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Abstract: The co-existence of fifth-generation (5G) and Internet-of-Things (IoT) has become inevitable
in many applications since 5G networks have created steadier connections and operate more reliably,
which is extremely important for IoT communication. During transmission, IoT devices (IoTDs)
communicate with IoT Gateway (IoTG), whereas in 5G networks, cellular users equipment (CUE)
may communicate with any destination (D) whether it is a base station (BS) or other CUE, which
is known as device-to-device (D2D) communication. One of the challenges that face 5G and IoT
is interference. Interference may exist at BSs, CUE receivers, and IoTGs due to the sharing of the
same spectrum. This paper proposes an interference avoidance distributed deep learning model for
IoT and device to any destination communication by learning from data generated by the Lagrange
optimization technique to predict the optimum IoTD-D, CUE-IoTG, BS-IoTD and IoTG-CUE distances
for uplink and downlink data communication, thus achieving higher overall system throughput
and energy efficiency. The proposed model was compared to state-of-the-art regression benchmarks,
which provided a huge improvement in terms of mean absolute error and root mean squared error.
Both analytical and deep learning models reached the optimal throughput and energy efficiency
while suppressing interference to any destination and IoTG.

Keywords: IoT; 5G; interference; deep learning; 1D-CNN; throughput; energy efficiency; optimization

1. Introduction

The fifth generation (5G) is considered a basic and emerging technique for the Internet-
of-Things (IoT). IoT is a communication environment where a massive number of devices
communicate with each other. IoT devices can be included in smart homes, healthcare, and
industrial and autonomous vehicles, which improve people’s daily life [1]. 5G networks
address the major challenges that exist in cellular networks. They enable all devices to
communicate with each other without the need for a base station (BS) which is known as
device-to-device (D2D) communication. Furthermore, they enable machine-to-machine
(M2M) and device-to-everything (D2E). In addition, 5G authorizes secure, low-latency,
reliable and efficient connectivity, also supporting mobility [2]. One of the most important
systems that deploy D2D communication nowadays is 5G-enabled IoT which is considered
a promising future technique. 5G-enabled IoT communication to supports a large number
of applications such as self-driving cars, drones, virtual reality, security surveillance, and
many more applications [3]. All the devices used in these applications communicate
with each other or with an access point or infrastructure using wireless or wired links [4].
Compared to wired, wireless links are more suitable and efficient to be used for IoT devices.
Additionally, wireless links provide a high rate and reliability with low latency.
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5G-enabled IoT is expected to face many challenges such as security, privacy, data
control, latency, interference, resource allocation and power consumption. In the literature,
diverse solutions have been proposed to overcome those potential problems, yet some
challenges still need further investigation [5]. IoT generates an enormous amount of
data that have to be processed using machine learning and data analytics [6]. Machine
learning, which is a branch of Artificial Intelligence (AI), focusses on how to extract hidden
information in the provided data and to help to make decisions. One of the famous machine
learning techniques, which has gained a lot of interest lately, is deep learning. For the
past decade, deep learning has gained a lot of attention as its tremendous powers have
built models that can learn tough problems and achieve high performance. Various recent
5G-enabled IoT applications have adopted deep learning since it can provide higher level
of analytical processing, and thus dramatically enhancing results [7,8].

IoT devices (IoTDs) and cellular users equipment (CUEs) transmit and receive data
while sharing the same spectrum in 5G-enabled IoT. Usually IoTD communicates with an
IoT gateway (IoTG): However CUE communicates with base station (BS) or other CUE
which is known as D2D communication. All devices send data using the same spectrum,
causing interference at BS or any CUE receiver and IoTG. This interference affects the
system reliability and efficiency. In this work, an interference avoidance scheme using
a deep learning model is proposed. The main goal of the proposed model is to increase
the overall system throughput and energy efficiency. The contributions of this article are
summarized as follows:

• The proposed approach developed an efficient method to enhance the overall system
performance in terms of system throughput and energy efficiency.

• An optimization problem using an analytical and deep learning model was formulated
to ascertain the reliability and efficiency of communication among 5G and IoTs.

• The proposed approach aims to decrease or eliminate the interference in 5G networks
and IoT systems. This was achieved through determining the optimum distance
between CUE-IoTG and IoTD-D for the uplink (UL) data communication and between
BS-IoTD and IoTG-CUE for the downlink (DL) data communication. This can be
achieved based on different parameters, which affect the system performance such as
transmission power, distance between CUE-D and IoTD-IoTG, path loss and signal-to-
interference-plus-noise ratio (SINRth).

• The proposed approach allowed the transmission of CUE and IoTD, using a deep
learning model, to predict the suitable acceptable distance between CUE-IoTG and
IoTD-D (uplink) and between BS-IoTD and IoTG-CUE (downlink) thus avoiding
severe interference.

• The proposed deep learning model was compared to state-of-the-art benchmark
methods and it provided a marked improvement in the results.

• The proposed model can be used in the design phase for interference prediction and
circumvention.

• The proposed approach was investigated in terms of overall system throughput
and energy efficiency under different conditions, such as the path loss exponent,
transmission power, different SINRth values, and different transmission ranges. The
whole network can be optimized by these findings in a vibrant environment.

The upcoming sections are organized as follows: First the related work of IoT and
5G networks will be presented in Section 2. The proposed analytical and deep learning
models will be thoroughly discussed in Section 3. Section 4 will show the details of all
the experimental work and analytics of the results. Finally, the presented work will be
summarized and concluded in Section 5.

2. Related Work

Decreasing the interference in IoT communication and 5G is an important issue
that should be tackled, as it directly affects the system performance. In the literature,
considerable research effort and solutions have been dedicated for the minimization of
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interference among devices in IoT-based networks such as optimization [9–14], deep
learning [15–22], modulation [23,24] and the Nash nocoopertaive power game [25].

In [9], a stochastic optimization problem for a network of IoT devices and cellular
users sharing the same frequency spectrum with drones was formulated to obtain the
optimized transmission power and maximize energy efficiency given lower interference
constraints. In addition, the proposed idea in [10] was based on optimizing the random-
access procedure, which allowed users to send messages to the base station using one of
the target receiver powers according to which the base station could differentiate between
different users using successive interference cancellation. Furthermore, the authors of [11]
proposed an approach for the resource allocation and placement of multiple unmanned
aerial vehicle base stations in an uplink IoT network. Their approach was divided into three
main steps: k-means clustering algorithm to group devices served by the same base station,
subchannel assignment allocation for devices to diminish interference, and optimization of
the transmission power of the IoT devices and the altitudes of the unmanned aerial vehicles.
Moreover, an analysis of a hybrid transceiver design problem was presented in [12] for
the maximization of the energy efficiency of multiple-input multiple-output interference
channels for IoT power constraint devices. The authors of [13] proposed a utilization of
Piece-Wise and Forward Non-Orthogonal Multiple Access (PF-NOMA) in a cooperative
communication based on an optimization problem. Their proposed model acquired the
optimal power and time splitting factors to achieve the maximum rates. Additionally, [14]
proposed a new framework called the interference control model. This proposed model
aimed to control the interference among IoT and 5G networks based on an optimization
technique to maximize the system efficiency and reliability.

The deployment of deep learning for the minimization of interference was presented
in [15] where spectral efficiency was enhanced using a scheme based on deep reinforcement
learning, which reused the spectrum resources in the communication of the D2D and
cellular user equipment (CUE). Similarly, the authors of [16] aimed to enhance spectral
efficiency. They proposed the deployment of multiple concurrent frequency bands instead
of one channel where deep leaning was used to dynamically select the most suitable
channel based on quality requirements such as the signal-to-interference-plus-noise-ration.
In addition, in [17], an interference control scheme based on reinforcement learning was
proposed to allow the base station to optimize its downlink transmission power while
being oblivious of the distribution of the inter-cell interference. The application of Deep
Reinforcement Learning (DRL) in which each subcarrier power allocation could be adjusted
among D2D pairs was proposed in [18] to reduce latency and increase reliability in D2D
communication while rigorous interference constraints were satisfied. Furthermore, the
authors in [19] considered deep learning to highlight the interference problem among D2D
communications in cellular-enabled IoT networks. The proposed model highlighted the
delayed latency and burden on enhanced node base station nodes. Moreover, [20] proposed
a scheme to protect energy efficient video transmission in an IoT system against interference
using reinforcement learning. In the proposed scheme, a base station managed the IoT
transmission action such as transmission power, rate of encoding and scheme of modulation
and coding with no knowledge of the transmission channel model. An investigation of
different scenarios for channel access management of indoor IoT communication was
presented in [21], in which a distributed coordination scheme, based on reinforcement
learning, allowed devices to learn to control their activity patterns based on the deep
learning. The effect of imperfect inference cancelation and constraint transmission power
requirements were studied in [22] where NOMA and packet diversity were jointly adopted.

Other approaches have been adopted, such as in [23], where a modulation scheme
was used for 4G and 5G to obtain the required frequency offset to ensure their coexistence
with minimal interference among adjacent channels. In addition, in [24], a multiplexing
technique was presented for D2D communication to enhance resource utilization and
minimize interference of the D2D users with the cellular users. The proposed technique
divided each cell into two regions and spectrum resources were allocated to each region
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to reduce interference among adjacent cells. Finally, in [25], the authors proposed a novel
scheme based on the Nash noncooperative power game for a multiuser multiple-input
multiple-output power downlink for handling the interference among IoT devices.

A lot of research has been proposed for the performance enhancement of 5G-enabled
IoT systems, yet there still is room for further investigations focusing on how IoTDs, CUEs,
BS and IoTG interact to decrease the interference occurrence at D and IoTG for uplink and
CUE and IoTG for downlink. The main goal of this work is to determine the required
conditions to decrease or eliminate the interference in 5G networks and IoT systems. This
can be achieved by establishing the minimum appropriate predicted distance between
CUE-IoTG and IoTD-D for uplink data communication and between BS-IoTD and IoTG-
CUE for downlink data communication in order to decrease interference at any D and
IoTG. The proposed model deploys deep learning and analytical optimization in which a
distributed deep learning model for IoT and 5G networks is used to learn how all of IoT
and CUE devices, BS and IoTG can avoid interference by adapting the distance between
CUE-IoTG and IoTD-D for uplink and the distance between IoTG-CUE and BS-IoTD for
downlink. This enhances the system reliability and efficiency. The assessment of the overall
system performance is determined in terms of system throughput and energy efficiency.

3. Proposed Model

In this section, the proposed model for controlling the interference affecting each des-
tination is described by a numerical optimization technique. Next, the dataset generation
based on the proposed analytical model is demonstrated followed by a proposed deep
neural network architecture that would be applied to sending devices, base stations and
IoT gateways in real life.

3.1. System Model and Problem Formulation

The proposed network assumes that there are N number of CUEs, K number of IoTDs,
a BS for cellular communication and an IoTG for IoT communication sharing the same
spectrum as shown in Figure 1. Figure 1a shows the uplink (UL) data communication for
cellular network and IoT communication. There are two means of communication for the
cellular network: (i) the CUE communicates with other CUEs, which is known as D2D
communication, or (ii) the CUE communicates with the base station, which is the standard
known cellular communication. Additionally, there are a number of IoTDs communicating
directly with IoTG. Assume that at least one CUE and IoTD sharing the same spectrum
have information that needs to be transmitted to the destination makes the BS and any
destination node suffer from interference caused by all the transmitted sources. During
the downlink (DL) as shown in Figure 1b, BS and IoTG transmit data to CUEs and IoTDs,
respectively; in this case, the interference occurs at any CUE and IoTD. The aim of the
proposed model is to control the interference among all destinations to enhance the overall
network performance by optimizing the system throughput (S) and energy efficiency (EE)
for both the uplink and downlink as shown in the following equations:

Max ∑i=N, j=K
i=1, j=1 Sij

ULSij
UL := f1(dCG, dID, PC, PI) (1)

Max ∑i=N, j=K
i=1, j=1 EEij

ULEEij
UL := f2(dCG, dID, PC, PI) (2)

Max ∑i=N, j=K
i=1, j=1 Sij

DLSij
DL := f1(dBI , dGC, PB, PG) (3)

Max ∑i=N, j=K
i=1, j=1 EEij

DLEEij
DL := f2(dBI , dGC, PB, PG) (4)

where Sij
UL, EEij

UL, Sij
DL and EEij

DL are the overall system throughput and the total
system energy efficiency for the uplink and downlink, respectively, of the i-th path between
a CUE-D and the j-th path between IoTD and IoTG. Symbols dCG, dID, dBI , and dGC are the
uplink interference distance between CUE-IoTG and IoTD-D and the downlink interference
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distance between BS-IoTD and IoTG-CUE, respectively. Symbols PC and PI are the uplink
CUE and IoTD transmission power, respectively. Symbols PB and PG are the downlink BS
and IoTG transmission power, respectively.

Figure 1. Proposed network schematic. (a) Uplink data communication (b) Downlink data communication.

For the proposed model, non-orthogonal multiple access (NOMA) was considered,
NOMA can serve a large amount of devices and allow them to access the channel at the
frequency/time and with the same transmission power [5,26]. Moreover, a Rayleigh fading
channel with additive white Gaussian noise (AWGN) was considered for the proposed
model [27]. Furthermore, for different links, it was assumed that the channel fading
coefficient was statistically mutually independent.

3.1.1. Uplink Data Communication

During the uplink data communication CUE transmits data to any destination whether
it is BS or other CUEs. Furthermore, IoTD transmits its data to the IoTG. Thus, the received
signal between the CUE-D (rCD) and IoTD-IoTG (rIG) links can be expressed as follows [28]:

rCD =
√

PC HCD X1 +
K

∑
j=1

√
PI j HI jD Y1 + n1 (5)

rIG =
√

PI HIG X2 +
N

∑
i=1

√
PCi HCiG Y2 + n2 (6)

where HCD and X1 are the channel gain coefficient and the transmitted symbol of the
CUE-D link, respectively. Symbol PI j is the transmission power of the j-th IoTD. HI jD is the
channel gain coefficient between IoTD-D. Symbol Y1 represents the noise symbol received
by D. Symbols HIG and X2 are the channel gain coefficient and the transmitted symbol of
the IoTD-IoTG link, respectively. Symbol PCi is the transmission power of the i-th CUE.
Symbol HCiG is the channel gain coefficient between CUE-IoTG. Symbol Y2 represents the
noise symbol received by IoTG. Symbols n1 and n2 are the independent and identically
distributed (i.i.d.) additive white Gaussian noise (AWGN) of the CUE-D and IoTD-IoTG,
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respectively. The signal-to-noise-plus- interference for CUE-D (SINRthCD) and IoTD-IoTG
(SINRthIG) can be represented as follows:

SINRthCD =
PC HCD

∑K
j=1 PI j HI jD + NoB

(7)

SINRthIG =
PI HIG

∑N
i=1 PCi HCiG + NoB

(8)

where No is the thermal noise power spectral density per Hertz. Symbol B is the channel
system bandwidth. Symbols HCD, HI jD, HIG and HCiG can be represented as:

HCD = |hCD|2γCD (9)

HI jD =
∣∣hI jD

∣∣2γI jD (10)

HIG = |hIG|2γIG (11)

HCiG = |hCiG|2γCiG (12)

where |hCD|2, |hIG|2, |hCiG|2and
∣∣hI jD

∣∣2 follow a complex normal distribution CN (0, 1).
Symbols γCD , γIG, γCiG , and γI jD represent the path loss model of CUE-D, IoTD-IoTG, i-th
CUE-IoTG and the j-th IoTD-D, respectively. The path loss between CUE-D, IoTD-IoTG,
i-th CUE-IoTG and the j-th IoTD-D can be expressed as [29,30]:

γCD = γo dCD
−α (13)

γIG = γo dIG
−α (14)

γCiG = γo dCiG
−α (15)

γI jD = γo dI jD
−α (16)

where γo is the path loss constant of any transmission link symbol. Symbols dCD and dIG
are the transmission distance between CUE-D and IoTD-IoTG, respectively. Symbol α is
the path loss exponent. It is worth mentioning that the path loss will going to be changed
based on the CUE communication with other CUEs or BSs. This is due to the difference
between CUE-CUE or CUE-BS. Accordingly, Equations (7) and (8) can be written as:

SINRthCD =
PC γo dCD

−α

∑K
j=1 PI j γo dI jD

−α + NoB
(17)

SINRthIG =
PI γo dIG

−α

∑N
i=1 PCi γo dCiG

−α + NoB
(18)

Therefore, the overall system throughput (S) and the energy efficiency can be ex-
pressed as follows for the uplink data communication:

SUP =
N

∑
i=1

log2(1 + SINRthCiD) +
K

∑
j=1

log2

(
1 + SINRthI jG

)
(19)

EEUP =
∑N

i=1 log2(1 + SINRthCiD)

∑N
i=1(PCi + Po)

+
∑K

j=1 log2

(
1 + SINRthI jG

)
∑K

j=1
(

PI j + Po
) (20)

where Po is the internal circuitry power.
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Consequently, the objective function and constraints can be derived as:

Max ∑
i=N, j=K
i=1, j=1 Sij

UL

Subject to dCG ≥ dCGmin
dID ≥ dIDmin
PC ≤ PCmax
PI ≤ PImax

(21)

and Max ∑
i=N, j=K
i=1, j=1 EEij

UL

Subject to dCG ≥ dCGmin
dID ≥ dIDmin
PC ≤ PCmax
PI ≤ PImax

(22)

where dCGmin and dIDmin are the minimum required distance between CUE-IoTG and
IoTG-D, respectively, for avoiding interference and enhancing the system performance.
Symbols PCmax and PImax are the transmission power of the CUE and IoTD, which helps
improving the system performance.

3.1.2. Downlink Data Communication

During the downlink data communication BS and IoTG transmits their data to the
i-th receiving CUE and j-th IoTD, respectively. Thus, the received signal between BS and
any receiving CUE (rBC) and IoTG and any receiving IoTD (rGI) links can be expressed as
follows [28]:

rBC =
√

PB HBC X3 +
√

PG HGC Y3 + n3 (23)

rGI =
√

PG HGI X4 +
√

PB HBI Y4 + n4 (24)

where HBC and X3 are the channel gain coefficient and the transmitted symbol of the BS-
CUE link, respectively. HGC is the channel gain coefficient between IoT and any receiving
CUE. Symbol Y3 represents the noise symbol received by any receiving CUE. Symbols
HGI and X4 are the channel gain coefficient and the transmitted symbol of the IoTG-IoTD
link, respectively. Symbol HBI is the channel gain coefficient between BS-IoTD. Symbol
Y4 represents the noise symbol received by IoTD. Symbols n3 and n4 are the independent
and identically distributed (i.i.d.) additive white Gaussian noise (AWGN) of the BS-CUE
and IoTG-IoTD, respectively. The signal-to-noise-plus- interference for BS-CUE (SINRthBC)
and IoTG-IoTD (SINRthGI) can be represented as follows:

SINRthBC =
PB HBC

PG HGC + NoB
(25)

SINRthGI =
PG HGI

PB HBI + NoB
(26)

where HBC, HGC, HGI and HBI can be represented as:

HBC = |hBC|2γBC (27)

HGC = |hGC|2γGC (28)

HGI = |hGI |2γGI (29)

HBI = |hBI |2γBI (30)

where |hBC|2, |hGC|2, |hGI |2and |hBI |2 follow a complex normal distribution CN (0, 1).
Symbols γBC , γGC, γGI , and γBI represent the path loss model of BS-CUE, IoTG-CUE,
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IoTG-IoTD and BS-IoTD, respectively. Thus, the path loss between BS-CUE, IoTG-CUE,
IoTG-IoTD and BS-IoTD can be expressed as [29,30]:

γBC = γo dBC
−α (31)

γGC = γo dGC
−α (32)

γGI = γo dGI
−α (33)

γBI = γo dBI
−α (34)

where dBC and dGI are the transmission distance between BS-CUE and IoTG-IoTD, respec-
tively. Therefore, Equations (25) and (26) can be written as:

SINRthBC =
PB γo dBC

−α

PG γo dGC
−α + NoB

(35)

SINRthGI =
PG γo dGI

−α

PB γo dBI−α + NoB
(36)

Therefore, the overall system throughput (S) and the energy efficiency can be ex-
pressed as follows for the downlink data communication:

SDL =
N

∑
i=1

log2(1 + SINRthDCi) +
K

∑
j=1

log2

(
1 + SINRthGIj

)
(37)

EEDL =
∑N

i=1 log2(1 + SINRthDCi)

(PB + Po)
+

∑K
j=1 log2

(
1 + SINRthGIj

)
(PG + Po)

(38)

Consequently, the objective function and constraints can be derived as:

Max ∑
i=N, j=K
i=1, j=1 Sij

DL

Subject to dBI ≥ dBImin
dGC ≥ dGCmin

PB ≤ PBmax
PG ≤ PGmax

(39)

and Max ∑
i=N, j=K
i=1, j=1 EEij

DL

Subject to dBI ≥ dBImin
dGC ≥ dGCmin

PB ≤ PBmax
PG ≤ PGmax

(40)

where dBImin and dGCmin are the minimum required distance between BS-IoTD and IoTG-
CUE, respectively, for avoiding interference and enhancing the system performance. Sym-
bols PBmax and PGmax are the maximum transmission power of BS and IoTG, which helps
improve the system performance.

For the proposed model, for fairness, it is assumed that the required signal-interference-
plus-noise for uplink and downlink for a 5G network (SINRthCiB, SINRthBCi) and IoT system
(SINRthIjG, SINRthGIj) has the same value, which is SINRth.

3.2. Dataset Generation

The datasets used in this work were generated using MATLAB simulations based on
the equations previously explained in Section 3.1.1 for the uplink and Section 3.1.2 for the
downlink communication. The parameters in the equations were substituted for by the
values declared in Table 1. Two datasets were generated, one for the uplink and the other
for the downlink communication. The datasets will be used to train a model that is to be
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placed on all sending devices in the case of uplink and another to be placed on BS and
IoTG in the case of downlink communication.

Table 1. Simulation Parameters.

Parameters Value

No 174 dBm [31]

B 10 MHz

SINRth 20 dB [32]

Pc 23 dBm [32]

PI 23 dBm [32]

PB 46 dBm [9,25]

PG 43 dBm [33,34]

α 4

γo 10−1 [32]

fc 2 GHz

For the uplink communication, the outputs were generated for different combina-
tions of SINRth and distances of CUE-D and IoTD-IoTG using the Lagrange optimization
technique to generate the optimal distances of IoTD-D and CUE-IoTG for each input. The
experiments were run for different values of SINRth ranging from 0 to 20. For each value
of SINRth, the value of the CUE-D distance was initialized to 1 and incremented by half a
meter for each record until the throughput and energy efficiency of the calculated distances
of IoTD-D and CUE-IoTG were unacceptable.

Considering the downlink communication, the output distances IoTG-CUE and BS-
IoTD were generated for different values of SINRth, along with distances of BS-CUE and
IoTG-IoTD. The output distances were evaluated for each record to make sure that they
meet the required throughput and energy efficiency.

The statistical description of all features in the two generated datasets showing the
minimum, maximum, mean, standard deviation and total number of records are shown
in Tables 2 and 3. The spearman correlation of all input and output features for both the
uplink and downlink communication was calculated and is presented in Figure 2. In the
results section, the effect of the correlation will be further explained.

Table 2. Statistical description of features in the generated uplink dataset.

SINRth CUE-D IoTD-IoTG IoTD-D CUE-IoTG

Number of records 21,055 21,055 21,055 21,055 21,055

Minimum 0.00 1.00 0.40 1.00 0.40

Maximum 20.00 840.00 336.00 4644.00 338.65

Mean 7.94 281.23 112.49 501.97 168.77

Standard Deviation 5.84 190.82 76.33 395.39 97.39

Table 3. Statistical description of features in the generated Downlink dataset.

SINRth BS-CUE IoTG-IoTD IoTG-CUE BS-IoTD

Number of records 21,055 21,055 21,055 21,055 21,055

Minimum 0 1 0.4 0.84 0.48

Maximum 20 840 336 709 400

Mean 7.94 281.23 112.49 354.39 200.15

Standard Deviation 5.84 190.82 76.33 204.09 115.22
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Figure 2. Spearman correlation of all features generated for (a) the uplink dataset and (b) the downlink dataset.

3.3. Proposed Deep Learning Model

One of the main deep learning architectures most commonly used is the convo-
lutional neural networks (CNN), which has become almost a standard in a variety of
two-dimensional (2D) data applications, especially image and video processing. Recently,
a modification of the traditional 2D-CNN, namely the 1D-CNN, was proposed in [35] and
later showed outstanding performance in numerous studies given a limited amount of
signal data. Examples of such applications are biomedical classification, speech recognition,
fault detection in a motor and several others [36].

There are several advantages that could be achieved when using 1D-CNN. Compared
to ordinary deep learning methods, it has proved to generate good results even if the
training records are scarce. 1D-CNN has a low computational complexity, making it much
easier and faster to train. It is very well suited for being used in real-time applications on
mobile devices as they consume minimal processing and battery power [36]. Consequently,
1D-CNN was deployed in this research work to be the feature extraction methodology
for the proposed model. In this section, the proposed deep learning model is introduced.
The presented model is to be implemented on sending devices, BS and IoTG separately to
calculate the optimal distance required to reduce the interference.

3.3.1. Network Structure

In this work, a distributed deep learning network is proposed having two sub-models
each comprising the input, 1D CNN, and fully connected and output layers. The proposed
trained network is intended to be used by each device independently thus predicting the
optimal distance for minimal interference and therefore the best throughput and energy
efficiency. Two models are to be trained, one for uplink communication and the other for
downlink communication, each using one of the generated datasets.

The choice of the number of hidden layers was based on multiple experiments leading
to the network depicted in Figure 3. The figure shows the input at a single time to
the proposed model knowing that any device using this model will need to input new
entries each time it needs to calculate the optimal distance to avoid interference. Each
sub-model is inputs the values of SINRth, input distance 1 (I-Dist1) and input distance 2
(I-Dist2). I-Dist1 represent the CUE-D for uplink communication and BS-CUE for downlink
communication while I-Dist2 denotes IoTD-IoTG for uplink communication and IoTG-
IoTD for communication.
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Figure 3. Proposed deep learning network that is to be used by each device independently to calculate optimal output distances.

Each sub-model is then trained independently to learn to predict one of the output
distances: O-Dist1 and O-Dist2. O-Dist1 represents the IOTD-D for uplink and IoTG-
CUE for downlink while O-Dist2 represents the CUE-IOTG and BS-IoTD for downlink.
The values are input to the 1D-CNN layers for feature extraction and followed by fully
connected layers for calculating the estimated distances as a regression problem. For each
sub-model, the layers are defined as follows:

• An abstract input layer that takes the current values of the input and passes it to the
1D-CNN layers

• The first 1D-CNN is 3 × 1 having 32 filters, with a kernel size of 3
• The second 1D-CNN is 1 × 1 having 16 filters, with a kernel size of 1
• A flattening layer to reshape the 1D CNN can be input to the fully connected layers
• A 32-neuron fully connected layer
• A 16-neuron fully connected layer
• An output layer to produce the regression distance result

3.3.2. Data Scaling

To achieve the best results in learning the deep learning network parameters, data must
be normalized. In this work the data were normalized using the min-Max normalization,
which applies the following equation to each feature

xscaled =
x− xmin

xmax − xmin
(41)

where x represents the data to be normalized, xmin is the minimum value, xmax is the
maximum value in the feature addressed, and xscaled is the output normalized value
ranging from 0 to 1.
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3.3.3. Activation Function

Since the presented network aims to predict the distance between devices, it cannot
have a negative output. This led to the choice of the Parametric Rectified Linear Unit
(PReLU) activation function, which was first proposed in [37] as a generalization of the
traditional Rectified Linear Unit (ReLU), which applies the equation:

F(wi) =

{
wi, i f wi > 0
aiwi i f wi ≤ 0

(42)

where F(wi) represents the output of the activation function, wi represents the ith input
and ai is the ith alpha. PReLU manages to adaptively learn the suitable alpha to fit values
below zero propagating through the network from the training data.

3.3.4. Optimization Function

The optimization method applied in this network is the adaptive moment estimation
(Adam), which was proposed in [38] as an improvement to the stochastic gradient descent
(SGD) since it adaptively handles gradients in sparse data. The loss function chosen with
Adam was the mean absolute error as it gives a real estimate of how far the average distance
prediction is from the actual data, thus helping the network minimize it.

3.3.5. Parameter Optimization

Optimum parameter choice was based on the grid search function using different
values of batch sizes [64,128,256,512] and epochs [50,100,150,200,250] for both sub-models.
The parameters that were most suitable to both sub-models were a batch size of 128 and
100 epochs, but the experiments were performed for 200 epochs to ensure the models
learned sufficiently.

4. Results and Discussion

In this section, the performance evaluation of the deep learning architecture when
compared to selected benchmarks is presented. Furthermore, the performance of the
proposed approach was examined in terms of optimized energy efficiency, and optimized
overall system throughput through MATLAB and Python simulations.

4.1. Deep Learning Model Results Evaluation

In order to evaluate the goodness of fit of the proposed model, 10-fold cross validation
is used to compare the average results produced by the proposed model to those of other
benchmarks based on the following metrics:

• Mean Absolute Error (MAE), which measures the average differences between actual
and predicted values.

MAE =
1
n

n

∑
i=1
|yi − ŷi| (43)

• Root Mean Squared Error, which calculates the square root of the average of the
squared differences between actual and predicted values as

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (44)

given that the number of records in the test subset is represented by n, yi is the actual value,
and ŷi is the predicted value.

Multiple grid search experiments were performed to obtain optimal parameters for
the models used in the benchmark comparisons. Tables 4 and 5 show the generated optimal
parameters for each benchmark using both the uplink and downlink datasets, respectively.
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The benchmarks used in our comparisons were the support vector regressor, random forest
regressor, Adaboost regressor and multilayer perceptron.

Table 4. Optimal parameters generated for the benchmarks used in the uplink model evaluation.

Benchmarks IoTG-CUE BS-IoTD

Support vector regressor kernel = ‘rbf’, C = 220, gamma = 40 Kernel = ‘rbf’, C = 200, gamma = 50

Random forest regressor
max_depth = 100, max_features = 3,

min_samples_leaf = 3, min_samples_split = 8,
n_estimators = 1000

max_depth = 90, max_features = 3,
min_samples_leaf = 3, min_samples_split = 8,

n_estimators = 1000

Adaboost regressor learning_rate = 0.01, loss = ‘Linear’,
n_estimators = 150

learning_rate = 1, loss = ‘linear’,
n_estimators = 150

Multilayer perceptron
activation = ‘tanh’, alpha = 0.05, solver = ‘sgd’,

hidden_layer_sizes = (300,),
learning_rate = ‘adaptive’

activation = ‘tanh’, alpha = 0.05, solver = ‘sgd’,
hidden_layer_sizes = (300,), learning_rate =

‘adaptive’

Table 5. Optimal parameters generated for the benchmarks used in the downlink model evaluation.

Benchmarks IoTG-CUE BS-IoTD

Support vector regressor kernel = ‘rbf’, C = 220, gamma = 40 Kernel = ‘rbf’, C = 200, gamma = 50

Random forest regressor
max_depth = 100, max_features = 3,

min_samples_leaf = 3, min_samples_split = 8,
n_estimators = 1000

max_depth = 90, max_features = 3,
min_samples_leaf = 3,

min_samples_split = 8, n_estimators = 1000

Adaboost regressor learning_rate = 0.1, loss = ‘square’,
n_estimators = 100

learning_rate = 1, loss = ‘linear’,
n_estimators = 100

Multilayer perceptron
activation = ‘tanh’, alpha = 0.05, solver = ‘sgd’,

hidden_layer_sizes = (100,), learning_rate =
‘adaptive’

activation = ‘tanh’, alpha = 0.05, solver = sgd,
hidden_layer_sizes = (100,), learning_rate =

‘adaptive’

Table 6 shows the average of all folds’ results when comparing the trained uplink
model to support the vector regressor, random forest regressor, Adaboost regressor, and
multilayer perceptron using their optimal parameters. The results show that the random
forest regressor tended to produce an overfitted model as the training error was much
lower than the testing error. The proposed model outperformed all the other methods in
testing while maintaining a small difference from the training error thus showing no signs
of overfitting. It can be noted that the results produced for the IoT-D distance tended to
have a higher error that that of the CUE-IoTG in all the models. This can be related to
the correlation presented in Section 3.2 where the correlation of the of the IoT-D with the
inputs was lower than that of the CUE-IoTG making it harder to predict.

Table 6. Average result of the 10-fold cross validation method comparing the proposed uplink model versus various
benchmarks including the support vector regressor, random forest regressor, Adaboost regressor, and multilayer perceptron.

IoTD-D CUE-IoTG

MAE RMSE MAE RMSE

Benchmarks Train Test Train Test Train Test Train Test

Support vector regressor 12.83 15.14 96.29 94.28 0.07 0.75 0.07 1.14

Random forest regressor 2.52 11.63 35.32 64.84 0.11 0.83 0.18 1.16

Adaboost regressor 128.06 129.21 215.24 216.70 18.13 18.36 21.69 21.90

Multilayer perceptron 21.86 24.64 77.00 80.97 0.16 0.78 0.26 1.16

Proposed model 9.59 9.84 66.09 63.43 0.77 0.77 1.01 1.06
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Table 7 shows the same comparison but using the downlink dataset to calculate the
distances IoTG-CUE and BS-IoTD that minimize interference. It can be deduced from
the results that the proposed model in this comparison resembles the performance of the
support vector regressor, random forest regressor, and the multilayer perceptron when
applying the optimal parameters previously declared in Table 5.

Table 7. Average result of the 10-fold cross validation method comparing the proposed downlink model versus various
benchmarks including the support vector regressor, random forest regressor, Adaboost regressor, and multilayer perceptron.

IoTG-CUE BS-IoTD

MAE RMSE MAE RMSE

Benchmarks Train Test Train Test Train Test Train Test

Support vector regressor 0.17 1.56 0.24 2.37 0.14 0.89 0.20 1.34

Random forest regressor 0.26 1.74 0.39 2.43 0.16 0.98 0.24 1.38

Adaboost regressor 40.39 40.75 49.66 50.16 21.36 21.69 25.52 25.83

Multilayer perceptron 0.59 1.73 0.84 2.50 0.29 0.93 0.42 1.38

Proposed model 1.64 1.47 2.16 2.06 0.94 0.89 1.25 1.24

Another experiment involved splitting the dataset into a two-third training and one-
third testing schema to train a single network to further analyze the results. The training
data were used to build the model while keeping 20% for validation. Figure 4a,b shows the
mean absolute error produced while training and validating for both models. Both figures
show that after epoch 100, the results were hardly changing, thus not requiring any further
training. It can be noted from the figures that the models were not overfitted since the
training and validating errors were around the same values for each output independently.

Figure 4. Mean absolute error generated by the training and validation data when calculating the output distances O-Dist1
and O-Dist2 for: (a) uplink communication dataset and (b) downlink communication dataset.

4.2. Analytical Evaluation

In this section, further analytical evaluation of the results obtained when splitting the
dataset into two-thirds training and one-third testing was performed. The records used
for training the model were not used in the testing phase to assure that the analysis of
results was not over-rated by data that the model had already learned from. The conditions
for predicting the optimal required distance for controlling interference were revealed by
analyzing the results obtained. Same experimental assumptions as in [14] were considered.
The network parameters considered for simulation are listed in Table 1.
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Figure 5 depicts the predicted required distance between any IoTD-D link for the
uplink data communication and between BS-IoTD for downlink data communication with
different values of SINRth for the proposed model using the analytical and deep learning
model. For the uplink data communication, it was assumed that all the transmitted devices,
whether they were CUEs or IoTDs, always had a maximum transmission power equal to
23 dBm. Thus, it can be noticed from Figure 5a, for the analytical and deep learning model,
the optimum required distance between IoTD-D (dID) to decrease the interference at the
destination increased when the distance between CUE-D (dCD) increased. In addition, it
can be mentioned that in order for dCD to reach the maximum value, SINRth decreased
gradually since increasing the transmission distance led to increasing the losses in the
communication link. Consequently, decreasing transmission distance increased SINRth
—for example, to have a communication link with SINRth equal to 0 dB the transmission
distance dCD remained effective until it exceeded 836 m. Additionally, when dCD was
600.5 m, dID must be greater or equal to 647.33 m analytically and 646.8 m using the deep
learning model. On the other hand, when the required SINRth for any communication link
was 20 dB, the maximum transmission distance for reaching effective communication was
261.5 m. It can also be noticed that, the required distance between IoTD-D was equal to
317.2 and 316.72 assuming that dCD was 99.64 m, using analytical and deep learning model,
respectively.

Figure 5. (a) Distance between CUE-D versus predicted distance between IoTD-D (uplink) (b) Distance between BS-CUE
versus predicted distance between IoTG-CUE (downlink).

For the downlink data communication, the transmission power of BS and IoTG was
46 dBm and 43 dBm, respectively, which is considered high when comparing it with
the CUE and IoTD transmission power. Therefore, it can be observed from Figure 5b
that increasing the required SINRth led to an increase in the required distance between
IoTG-CUE to avoid interference. For example, when SINRth was 0 dB and the downlink
transmission distance (dBC) was 600.5 m, the required distance between IoTG-CUE (dGC)
to avoid interference was 505.52 m numerically and 506.95 using deep learning, while
when SINRth was 5 dB, dGC must be 677.5 m and 677.8 m for numerical and deep learning,
respectively. On the other hand, when SINRth was 20 dB and dBC was 99.5 it can be found
that dGC must be in the range of 265 m to avoid interference.

It is worth mentioning from Figure 5 that when comparing the results of the uplink
and downlink, the highest transmission power of BS and IoTG and the shortest distance
between IoTD-IoTG led to decreased interference at its destination. On the other hand, de-
creasing the transmission power led to increasing interference, which required an increase
in the distance between any interference device and transmission link.
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The same result was obtained when the IoT system performance is evaluated through
uplink and downlink data communication, as demonstrated in Figure 6, to decrease the
interference at IoTG (uplink) and IoTD (downlink). For increasing the system reliability, the
distance between any transmission CUE and IoTG for the uplink (dCG) and for downlink
(dGC) must be greater than the distance between IoTD and IoTG for uplink (dIG) and for
downlink (dGI) —for example, as shown in Figure 6a in the case of uplink, when dIG was
equal to 240.2 m; the distance dCG should be 240.6 m analytically and 241 m using deep
learning when the required SINRth is 0 dB. While, when dIG was equal to 44 m and SINRth
was 20 dB, dCG was 139.17 m analytically and 139.63 m using deep learning. On the other
hand, in case of the downlink as demonstrated in Figure 6b, when the required SINRth was
0 dB and dGI was equal to 240.2 m the distance dGC should be 285.48 m analytically and
286.35 m using deep learning. While, when dGI was equal to 44 m, dGC should be 165.37 m
analytically and 165.33 m using deep learning when SINRth was 20 dB. Additionally, it can
be noticed that decreasing the distance between any source and destination links leads to
decreasing the path loss and increasing the SINRth. Based on the proposed model, it is
assumed that the transmission distance between CUE-BS (uplink) and BS-CUE (downlink)
is greater than the transmission distance between IoTD-IoTG (uplink) and IoTG-IoTD
(downlink). It has been concluded from Figure 6 that, the interference distance (dGC)
during the downlink must be greater than the interference distance (dCG) during the uplink,
this due to the highest transmission power of IoTG and the nearest distance between
IoTG-IoTD, which increases the interference at CUE. That is why the interference distance
during the downlink (dGC) should increase compared with the interference distance during
the uplink (dGC).
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The predicted required dID and dGC distance for decreasing the interference at any
D (uplink) and decreasing the interference at CUE (downlink) was examined again in
Figure 7 for the analytical and deep learning model for different transmission distances and
against SINRth. Different uplink (dCD) and downlink transmission (dBC) distance values
were assumed such as 66, 140, and 260 m and against SINRth, which varied from 0 to 20 dB
to predict dID and dBI. As can be observed, when SINRth increases the predicted required
uplink dID and downlink dBI must be greater than or equal to uplink dCD and downlink
dBC, respectively, for decreasing the interference and at the same time satisfying the system
requirements in term of SINRth—for example, as shown in Figure 7a when dCD was 260 m,
the optimum required dID was 260.6 m analytically and 264.24 using deep learning when
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SINRth = 0 dB, while when SINRth = 18 dB for the same distance dCD, the predicted required
distance dID was 907.72 m analytically and 903.74 using deep learning. On the other hand,
when dID was 66 m and SINRth = 4 dB, dCD must be 83.09 and 85.75 analytically and based
on deep learning, respectively. Furthermore, for the downlink data communication as
shown in Figure 7b, for SINRth = 0 dB and dBC = 260 m, the required distance to avoid
interference dGC was 218.77m and 219.24 using analytical and the deep learning algorithm,
respectively, while for the same transmission distance dGC should be in the range of 619 m
to avoid interference and fulfil the required SINRth, which is 18 dB. Additionally, when dBC
was 66 m, the required distance for avoiding interference should be in the range of 55.6 m
if SINRth is 0 dB and 176 m when SINRth = 20 dB.

Figure 7. (a) Signal-to-interference-ratio- plus-noise (SINRth) versus predicted distance between IoTD-D (uplink)
(b) Signal-to-interference-ratio- plus-noise (SINRth) versus predicted distance between IoTG-CUE (dowlink).

Furthermore, Figure 8 demonstrates the predicted required uplink and downlink
distances (dCG and dBI) for decreasing the interference at IoTG (uplink) and IoTD (down-
link), respectively. A different scenario is proposed to evaluate the system performance
for the uplink and downlink data communication, assuming that dIG and dGI are 104 m,
56 m, and 26.4 m for different values of SINRth. As shown in Figure 8a, in case of uplink,
when the required SINRth increased, for different transmission dIG, the distance between
dCG increased—for example, when dIG was equal to 104 m and SINRth was equal to 7 dB,
the optimum required dCG for the analytical and deep learning model was 155.65 m and
155.54 m, respectively. However, for the same transmission distance when SINRth was
equal to 18 dB, dCG was 294.2 m analytically and 294.46 m using the deep learning model.
The same performance was obtained when the system was evaluated during the downlink
as shown in Figure 8b, e.g., when SINRth was equal to 7 dB and dGI was equal to 104 m and,
the optimum required dCG for the analytical and deep learning model was 185 m. However,
for the same transmission distance dCG is 348 m and 348.86 m for the analytically and deep
learning model, respectively, when SINRth was equal to 18 dB. Figures 7 and 8 show that
the required SINRth is an important parameter that should affect the predicted required
interference distance for decreasing the interference at any destination. Additionally, using
these results and based on the system requirements and environmental conditions, an
adaptive smart system should be engaged to enhance the system performance for both
CUE and IoT networks.
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Figure 8. (a) Signal-to-interference-ratio-plus-noise (SINRth) versus predicted distance between CUE-IoTG (uplink)
(b) Signal-to-interference-ratio-plus-noise (SINRth) versus predicted distance between BS-IoTD (downlink).

As mentioned earlier, since the dataset used in the analysis was split into two-thirds
training and one-third testing, the results shown in Figures 9 and 10 are based only on
records available in the testing data. As a result, some of the SINRth values did not exist in
testing records. Figure 9 demonstrates the optimized system throughput for the proposed
approach for the uplink and downlink data communication using the analytical and deep
learning model for different randomly chosen SINRth values. For fair performance evalua-
tion three different scenarios were considered. Assuming that the distance combinations
between the uplink distances (dCD and dIG) and the downlink distances (dBC and dGI)
were considered to be the same; they were 260 m and 104 m, 140 m and 56 m, and 66 m
and 26.4 m, respectively. The chosen distances represented long, intermediate, and short
distances. As observed for the uplink and downlink data communication represented in
Figure 9a,b, respectively, for the three different scenarios when the SINRth increased, the
optimized system throughput increased. Additionally, it can be noticed that for the three
scenarios for any SINRth, the optimized system throughput value was approximately iden-
tical for the analytical and deep learning models. This means that the proposed approach is
capable of reaching the maximum system throughput regard less of the transmission was
(long-intermediate-short), as the aim of the proposed model is to predict the interference
transmission distance between any interfering node and any destination, for trying to
prevent interference and increase system reliability.

The same performance was obtained when the optimized energy efficiency for the
uplink and downlink was examined for the assumed three different scenarios in Figure 10.
As depicted from Figure 10a uplink data communication and Figure 10b downlink data
communication, the optimized energy efficiency always increased with the increased of
SINRth for the analytical and deep learning models. The proposed model succeeded in
keeping the optimized energy efficiency approximately the same for the three different
assumed transmission distances. Figure 10 is correlated with the results obtained in
Figure 9. These two results show the effectiveness of the proposed model in predicting
the position of the interference nodes, as by knowing the distance between them and any
destination helps prevent the interference, thus increasing the system performance.
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As an extra assessment of the proposed model, the distances obtained from both
the analytical and deep learning models were both input to Equations (20) and (21) to
calculate the throughput and energy efficiency for different values of transmission power.
The optimized system throughput for the proposed approach was evaluated once again
in Figure 11 for four different randomly chosen SINRth values with different transmission
powers for CUE (PC) and IoTD (PI). It was assumed that the values of SINRth were 5, 10, 15
and 20 dB, respectively. As depicted in Figure 11, for any SINRth increasing the transmission
power leads to increasing the system throughput for the analytical and deep learning model.
As the system is always limited by channel noise, pathloss and interference that is why the
transmission power is one of the parameters, which can overcome the channel conditions.
Thus, increasing or decreasing the transmission power must be considered according to
the channel conditions and the required system QoS. Furthermore, by comparing the four
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different SINRth values it can be found that increasing the SINRth increases the overall
system throughput, which is correlated with the results obtained in Figure 9.

Figure 11. Transmission power PC and PI versus optimized system throughput.

Moreover, the optimized energy efficiency is analyzed in Figure 12 for the same chosen
SINRth stated in Figure 9 and with different PC and PI. As shown in Figure 12 each value of
SINRth yields a maximum transmission power that leads to an optimum energy efficiency—
for example, when SINRth = 0 dB, the maximum transmission power for any sender node to
reach the optimum energy efficiency is 2 or 4 dBm, while when SINRth = 5 dB, the maximum
power is 4 or 6 dBm to reach the maximum energy efficiency. On the other hand, when
SINRth is 20 dB, the maximum transmission power is energy efficiency is 8 dBm. It can be
deduced from this figure that increasing the transmission power may lead to a decrease in
the energy efficiency as the increment of the transmission power incr11eases the system cost
and decreases the system energy efficiency. By comparing Figures 11 and 12, increasing
the transmission power increases the overall system throughput and at the same time may
decreases the energy efficiency. Thus, for obtaining the maximum system throughput with
the highest energy efficiency, the two performances can be jointly considered in order to
obtain the required system performance based on the two metrics.
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Figure 12. Transmission power PC and PI versus optimized energy efficiency.

5. Conclusions

A novel interference avoidance system was proposed for a 5G network and IoT
using analytical and deep learning techniques. First an analytical model was created
and simulated using MATLAB to calculate the optimal distances required between IoTD
and D. In addition, the model calculated the optimal distance between CUE and IoTG. A
deep learning model was then proposed that adopted the 1D-CNN. 1D-CNN was recently
introduced and has been proven to have low computational complexity, and thus managing
to conserve processing and battery, which make it very suited to be deployed in devices
in real-time applications. Consequently, the deep learning model on CUE and IoTD for
uplink and on BS and IoTG for downlink could generate the appropriate interference
distance to meet the near-optimal result. This model was assessed by a 10-fold cross
validation data split using data generated from the MATLAB simulations and produced
very low mean absolute error and root mean square error when compared to various
benchmarks. Next, the analytics of the results of predicting the minimum acceptable
interference distance between IoTD-D and CUE-IoTG for uplink and the distance between
BS-IoTD and IoTG-CUE for downlink resulting in achieving near-optimal throughput
and energy efficiency were demonstrated. Based on the results obtained in terms of
system throughput and energy efficiency, it has been shown that the proposed model can
exhibit the best performance under different environmental conditions. The problem of
interference has been discussed and solved using the Lagrange optimization technique
and deep learning. Both techniques have been used to predict the optimum interference
distance between CUE-IoTG and IoTD-D for uplink and the optimum interference distance
between IoTG-CUE and BS-IoTD for downlink. Additionally, based on the analytical
and deep learning, it has been proven that the interference distance must be greater
than the transmission distance between the CUE-D and IoTD-IoTG links to avoid or
decrease the interference among any destination (BS or CUE receiver). In addition, it
has been shown how during the downlink data communication, the high BS and IoTG
lead to a decrease the interference distance, as increasing the transmission power leads to
overcoming the interference at any communication link. Furthermore, the effect of SINRth



Sensors 2021, 21, 6555 22 of 23

and the transmission power on predicting the maximum required interference distance
was investigated. It was shown that increasing SINRth leads to increasing the interference
distance between CUE-IoTG, IoTD-D, IoTG-CUE and BS-IoTD. Moreover, it has been
shown that increasing the transmission power increases the overall system performance.
Additionally, among different values of transmission power, one can reach the maximum
energy efficiency. The obtained results show that the proposed model can achieve the
maximum system throughput and energy efficiency with suitable system reliability.
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