeded

against candidate graph traversals. Subsequent hierarchical local

alignment of reads and scoring enables accurate and efficient resis-

tome profiling. We also provide our implementation, Graphing

Resistance Out Of meTagenomes (GROOT), and compare it against

ARGS-OAP and AMRPlusPlus, the most recently published tools

for resistome profiling from metagenomic data (Lakin et al., 2017;

Yang et al., 2016) (Fig. 1).

2 Materials and methods

Here we describe our method to index a collection of ARG reference

sequences, align sequence reads using the index and then apply this

for resistome profiling of metagenomics samples. We then document

our implementation, GROOT, and describe how we evaluated its

performance.

2.1 Indexing
The first stage in indexing a collection of ARG reference sequences

is to remove redundancy, thus reducing the number of potential

alignments to multiple references by collapsing identical sequence

regions into a single reference. To do this we employ a DAG (vari-

ation graph) representation of ARG reference sequences. By finger-

printing variation graph traversals and using this as an index, we

can then perform approximate seeding of sequence reads (Fig. 2)

(Supplementary Material, Algorithm 1).

2009 2012 2013 20152014 20172016

ANNOTATION
TOOL

DATABASE / 
RESOURCE

* designed for resistome profiling

ARDB
- blast, rpsblast 
& SNP tools
- ARDB db

ResFinder
- blast tool
- can assemble reads
- ResFinder db

CARD RGI
- blast & protein 
variant tools
- CARD db

SEAR *
- clusters & maps reads
- customisable db

kmerfinder / kmer resistance
- co-occurence of k-mers
- ResFinder db

mykrobe predictor
- DeBruijn graph
- S.auerus & TB db

ARGS-OAP *
- Ublast/blastx tool
- CARD + ARDB db

AMRPlusPlus *
- maps reads
- MEGARes db

ARDB
- ~24k ARGs
- incl. type & AB
- offline?

ResFinder
- ~2k ARGs
- only acquired ARGs

CARD
- ~2k ARGs
- incl. ontology

ARG-annot
- ~2k ARGs
- db only

Resfams *
- hidden markov 
models & protein 
family db
- ~200 HMM profiles

MEGARes *
- ~4k ARGs

Antibiotic Resistance Gene Resources

GEAR
- gene, ncRNA & 
SNP drug
associations
- ~2000 ARGs

FARME db *
- hidden markov 
models & DNA/pro -
tein seqs
- ~11k ARGs

VRprofile
- HMM/blast
- uses mobilomeDB

ARIBA
- maps & assembles
reads
- customisable db

Fig. 1. Summary of ARG annotation tools and databases. This figure shows

several published tools and databases that are used to detect ARGs (in

sequencing data or assembled contigs) (Bradley et al., 2015; Clausen et al.,

2016; Hunt et al., 2017; Jia et al., 2017; Lakin et al., 2017; Li et al., 2017; Liu and

Pop, 2009; Rowe et al., 2015; Yang et al., 2016; Zankari et al., 2012). The list is

not exhaustive and the tools that are designed specifically for the resistome

profiling of metagenomic datasets are highlighted with an asterisk

3602 W.P.M.Rowe and M.D.Winn

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty387#supplementary-data


2.1.1 Create variation graphs

To convert a collection of FASTA-formatted ARG reference sequen-

ces to a set of variation graphs, all sequences are first clustered based

on sequence identity (�90%) in order to group sequences into dis-

tinct sets of similar sequences. Each resulting set of similar sequences

can be viewed as a multiple sequence alignment (MSA) that

describes the insertions, deletions and polymorphisms in each mem-

ber of the set, relative to a set representative sequence. The MSA is

converted to a variation graph by first using the representative se-

quence as the graph backbone; each base of the sequence is a node

with edges connecting them in series. The other sequences of the

MSA are then incorporated; common bases are consolidated as sin-

gle nodes and all deletions and insertions are added via edges and

bubbles.

Each variation graph node contains information such as parent

sequence, reference position and encoded base, allowing restriction

of graph traversals to known references and the translation of tra-

versals into reference name and sequence location. In the case of sets

containing a single sequence, they are still converted to variation

graphs but will be a linear series of nodes and only contain one pos-

sible traversal. All variation graphs are topologically sorted so that

node ordering reflects MSA position prior to fingerprinting graph

traversals.

2.1.2 Fingerprint graph traversals

The second indexing stage is to fingerprint the traversals in each

variation graph, allowing for fast and approximate matching of

query reads to region(s) of a variation graph. To fingerprint a graph,

a sliding window of length w is moved across all graph traversals

and a MinHash signature is created for each window (Broder,

1997). The windows are typically the same length as the expected

query reads. The starting nodes of consecutive windows are spaced

by an offset, o, where o�w.

For each window, the contained nodes are joined to form a se-

quence (encoded as an array of bytes), which is then decomposed

into a set of k-mers of length k, where k<w. To then create a

MinHash signature (an array of unsigned 64-bit integers) of length

s, each k-mer in the set is evaluated in series. A k-mer is hashed to

an unsigned 64-bit integer s times, using s distinct hash functions.

Each time a k-mer is hashed, the index position in the signature is

advanced from 0 and the new hash value is evaluated against the

value stored at the current index position; if the stored value is

greater than the new value, the stored value is replaced by the new

value. The signature index is reset to 0 prior to hashing the next k-

mer in the series and the same s hash functions are used. Once all k-

mers in a set for a given window have been hashed, the signature for

that window is complete; the signature is linked to the graph ID and

the window start node before it is stored. A single graph node can

have multiple linked signatures if multiple traversals are possible.

2.1.3 Store window signatures

The final indexing stage is to store the window signatures for each

variation graph in a data structure that allows for fast and approxi-

mate nearest-neighbour queries. To do this, we enlist the LSH Forest

self-tuning indexing scheme (Bawa et al., 2005). This indexing

scheme, given a query, will give a subset of nearest-neighbour candi-

dates to which the query can be compared, based on the number of

hash collisions between query and candidates. In our case, querying

the index with a MinHash signature from a sequencing read will re-

turn candidate window signatures.

As in a traditional LSH index, two parameters must be tuned in

order to maximize the occurrence of collisions between a query and

its nearest neighbour: (i) the number of hash functions to encode an

item (K) and (ii) the number of hash tables (buckets) to split an item

into (L). As we have already hashed the signature during

MinHashing, we are essentially splitting the signature uint64 values

over a series of buckets. Explicitly, for each of the L buckets we take

K uint64 values from the signature (where K� s) and hash the values

again to a single binary string. The original signature of s uint64 val-

ues is replaced by a more compact representation of L binary

strings.

The challenge with traditional LSH indexing schemes was setting

appropriate L and K values. Too small a value for K results in an

increased false positive rate due to increased collisions of dissimilar

query-neighbour pairs, and a large value for K lowers the collision

chances of similar query-neighbour pairs. Therefore, setting L>1 is

needed to maximize the occurrence of collisions between similar

query-neighbour pairs. To set appropriate K and L values, the dis-

tance between query and nearest neighbour is needed, but tuning for

one query-neighbour pair can reduce performance for other query-

neighbour pairs (Gionis et al., 1999). The LSH Forest indexing

scheme addresses the limitations of the traditional LSH indexing by

using a unique label of variable length to assign data points to buck-

ets and storing these in a data structure that combines multiple pre-

fix trees, each constructed from hash functions (derived from the

MinHash signature).

The LSH Forest data structure is first initialized and tuned using

the MinHash signature length and the Jaccard Similarity threshold

for reporting query-neighbour matches. To tune the index, multiple

combinations of the number of buckets (L) and the number of hash

functions (K) are tested (within the bounds of the signature length)

for false positive and false negative rates at the specified Jaccard

Similarity. L and K are then set according to the lowest error rate

possible and a set of L initial hash tables are then created

(Supplementary Material, Algorithm 2).

Once the LSH Forest data structure has been initialized, each sig-

nature from the variation graph(s) is added to the initial hash tables.

Each signature is split into L equally sized chunks of K hash func-

tions. The chunks are hashed to a binary string (little-endian order-

ing) and stored in the corresponding hash table, with each chunk

pointing to the graph and window from which they derive. Once all

A

Variation Graph

Query Sequence Read
Hierarchical

Local Alignment

ALIGN REPORT

Annotation, Type, Relative Abundance etc.

SCORE

SAM/ BAM

S
E

E
D

A
LI

G
N

[n]int64{1, 2, ... n}A.window1 =

[n]int64{1, 2, ... n}A.window2 =

[n]int64{1, 2, ... n}C.window9 =

Minhash

Signatures

.................................................................

Query Sequence Read

LSH

QC & HASH

Sharded

Signatures

Query Signature

[n]int64{1, 2, ... n}

QUERY SIMILARITY
[n]int64{1, 2, ... n}

[n]int64{1, 2, ... n}
[n]int64{1, 2, ... n}

Candidate

Signatures

| A  B |

| A U B |

Seeded Graph / 

Query Pair

J ( A , B )  =

U

Jaccard

Similarity

RANK

A1

A3

B1

B3

B2

C1
C2

A

B

C

[n]int64{1, 2, ... n}A.window1 =

[n]int64{1, 2, ... n}A.window2 =

[n]int64{1, 2, ... n}A.window3 =

IN
D

E
X

CLUSTER WINDOW MINHASH

Reference Sequences Clusters Variation Graphs

GRAPH

A2

TRAVERSE

Graph Traversals K-mer Sets

A1

B3

C1

Graph Window Signatures

Fig. 2. Overview of our method to index and query ARG variation graphs.

This figure shows the indexing (index) and alignment (seed and align) steps

of the method. In the alignment step, once a query read has been seeded

against a variation graph, a hierarchical local alignment process is performed,

and the alignment is scored before being reported

Indexed variation graphs for efficient and accurate resistome profiling 3603

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty387#supplementary-data


signatures have been added, the initial hash tables are transferred

into a set of arrays (buckets) and sorted.

2.2 Alignment
To align sequence reads to a variation graph, our method uses an ap-

proximate nearest-neighbour search to seed a read against a region

of a graph and then employs a hierarchical local alignment to fully

align the read.

2.2.1 Nearest-neighbour search

For a given sequence read, a MinHash signature is generated as dur-

ing indexing, using the same values for k and s, etc. The signature is

then queried against the LSH Forest data structure containing the

indexed variation graphs (Supplementary Material, Algorithm 3).

To run a query, the signature is split into L equally sized chunks and

each chunk is hashed to a binary string using the same hash function

as during the LSH Forest population (Bawa et al., 2005). Each

hashed chunk of the query signature is then queried against the cor-

responding bucket in the LSH Forest. To improve querying effi-

ciency, each bucket is compressed by constructing a prefix tree

(PATRICIA trie) (Morrison, 1968). Binary search is used to search

the bucket (in ascending order) and return the smallest index of the

bucket where the prefix matches the query chunk; the bucket is then

iterated over from this index position, returning graph windows

held until the prefix no longer matches the query chunk. Once all

chunks of the query sequence have been searched, all the windows

(graph IDs and start nodes) are collated and stored as seeds for each

read. The nearest-neighbour search is then repeated using the reverse

complement of the query read.

2.2.2 Hierarchical local alignment

For a read that has been seeded one or more times, a hierarchical

local alignment process is used to align the read to a graph traversal.

We assume that most reads do not feature novel variation, so we

first try an exact match alignment. We then try an exact match

alignment after shuffling the seed n nodes along the graph, followed

by a clipped alignment. As soon as the read aligns, no further align-

ments are tried for that seed. To perform an alignment from a given

seed, a recursive depth-first search (DFS) of the seeded graph is per-

formed, beginning at the start node identified during the nearest-

neighbour search (Supplementary Material, Algorithm 4). If a match

between node and read base is encountered, the position in the read

is incremented and the next node in the DFS is checked. When no

match is found or the whole read has been iterated over, the DFS of

the current traversal is ended.

2.3 Reporting
Reads are classified as ARG-derived if they have successfully aligned

to a variation graph. To apply our method to resistome profiling,

the classified reads must be evaluated to annotate what gene they de-

rive from and if that entire gene is present in a given sample.

To classify a read alignment, a score is calculated according to

the parent information of the nodes of the alignment. That is, if a

node was derived from gene X and gene Y, the read would receive a

point for each parent. Points are tallied, the top parent(s) in the tally

is used to classify the read. If the top parent was not present for

every node traversed, the read is ambiguous. If multiple parents

score the highest then the read has multiple valid classifications (a

multi-mapper).

Once reads have been classified, gene annotations are then

made. Classified reads are binned according to the graphs to which

they align and then reference information is extracted from the cor-

responding graph(s). The length of the reference is used to perform a

simple pileup of classified reads. Length and coverage thresholds are

applied to determine if a gene can be reported as present in the resis-

tome profile.

2.4 Our implementation
We have implemented our method as an easy to use program called

GROOT (Fig. 2). GROOT is written in Go (version 1.9) and com-

piles for a variety of operating systems and architectures.

To create the supplied reference data (used for indexing), ARG

sequences were downloaded from the CARD, Resfinder and ARG-

annot databases (Gupta et al., 2014; Jia et al., 2017; Zankari et al.,

2012) (accessed June 2016). Each database was clustered using the

VSEARCH cluster_size command and stored as MSA files (Rognes

et al., 2016). The GROOT get command will fetch a specified pre-

clustered database, check it and unpack it ready for indexing.

Alternatively, a user can provide their own clustered database.

The index command checks MSA files for formatting and dis-

cards sequences shorter than the expected read query length.

Variation graphs are then built from the MSAs, pruned and topo-

logically sorted. For each graph, a sliding window is moved along

each traversal (default length¼100, offset¼1), decomposed to k-

mer sets (default k¼7) and MinHash signatures are created using

the Go implementations of Spooky and Farm hash functions (default

signature length¼128, based on XORing the Spooky and Farm

hash functions) (Jenkins; Google; Gryski https://github.com/dgryski/

go-spooky). An LSH Forest is then initialized, tuned and populated,

before being serialized using the Go gob package and written to

disk.

The align command loads the index, sets all hashing parameters

to match the index and then streams the FASTQ read file(s) (mul-

tiple FASTQ files or paired reads can be read but paired-end infor-

mation is not utilized). MinHash signatures are created for each

read and its reverse complement; signatures are then queried against

the index. Once seeded, reads are optionally quality trimmed prior

to hierarchical local alignment and reporting. All variation graphs

that had reads align are saved to disk [in graphical fragment assem-

bly (GFA) format] and can be viewed using Bandage (Wick et al.,

2015). All aligned reads are also reported in relation to a linear ref-

erence sequence (in BAM format).

The index, align and report subcommands of GROOT all utilize

a concurrent pipeline pattern that is driven by the flow of data be-

tween structs. This pattern also facilitates the streaming of data

from STDIN, as well as from disk, and allows the GROOT com-

mands to be piped together.

2.5 Evaluating performance
The full commands and code used to evaluate the performance of

our implementation can be found in the GROOT repository (https://

github.com/will-rowe/groot/tree/master/paper). GROOT version

0.7 was used in all experiments (release 0.7, commit b43c32c). For

running the accuracy benchmark, simulated FASTQ reads (150 bp

read length) were generated from the ARG-annot database using

BBMap (Bushnell, 2014; Gupta et al., 2014). An index of the ARG-

annot database was created using the GROOT index command

(length¼150, all other settings default). Reads were aligned using

the GROOT align command with default settings, running on a

Linux laptop using 1, 4, and 8 CPUs for each test, respectively.

For running the comparison benchmark, the genomes from the

Critical Assessment of Metagenome Interpretation (CAMI) project

3604 W.P.M.Rowe and M.D.Winn

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty387#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty387#supplementary-data
https://github.com/dgryski/go-spooky
https://github.com/dgryski/go-spooky
https://github.com/will-rowe/groot/tree/master/paper
https://github.com/will-rowe/groot/tree/master/paper


were downloaded in FASTA format (Sczyrba et al., 2017). The

genomes were screened against the CARD database to mask any

ARGs already present in the genomes (Jia et al., 2017). A subset of

ARGs were then randomly sampled from the CARD database

(v1.1.2) using Bioawk and were combined with the CAMI genomes

in a single FASTA file (Jia et al., 2017). The CARD database was

selected as ARGs-OAP uses this and it is one of the default databases

provided by GROOT (Yang et al., 2016). Sets of metagenomic

FASTQ reads (150 bp read length, errors allowed) at varying cover-

age levels were then generated from the FASTA file using BBMap

(Bushnell, 2014). For each set of metagenomics reads, GROOT and

ARGs-OAP [stage 1, version 1 (release 1, commit: ed19cd1)] were

both run with default parameters (recommended settings) on a

LINUX laptop using 1 core (Yang et al., 2016). ARGs-OAP (stage

2, version 2) was completed on the dedicated Galaxy webserver,

allowing only full-length, 100% identity read matches (Yang et al.,

2016). For comparing GROOT against AMRPlusPlus, reads were

simulated (5� coverage) from the CAMI database as above, this

time spiked with 10 ARGs from the MegaRes database (version

1.01) (Lakin et al., 2017). Simulated reads were analysed using

AMRPlusPlus (default settings, commit: 3086a1f) and GROOT on

a Linux cluster, both using eight cores and a reporting threshold of

100%, 99% and 80% gene coverage for each test.

For performing the resistome analysis, we reanalysed the metage-

nomic data from a recent microbiome study (Winglee et al., 2017).

FASTQ reads for all 40 microbiomes were downloaded from the

SRA (BioProject: PRJNA349463) and were classified by GROOT

using the CARD database (Jia et al., 2017). GROOT was set to re-

port full-length ARG annotations and the variation graph alignments

(GFA format) for each annotation were validated by manual inspec-

tion using Bandage (Wick et al., 2015). Toxin/antitoxin genes were

identified in microbiome samples using GROOT and the TADB data-

base (clustered at 90% sequence identity) (Xie et al., 2018). The full

commands used are available in the online GROOT tutorial (https://

groot-documentation.readthedocs.io/en/latest/tutorial.html).

3 Results

The results presented here evaluate our implementation of indexed

variation graphs for resistome profiling, in terms of both the accur-

acy of the tool and its performance compared to a recently published

resistome profiling tool.

3.1 Accuracy assessment
To assess the accuracy of our implementation, we generated sets of

random FASTQ reads from the ARG-annot database, classified the

reads with GROOT and then compared the classification to the ARG

from which the read derived (Gupta et al., 2014). For six sets of simu-

lated reads, ranging from 100 to 10 000 000 reads, GROOT classified

the ARG-derived reads with no recorded false negatives. GROOT

took an average of 216.44 wall clock seconds to classify 1 000 000

ARG-derived reads using 8 CPUs. At <1000 reads, runtimes were

equivalent regardless of the number of CPUs used, however, as the

datasets approached real-world metagenome size (>1 000 000 reads),

increasing the number of CPUs resulted in decreased runtime of ap-

proximately 2.5-fold per 4 CPUs (Fig. 3). The average RAM occupa-

tion recorded during the accuracy assessment was 2.23 GB.

3.2 Performance comparison
To compare the accuracy and speed of our implementation against a

recently published resistome profiling tool [ARGs-OAP (Yang et al.,

2016)], we used a set of publically available, simulated metage-

nomes and spiked in full-length ARG sequences. The spiked data

was sampled at varying coverage levels and the performance of

GROOT and ARGs-OAP was evaluated in terms of the number of

ARGs correctly annotated from each sample, as well as the time

taken for each tool to process the samples.

On average GROOT was 6.3 times faster at processing the sam-

ples compared to stage 1 of ARGs-OAP. The mean time to process a

metagenome with 1� coverage (approximately 1.1 million reads)

was 157.87 s for GROOT, compared to 989.15 s for ARGs-OAP

(stage 1 only) (Fig. 4A). ARGs-OAP stage 2 took an average of 12 h

to run on a dedicated server (not included in Fig. 4A).

In terms of accuracy, GROOT recorded only one false negative

across all samples (present in the lowest coverage metagenome),

whereas ARGs-OAP (Stages 1þ2) consistently recorded three false

negatives per sample. GROOT had a mean rate of 1.6 false positives

per sample, whereas ARGs-OAP had a mean rate of 99.6 false posi-

tives per sample. The number of false positives found by GROOT did

not increase beyond 10� coverage, compared to the false positive in-

crease observed at every coverage increase by ARGs-OAP (Fig. 4B).

We additionally compared GROOT to AMRPlusPlus. Although

GROOT outperformed this software on the basis of runtime (117 s

versus 3366 s average run time) and accuracy (Supplementary

Results 1), the comparison of GROOT and AMRPlusPlus is not

ideal. This is due to AMRPlusPlus being unable to run on a laptop

using a single core (as in the above benchmark test) and the fact that

AMRPlusPlus is a pipeline that involves a lot of additional data

processing, leading to a much longer runtime.

3.3 Resistome analysis
To show the application of our method on real-world data, we rean-

alysed 40 recently published metagenomes that were derived from

the microbiome of rural and urban subjects from the Hunan prov-

ince of China (Winglee et al., 2017). GROOT made 84777 ARG

read classifications across all the samples; the mean number of

ARG-classified reads was higher in rural microbiome samples than

urban (Fig. 5A). The resistome profiles generated by GROOT identi-

fied 11 and 20 ARGs that could be accurately subtyped in the rural

and urban microbiome samples respectively (Fig. 5B). The ARG sub-

types were also confirmed by inspection of variation graphs; uni-

form read coverage along graph traversals corresponded to the

identified ARGs (see example variation graph for bla-cfxA, Fig. 5C).

Finally, to show the utility of GROOT in classifying non-ARG

sequences, we used GROOT to classify reads that were derived from

toxin genes (Supplementary Fig. S1). We found 11 different full-

Fig. 3. Runtime performance. This figure shows the runtime performance of

our implementation (GROOT) on 1, 4, and 8 CPUs. The data were collected

during the accuracy assessment of GROOT, where it classified ARG-derived

reads (no false negatives were recorded)

Indexed variation graphs for efficient and accurate resistome profiling 3605

https://groot-documentation.readthedocs.io/en/latest/tutorial.html
https://groot-documentation.readthedocs.io/en/latest/tutorial.html
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty387#supplementary-data


length toxin sequences in the microbiomes of urban subjects, where-

as no full-length sequences could be identified in the rural samples.

4 Discussion

AMR remains a significant challenge to human and animal health.

With the increasing drive for AMR surveillance in order to inform

policy and mitigate the spread of resistance, metagenomic studies to

identify and monitor ARGs in a wide variety of biomes are becom-

ing commonplace. Sampled biomes range from the human gut,

through to water supplies, agricultural land and marine environ-

ments. Despite this scale and variety, the question being asked

remains simple, what ARGs are present in a given sample? Although

simple, resistome profiling still presents a challenge, as illustrated by

the many tools available (Fig. 1). Our method improves upon two

main issues with these existing tools; the resolution offered and the

speed at which a sample can be profiled. Crucially also, as a novel

algorithm, it is translatable to identifying other highly related gene

sets within metagenomes. Variation graphs can be generated,

indexed and searched using any reference set of similar sequences.

For example, we have shown that GROOT can be used to annotate

toxin genes in microbiome data (see results—resistome analysis).

We should note however that our implementation currently restricts

the number of graphs that can be generated to around 2000.

In terms of profiling resolution, we are referring to the accuracy

of the annotations in a resistome profile. That is, is it possible to an-

notate the subtype of ARG in a sample (e.g. bla-SHV-1) or just the

type (e.g. bla-SHV)? This resolution is important as different ARG

subtypes can provide selective resistance to different antibiotics, for

example genes within a single beta lactamase gene class (structural

classes, based on amino acid sequence) can confer resistance to dif-

ferent beta lactam antibiotics (Bush and Jacoby, 2010). Therefore,

the greater the resolution, the more information can be extracted

from a sample. To gain this resolution, we need to both cover an en-

tire reference sequence and be confident in the reads placed. We ad-

dress this by allowing only exact matches to the whole reference

sequence before annotating the gene as present. The counter to this

argument for greater resolution is that sequence quality will impact

read placement and also, novel ARGs will be missed. Whilst we be-

lieve that the main utility of GROOT is its ability to confidently re-

solve ARGs, we have also added features to allow for these points.

Firstly, our implementation has an optional quality trimming algo-

rithm to remove low quality bases prior to read alignment.

Secondly, to allow potentially novel ARGs or accommodate low

coverage samples, there is an option to relax the scoring system in

order to allow non-exact matches or partially covered genes.

Our method offers an improvement in resolution over those that

consolidate variant ARGs to a representative sequence (Munk et al.,

2017; Rowe et al., 2015), or that have high false positive rates due

to allowing partial or inexact matches (Yang et al., 2016). Despite a

marked improvement on ARGs-OAP in our benchmark our method

did record a false negative and some false positives, likely as a result

of introduced sequencing error and the low sample coverage (in the

case of the single false negative). These errors could be considered a

limitation of the exact local alignment utilized in this method, a

more relaxed alignment could be allowed but this would be at the

expense of confidence in the ARG annotations.

In terms of speed, our method offers several advantages over

other resistome profiling tools. Our method does not require meta-

genome assembly or the upload of data to remote servers, both of

which add significant time to a resistome profiling analysis. The lat-

ter requires good bandwidth and the former can require large com-

pute resources; a complex metagenome can take up to 10 h and

500 GB of RAM to assemble (van der Walt et al., 2017). Our imple-

mentation can run a typical 2 GB metagenome in 2 min using a sin-

gle CPU, and scales when run on higher-performance systems. Our

benchmark was restricted to a single CPU as ARGs-OAP is limited

in the number of CPUs it can use. The benchmark also ignored the

time taken during Stage 2 of ARGs-OAP (on the remote server) as

this could be variable depending on server load and available band-

width for upload. Despite this, GROOT still offers a much faster

runtime than ARGs-OAP. In addition to runtime, analysis times are

also reduced with GROOT due to its ease of use. It runs as a self-

contained binary, is packaged with bioconda (Dale et al., 2017) and

requires only two commands to run a resistome profiling analysis,

offering significant advantage over more complex workflows or

those that require upload to remote servers halfway through the

analysis (Yang et al., 2016). Our implementation is targeted towards

researchers who may not have access to high performance comput-

ing and wish to run metagenomics workflows on a laptop, for this

reason we elected to compare our tool against ARGs-OAP as it was

BA

C

rural urban

Lo
g1

0(
pr

op
or

tio
n 

A
RG

 c
la

ss
ifi

ed
 r

ea
ds

)

ARG rural urban
AAC(6')-Ie-APH(2'')-Ia + -

+-bI-)6(TNA
+-Acab
++2AxfC
++3AxfC
+-4AxfC
-+5AxfC
+-71Arfd
+-Frfd
-+Rrme
-+)91828X( BmrE
++)61100Y( BmrE
-+FmrE

Escherichia_coli_EF-Tu + +
+-Ptdm
+-Fpmo
+-743-AXO
+-1SrnQ
+-4SrnQ
+-7SrnQ
+-9SrnQ
+-1lus
+-2lus
+-Dtet
++Qtet
-+Wtet

Fig. 5. Resistome analysis using GROOT on 40 human microbiome samples.

(A) A boxplot comparing ARG-classified reads derived from all rural versus

urban subject microbiomes. (B) The full length ARGs detected by GROOT dur-

ing resistome profiling and in which microbiome class they were present. (C)

A subgraph of the bla-cfxA variation graph used by GROOT in this analysis

(the full graph encodes 4 sequences using 10 nodes and 13 edges). Grey

shading corresponds to nodes with aligned reads. The bla-cfxA3 traversal is

highlighted by the black arrows

Fig. 4. Benchmarking GROOT and ARGs-OAP. (A) The runtime comparison of

GROOT and ARGs-OAP when processing metagenomes at varying coverage

levels. (B) The number of errors (false positives and false negatives) recorded

by each program at varying metagenome coverage levels

3606 W.P.M.Rowe and M.D.Winn



one of three published resistome profilers that is targeted for metage-

nomic workflows (Fig. 1). We also tried using AMRPlusPlus and

SEAR in this benchmark but we could not get them to run using our

1-core laptop configuration (Lakin et al., 2017; Rowe et al., 2015).

However, as GROOT also scales for use on larger servers, we were

able to include a comparison of GROOT and AMRPlusPlus.

Although this comparison is still slightly unfair as GROOT is a self-

contained resistome profiler and AMRPlusPlus is a pipeline that

involves many additional steps, this comparison is useful as it shows

GROOT is comparable to an approach using linear reference-based

read mapping [as AMRPlusPlus uses BWA to align reads (Li, 2013)].

With the advent of long-read and barcoding protocols for resis-

tome profiling, it is tempting to think that tools for short read resis-

tome profiling may prove less relevant in the near future (Guérillot

et al., 2018; Van Der Helm et al., 2017). However, Illumina

sequencing currently remains the standard technology for metage-

nomics applications and historic Illumina datasets will also need to

be reanalysed where new sampling is not feasible. In addition, our

method can be used in conjunction with other new methods that elu-

cidate gene context in metagenomics samples, allowing for novel

insights to be gained from analysis and re-analysis of metagenomic

data collections (Olekhnovich et al., 2018).

Our implementation offers efficient and accurate resistome

profiling, enabling the identification of full-length ARGs in complex

samples. It should be noted that this method is database dependent

and is not intended for the identification of novel ARGs. The imple-

mentation is easy and quick to run as there is no complicated instal-

lation or dependencies, no split local/remote processing, it facilitates

streaming of input and is built using Go’s concurrency patterns.

5 Conclusions

We present a method for resistome profiling that utilizes a novel

index and search strategy to accurately type resistance genes in

metagenomic samples. The use of variation graphs yields several

advantages over other methods using linear reference sequences.

GROOT performed much more quickly than a recent resistome

profiling tool, and also recorded few false positives and negatives.

Our method is not restricted to resistome profiling and has the po-

tential to improve current metagenomic workflows.

Acknowledgements

Availability and implementation.

The source code for our implementation, as well as the code used to evaluate

its performance and plot the manuscript figures, can be found in the GROOT

repository (https://github.com/will-rowe/groot) (MIT License. DOI: https://

doi.org/10.5281/zenodo.1217889).

Funding

This work was supported in part by the STFC Hartree Centre’s Innovation

Return on Research programme, funded by the Department for Business,

Energy & Industrial Strategy.

Authors’ contributions

W.P.M.R. conceived and implemented the method. All authors wrote, read

and approved the final manuscript.

Conflict of Interest: none declared.

References

Auffret,M.D. et al. (2017) The rumen microbiome as a reservoir of antimicro-

bial resistance and pathogenicity genes is directly affected by diet in beef cat-

tle. Microbiome, 5, 159.

Baquero,F. (2012) Metagenomic epidemiology: a public health need for the

control of antimicrobial resistance. Clin. Microbiol. Infect., 18, 67–73.

Bawa,M. et al. (2005) LSH forest: self-tuning indexes for similarity search.

Proceedings of the 14th International Conference on World Wide Web –

WWW ’05, p.651.

Bengtsson,B., and Greko,C. (2014) Antibiotic resistance–consequences for

animal health, welfare, and food production. Ups. J. Med. Sci., 119,

96–102.

Berlin,K. et al. (2015) Assembling large genomes with single-molecule

sequencing and locality-sensitive hashing. Nat. Biotechnol., 33, 623–630.

Bradley,P. et al. (2015) Rapid antibiotic-resistance predictions from genome

sequence data for Staphylococcus aureus and Mycobacterium tuberculosis.

Nat. Commun., 6, 10063.

Broder,A.Z. (2000) Identifying and filtering near-duplicate documents. In

Annual Symposium on Combinatorial Pattern Matching, pp. 1–10.

Broder,A.Z. (1997) On the resemblance and containment of documents. In

Proceedings. Compression and Complexity of SEQUENCES (Cat.

No.97TB100171). IEEE Comput. Soc., pp. 21–29.

Brown,C.T., and Irber,L. (2016) sourmash: a library for MinHash sketching

of DNA. J. Open Source Softw., 1, 27.

Bush,K., and Jacoby,G.A. (2010) Updated functional classification of beta-lac-

tamases. Antimicrob. Agents Chemother., 54, 969–976.

Bushnell,B. (2014) BBMap: a fast, accurate, splice-aware aligner. In: 9th

Annual Genomics of Energy & Environment Meeting, Walnut Creek, CA,

March 17-20, 2014.

Clausen,P.T.L.C. et al. (2016) Benchmarking of methods for identification of

antimicrobial resistance genes in bacterial whole genome data. J.

Antimicrob. Chemother., 71, 2484–2488.

Dale,R. et al. (2017) Bioconda: a sustainable and comprehensive software dis-

tribution for the life sciences. bioRxiv, 207092.

Garrison,E. et al. (2017) Sequence variation aware references and read map-

ping with vg: the variation graph toolkit. bioRxiv, 1–27.

Gionis,A. et al. (1999) Similarity search in high dimensions via hashing.

VLDB ’99 Proceedings of the 25th International Conference Very Large

Data Bases, 99, 518–529.

Google. FarmHash. https://github.com/google/farmhash.

Gryski,D. (2014) go-spooky. https://github.com/dgryski/go-spooky.

Guérillot,R. et al. (2018) Comprehensive antibiotic-linked mutation assess-

ment by Resistance Mutation Sequencing (RM-seq). bioRxiv, 257915.

Gupta,S.K. et al. (2014) ARG-ANNOT, a new bioinformatic tool to discover

antibiotic resistance genes in bacterial genomes. Antimicrob. Agents

Chemother., 58, 212–220.

Van Der Helm,E. et al. (2017) Rapid resistome mapping using nanopore

sequencing. Nucleic Acids Res., 45, gkw1328.

Hunt,M. et al. (2017) ARIBA: rapid antimicrobial resistance genotyping dir-

ectly from sequencing reads. Microb. Genom., 3, e000131.

Inouye,M. et al. (2014) SRST2: rapid genomic surveillance for public health

and hospital microbiology labs. Genome Med., 6, 90.

Jalali,S. et al. (2015) Screening currency notes for microbial pathogens and

antibiotic resistance genes using a shotgun metagenomic approach. PLoS

One, 10, e0128711.

Jenkins,B. SpookyHash: a 128-bit noncryptographic hash. http://burtleburtle.

net/bob/hash/spooky.html.

Jia,B. et al. (2017) CARD 2017: expansion and model-centric curation of the

comprehensive antibiotic resistance database. Nucleic Acids Res., 45,

D566–D573.

Lakin,S.M. et al. (2017) MEGARes: an antimicrobial resistance database for

high throughput sequencing. Nucleic Acids Res., 45, D574–D580.

Li,H. (2013) Aligning sequence reads, clone sequences and assembly contigs

with BWA-MEM.

Li,J. et al. (2017) VRprofile: gene-cluster-detection-based profiling of virulence

and antibiotic resistance traits encoded within genome sequences of patho-

genic bacteria. Brief Bioinform., bbw141.

Indexed variation graphs for efficient and accurate resistome profiling 3607

https://github.com/will-rowe/groot
https://doi.org/10.5281/zenodo.1217889
https://doi.org/10.5281/zenodo.1217889
https://github.com/google/farmhash
https://github.com/dgryski/go-spooky
http://burtleburtle.net/bob/hash/spooky.html
http://burtleburtle.net/bob/hash/spooky.html


Liu,B., and Pop,M. (2009) ARDB–Antibiotic Resistance Genes Database.

Nucleic Acids Res., 37, D443–D447.

Ma,L. et al. (2017) Catalogue of antibiotic resistome and host-tracking in

drinking water deciphered by a large scale survey. Microbiome, 5, 154.

Miller,R.R. et al. (2013) Metagenomics for pathogen detection in public

health. Genome Med., 5, 81.

Morrison,D.R. (1968) PATRICIA—practical algorithm to retrieve informa-

tion coded in alphanumeric. J. ACM, 15, 514–534.

Munk,P. et al. (2017) A sampling and metagenomic sequencing-based meth-

odology for monitoring antimicrobial resistance in swine herds. J.

Antimicrob. Chemother., 72, 385–392.

O’Neill,J. (2016) Tackling Drug-Resistant Infections Globally: Final Report

and Recommendations. The Review on Antimicrobial Resistance. London:

HM Government and the Wellcome Trust; 2016.

Olekhnovich,E.I. et al. (2018) MetaCherchant: analyzing genomic context of

antibiotic resistance genes in gut microbiota. Bioinformatics, 34, 434–444.

Ondov,B.D. et al. (2016) Mash: fast genome and metagenome distance estima-

tion using MinHash. Genome Biol, 17, 132.

Paten,B. et al. (2017) Genome graphs and the evolution of genome inference.

Genome Res., 27, 665–676.

Petersen,T.N. et al. (2017) MGmapper: reference based mapping and taxonomy

annotation of metagenomics sequence reads. PLoS One, 12, e0176469.

Popic,V., and Batzoglou,S. (2017) A hybrid cloud read aligner based on

MinHash and kmer voting that preserves privacy. Nat. Commun., 8, 15311.

Public Health Agency of Canada. (2016) Canadian antimicrobial resistance

surveillance system – Report 2016. Guelph, Canada.

Quedenfeld,J., and Rahmann,S. (2017) Variant tolerant read mapping using

min-hashing. 1–19.

Rognes,T. et al. (2016) VSEARCH: a versatile open source tool for metage-

nomics. PeerJ, 4, e2584.

Rose,G. et al. (2017) Antibiotic resistance potential of the healthy preterm in-

fant gut microbiome. PeerJ, 5, e2928.

Rowe,W. et al. (2016) Comparative metagenomics reveals a diverse range of

antimicrobial resistance genes in effluents entering a river catchment. Water

Sci. Technol., 73, 1541–1549.

Rowe,W. et al. (2015) Search engine for antimicrobial resistance: a cloud com-

patible pipeline and web interface for rapidly detecting antimicrobial resist-

ance genes directly from sequence data. PLoS One, 10, e0133492.

Rowe,W.P.M. et al. (2017) Overexpression of antibiotic resistance genes in

hospital effluents over time. J. Antimicrob. Chemother., 72, 1617–1623.

Schneeberger,K. et al. (2009) Simultaneous alignment of short reads against

multiple genomes. Genome Biol., 10, R98.

Sczyrba,A. et al. (2017) Critical assessment of metagenome interpretation—a

benchmark of metagenomics software. Nat. Methods, 14, 1063–1071.

Sirén,J. (2016) Indexing variation graphs. arXiv.1604.06605.

Tao,W. et al. (2016) High levels of antibiotic resistance genes and their corre-

lations with bacterial community and mobile genetic elements in pharma-

ceutical wastewater treatment bioreactors. PLoS One, 11, e0156854.

van der Walt,A.J. et al. (2017) Assembling metagenomes, one community at a

time. BMC Genom., 18, 521.

Wick,R.R. et al. (2015) Bandage: interactive visualization of de novo genome

assemblies. Bioinformatics, 31, 3350–3352.

Winglee,K. et al. (2017) Recent urbanization in China is correlated with a

Westernized microbiome encoding increased virulence and antibiotic resist-

ance genes. Microbiome, 5, 121.

World Health Organization. (2015) Global Antimicrobial Resistance

Surveillance System Manual for Early Implementation Global

Antimicrobial Resistance Surveillance System.

Xie,Y. et al. (2018) TADB 2.0: an updated database of bacterial type II

toxin-antitoxin loci. Nucleic Acids Res., 46, D749–D753.

Yang,Y. et al. (2016) ARGs-OAP: online analysis pipeline for antibiotic resist-

ance genes detection from metagenomic data using an integrated structured

ARG-database. Bioinformatics, 32, 2346–2351.

Yang,Y. et al. (2013) Exploring variation of antibiotic resistance genes in acti-

vated sludge over a four-year period through a metagenomic approach.

Environ. Sci. Technol., 47, 10197–10205.

Zankari,E. et al. (2012) Identification of acquired antimicrobial resistance

genes. J. Antimicrob. Chemother., 67, 2640–2644.

3608 W.P.M.Rowe and M.D.Winn


