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Abstract

There is an emerging consensus that achieving global tuberculosis control targets will

require more proactive case finding approaches than are currently used in high-incidence

settings. Household contact tracing (HHCT), for which households of newly diagnosed

cases are actively screened for additional infected individuals is a potentially efficient

approach to finding new cases of tuberculosis, however randomized trials assessing the

population-level effects of such interventions in settings with sustained community transmis-

sion have shown mixed results. One potential explanation for this is that household trans-

mission is responsible for a variable proportion of population-level tuberculosis burden

between settings. For example, transmission is more likely to occur in households in set-

tings with a lower tuberculosis burden and where individuals mix preferentially in local

areas, compared with settings with higher disease burden and more dispersed mixing. To

better understand the relationship between endemic incidence levels, social mixing, and the

impact of HHCT, we developed a spatially explicit model of coupled household and commu-

nity transmission. We found that the impact of HHCT was robust across settings of varied

incidence and community contact patterns. In contrast, we found that the effects of commu-

nity contact tracing interventions were sensitive to community contact patterns. Our results

suggest that the protective benefits of HHCT are robust and the benefits of this intervention

are likely to be maintained across epidemiological settings.

Author summary

Screening household members of newly detected tuberculosis cases is an efficient method

for finding previously undiagnosed cases in high-burden settings. Despite the intuitive
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appeal of this approach, randomized trials examining the population-level effects of these

interventions in settings with sustained community transmission have shown mixed

results. One explanation for these inconclusive findings is that household transmission is

responsible for a varying proportion of overall tuberculosis burden between locations,

with the impact of household transmission being a function of both the overall incidence

and the relative intensity of disease-transmitting contacts in the community and the

household. In this manuscript, we use an individual-based network model to explore how

local incidence levels and patterns of community contact impact the effectiveness of

household-based approaches for interrupting tuberculosis transmission. Our analyses

suggest that protective benefits of household-based interventions are maintained across a

wide range of epidemiological settings. Our findings provide evidence for the robustness

of household-based interventions and suggest that variable results from trials may be

primarily due to implementation challenges rather than inherent limitations of these

interventions.

Introduction

Despite recent progress in the development of new tuberculosis (TB) diagnostics [1], drugs

[2], and vaccines [3], the decline in TB incidence remains far too slow to meet global targets

for TB control. We need more effective case detection strategies to extract the maximum bene-

fit available from existing tools. There is an emerging consensus that passive TB case-finding

(i.e. waiting for individuals with symptoms consistent with TB to seek medical care), is insuffi-

cient and must be augmented with more active approaches that allow cases to be detected and

treated as early as possible [4].

Household contact tracing (HHCT) has been advocated as an efficient approach to TB

treatment and prevention [5, 6], both because household contacts of known TB cases are at

high risk of transmission, and because they are relatively easy to identify. These interventions

typically begin when a household index case is diagnosed with TB after presenting for care, i.e.

ascertained by passive case-finding. Household contacts may then be screened and treated for

active TB and latent TB infection (LTBI). HHCT is routinely applied in high-income, low-inci-

dence settings. However, evidence regarding its efficacy in reducing population-level TB risk

in higher-incidence settings is mixed. While HHCT has been demonstrated to improve the

yield of TB case finding over passive detection [7], conclusions about the impact of HHCT on

population-level TB incidence from cluster-randomized trials are varied, with some demon-

strating improved TB control at the community level [8] while others failing to show robust

population-level effects [9].

One potential explanation for these heterogeneous outcomes is the relative concentration

of TB transmission in households and the community. Intuitively, where the fraction of trans-

mission concentrated within households contributes to a greater share of overall TB burden

(e.g., in low-incidence settings), we might expect HHCT to be more effective than in settings

where there is a greater community burden of TB and household transmission represents a

smaller fraction of the total (e.g., high-incidence settings). The average number of contacts and

physical distance between contacts (i.e., social mixing patterns) can also affect the distribution

of TB transmission in households and the community. For example, longer distances between

community contacts will lead to fewer shared contacts between household members. This will

likely result in a smaller fraction of co-prevalent household cases and HHCT therefore being

less effective. In order to better understand the complex relationship between endemic
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incidence and social mixing patterns on the impact of HHCT, we developed a spatially-explicit

network model of coupled household and community TB transmission. We then used this

model to characterize the relationship between endemic incidence levels and community con-

tact patterns on the impact of HHCT.

Methods

In this section, we outline the components of our individually-based network transmission

model, which extends a previously published individual-based TB model of coupled household

and community transmission [10] by introducing spatially structured community contact net-

works adapted from [11]. Specifically, we extended the Gaussian community contact network

from [11] to include household transmission. Further, we extended the natural history model

from [10] to include TB transmission across the network and added in separate intervention

(e.g., treatment) compartments.

Spatial contact network

Utilizing a network representation of community contact allows us to assign discrete contacts

at the individual level, which will then be used for the contact tracing interventions described

below. Contacts represent individuals who interact with each other and are therefore potential

tuberculosis transmission links. They may be close contacts (e.g., within households) or casual

contacts (e.g., within the community). Our model represents a population consisting of

100,000 individuals divided evenly into 20,000 households (5 individuals per household). Each

household is placed uniformly on a 2-dimensional grid. The spatial extent of the grid is implic-

itly set by the network density, which we fixed to equal 1. Individuals within households are all

connected to each other, while community contacts are formed according to a Gaussian con-

nectivity kernel in which the probability of connection between individuals varies as a function

of physical distance between their households. On the network level, this kernel controls both

the average number of contacts each individual has (average degree) as well as the average

physical distance between community contacts (average connection radius). For instance, in

networks with a higher average degree, individuals have more potential transmission links

from the community. Furthermore, networks with a lower average connection radius have

contacts (potential transmission links) that are closer together and may lead to transmission

that is more clustered and less widely dispersed throughout the community. For simplicity, we

assumed that household and community contacts are static for the duration of the simulation.

See S1 Text for more details on the construction of community contact networks.

To explore the robustness of HHCT to different intensities and configurations of commu-

nity contact (i.e., to examine the impact across different community contact settings), we con-

ducted simulations across a wide range of connectivity kernel parameters (see Table 1). To

account for random variation in contact network structure we generated 10 network realiza-

tions for each input parameter set. We also calculated the global clustering coefficient, C,

Table 1. Network parameters for connectivity kernel.

Parameter Description Range Source

n Average degree i.e., the total number of

community contacts

25 to

200

A large range is set to explore variation in community contact. Actual range of generated

networks was slightly different.

σ Average connection radius 0.5 to 5 Range set to obtain predetermined average degree distribution. Actual range of generated

networks was slightly different.

ρ Network density: i.e., density of households in

grid

Fixed at

1

Assumption

https://doi.org/10.1371/journal.pcbi.1008713.t001
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(S1 Text) for each network [12] among community contacts, which measures the degree to

which individuals have overlapping contacts. Specifically, for a given generated network, the

clustering coefficient was calculated by finding all triads (groups of 3 households) with�2

connections (i.e., households were deemed ‘connected’ if there was at least one community

contact between them). Then dividing all triads with 3 ties by the total number triads [12]. See

Fig 1 for a schematic of household and community network structure and example networks

with different clustering coefficients and S1 Fig for features of generated networks.

Model of TB infection and progression. The natural history of TB is characterized by a

multi-stage latency period, in which recently infected individuals are at highest risk of progres-

sion to active disease, but may also enter a state of long-term latency from which they may

progress to disease many years after infection, with most infected individuals (�80%) never

Fig 1. Network structure. (A) Schematic of Network Structure (top): All individuals are fully connected within their households. Individuals

form community contacts based on a Gaussian (normally distributed) connectivity kernel [11]. Networks consist of 100,000 individuals

divided evenly into 20,000 households. (B & C): Example networks consisting of 1000 nodes (i.e., households) and similar average degrees with

minimal (B; bottom left) and high levels (C; bottom right) of community clustering.

https://doi.org/10.1371/journal.pcbi.1008713.g001
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developing active TB. See S2 Fig for the distribution of latent progression times and the frac-

tion progressing to active TB across different parameterizations of the model. Because early

detection is key to the success of HHCT, our model must provide an adequate representation

of these transitions. To accomplish this, we adapted a previously published model (from [10])

which includes 5 key disease states. Individuals are born as uninfected and susceptible (S).

Upon infection, individuals enter an early latent period (EL) in which the annual rate of pro-

gression to infectious active TB (I) decreases over five years before entering the late or long-

term latent (LL) state from which a small subset of individuals may progress to active TB.

Infectious individuals may then enter the recovered state (R) spontaneously or as a function of

treatment. Finally, individuals may exit the model by death as a function of TB mortality or

the background mortality rate. When estimating the rate at which individuals become infected

i.e., the force of infection (FOI) on individual i in household j at time t (λij(t)), we account for

variable intensities of household and community contact as follows:

lijðtÞ ¼ ½bHHIjðtÞ þ bCIiðtÞ�ð1 � oðziðtÞÞ ð1Þ

Where βHH and βC are the per-contact transmission rates of household and community con-

tacts, and Ij(t) and Ii(t), are the number of infectious contacts in household j and in individual

i’s community contact network at time t, respectively. Finally, because prior infections confer

limited protective immunity [13, 14], the FOI is scaled by ω(zi(t)) 2 [0, 1], where zi(t) denotes

the state of individual i at the time of exposure. Fig 2 illustrates the disease states and transi-

tions represented in our model. For a detailed description of the model see S1 Text.

Model parameters. Where possible, we obtained point estimates and uncertainty intervals

for natural history parameters from published sources, including reviews of historical studies

conducted prior to the advent of TB chemotherapy, which provide information on rates of

death and spontaneous recovery from untreated active TB [15]. We also consulted systematic

reviews e.g., for the rate of progression from LL to active TB [16], and modeling analyses e.g.,

for the rate of progression from EL to active TB [17]. Household and community transmission

rates were calibrated to reproduce a range of incidence levels (20-400 cases per 100,000 per-

son-years). We chose this range to focus on epidemiological settings in which there was

Fig 2. TB transmission model. Schematic of TB Transmission Model. Where S is susceptible; EL is early latent

(divided in sub-states to represent the decreased rate of progression to I with time since infection); LL is late latent; I is

infectious active TB; R is recovered; T is treatment; IPT represents individuals who are currently taking preventive

therapy. Individuals transitioning to the treated states (T, and IPT) are represented by dot-dashed lines. The rate at

which individuals transition to the IPT states depends on the number of contacts. Births and deaths are represented by

dotted lines.

https://doi.org/10.1371/journal.pcbi.1008713.g002
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sustained endemic community transmission. Furthermore, in the most countries, TB inci-

dence levels are within this range. For instance, Bulgaria has an estimated annual incidence of

22 per 100,000 person-years, Peru has an estimated annual incidence of 123 per 100,000 per-

son-years, and Eswatini has an estimated annual incidence of 329 per 100,000 person-years

[18]. Following results indicating a higher per-contact rate of transmission from household vs.

community contacts [19], in all simulations, we constrained the per-contact community trans-

mission rate to be less than or at most equal to the household transmission rate, i.e. βC� βHH.

However, since individuals are likely to have more community than household contacts, this

does not exclude the possibility that an infectious individual will cause substantially more

infections in the community than their household. Because we were primarily interested in

examining how the relative proportions of TB transmission occurring in households and the

community alters the impact of interventions, we allowed for a large range of household and

community transmission rate values and constrained other key drivers of incidence e.g., the

rate at which individuals with active TB seek care. See Table 2 for a full list of transmission

model parameters and their sources.

Passive case finding. In all simulations, household index cases were ascertained via pas-

sive case finding [24, 26], representing current practice in most TB endemic settings [27]. We

assumed that on average, it takes one year for an individual with active TB to be detected by

Table 2. Parameter values and uncertainty ranges.

Parameter Description (units) Range Source/Explanation

Natural History

βHH Household transmission

parameter

0 to 1.25 Upper bound is set empirically based on which βHH value when equal to

βuC results in the target incidence levels (20 to 400 cases per 100,000

person-years) in a sufficient number of simulations.

βuC Unscaled community

transmission parameter

0 to βHH (i.e., βuC� βHH) Derived by multiplying βHH by a scaling factor between 0 and 1. βuC is

then divided by the average degree of community contacts (n − 4; see

Table 1) to obtain βC which is used in the FOI. This parameter also has

strong impact on overall TB incidence. (See Eq 1)

ω Amount of immunity

conferred by current state

(%)

For S = 0%; EL, LL, and R = 80%; I, T,

IPT = 100%

[13, 14]

θ Life expectancy (years) 72.38 Global average life expectancy. [20]. The mortality rate used in the

model is the inverse of the life expectancy

� Early latency progression

rates (/yr)

A value between 0.0817 to 0.0905 is sampled and

then multiplied by (1, 0.41, 0.13, 0.086, 0.028) to

derive the rate of progression for each EL sub-

state

[17]

τ Late latency progression

(/yr)

0.0005 [16]

γ Recovery rate (/yr) 0.09 to 0.15 [10, 15]

κ Active TB mortality rate

(/yr)

0.05 to 0.4 [10, 15]

TB Screening and Treatment

cdr The rate at which

individuals with active TB

self-present for care (/yr)

1 Individuals are detected an average of 1 year after progressing to active

TB. We assumed:

Prevalence ¼ Incidence � Duration
and used global numbers from [21] to obtain a disease duration of� 1

year. This is consistent with other analyses e.g., [22, 23].

txd Treatment duration

(months)

6 [24]

iptd Preventive therapy duration

(months)

6 [25]

https://doi.org/10.1371/journal.pcbi.1008713.t002
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this mechanism. Individuals with active TB who are found through passive case finding are

given treatment, assumed to no longer be infectious, and eventually recover. In our interven-

tion simulations, passive detection will then trigger the active case finding (ACF) interventions

outlined below.

Household contact tracing. For each case discovered through passive case finding, all 4

household contacts of the index case were screened (during the same one-month time step)

for active TB and LTBI. This scenario was adapted from [10, 28]. Contacts found to have

active TB were placed on treatment, while those with LTBI (EL or LL) were given preventive

therapy. While receiving preventive therapy, we assumed that individuals cannot become

reinfected or progress to active TB; at the end of the treatment period, individuals enter the

R state.

Alternative active case finding interventions. To determine whether any effects of

HHCT could be attributed specifically to focusing ACF at the household level, we simulated

two additional interventions in which the same number of individuals were screened per

detected case: (1) community contact tracing (community CT) in which 4 community contacts

of the index case were screened and (2) community-wide ACF, in which 4 randomly selected

individuals were screened, following [10, 28]. See S1 Text for additional details of these alterna-

tive ACF interventions.

Simulation strategy

To account for parameter uncertainty and explore parameter values of interest (e.g. βC), we

ran the model with 9,000 parameter sets obtained using Latin Hypercube Sampling [29]

from predefined ranges based either on published estimates or ranges set based on our inter-

pretation of the literature. At the beginning of each simulation run, we selected a network at

random and ran the transmission model 5 times using different random number seeds to

allow stochastic variation across realizations. We ran the model with passive case finding

only until it reached endemic equilibrium. Next, we implemented a simulated ACF trial for 5

years representing a plausible time horizon to evaluate the impact of screening interventions.

We ran all interventions and a passive case finding only scenario with each parameter set

and random number seed combination. For more details see S1 Text. We generated net-

works for the model using R version 3.4.1 [30]. Our individual-based network model was

run on Matlab version R2019a [31]. We ran our simulations in parallel on a high perfor-

mance computing cluster and each individual simulation run took between 2 and 10 minutes

and used�4.5 gigabytes. Model code can be accessed at https://github.com/jhavumaki/

network_tb_ibm.

Measuring the impact of HHCT. To assess the impact of HHCT, we calculated the

5-year cumulative incidence rate at the end of the ACF trial period. Incidence was defined as

the number of new active TB cases per 100,000 person-years over the previous 60 one-month

time steps. We then calculated rate ratios (RRs) to quantify the protective benefit of HHCT for

each parameter set and random number seed combination. Specifically, we divided the inci-

dence rate (at the end of the ACF trial period after HHCT) by the passive case finding only sce-

nario incidence rate at the end of the simulation (see S3 Fig for overview of the simulation

workflow). Both comparator interventions were also compared to the passive case finding only

scenario.

RRs were compared across all parameter sets and also, within strata of network parameters

(average degree and average connection radius), and initial incidence-levels (i.e., immediately

before the active screening interventions were implemented) to measure the protective benefit

conferred by HHCT in different transmission and community contact (i.e., network) settings.
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Results

Transmission dynamics in the absence of ACF

To ensure that our model behaved as expected and to evaluate the impact of variation in commu-

nity contact patterns on transmission dynamics, we examined all model runs from the passive

case finding only scenario (without restricting incidence to our target range). The proportion of

individuals with LTBI was approximately as expected for different TB prevalence levels (S4 Fig).

Additionally, a greater proportion of infections were caused by community transmission in

higher incidence settings compared with lower incidence settings (S5 Fig). Furthermore on clus-

tered networks, community transmission contributed more to overall TB burden than on less

clustered networks. Despite the fact that higher TB incidence levels were driven by more com-

munity transmission and that community transmission contributed more to overall TB burden

among clustered networks, we observed that as the network clustering coefficient increased, inci-

dence levels were generally lower (S6 Fig). This is explained by the fact that more overlapping

contacts (on clustered networks) likely created local contact saturation and depletion of the pool

of susceptible individuals [32]. The remainder of the analysis was conducted among simulations

within our target range of incidence levels i.e., between 20 to 400 cases per 100,000 person-years.

Protective benefits of HHCT in different epidemiologic settings

Overall, the protective benefits conferred by HHCT were robust across all settings (i.e., varying

incidence level, average degree, average connection radius, and clustering coefficient) with

median RRs equaling�0.7. See Fig 3 and S13 Fig and S1–S4 Tables for more details.

Fig 3. Effectiveness of HHCT across different settings. Fitted splines representing relationship between all RRs and

(A) the incidence rate immediately before HHCT (per 100,000 person-years) (top left), (B) the average degree (top

right), (C) the community clustering coefficient (bottom left), and (D) the average connection radius (bottom right).

Lines are splines calculated using the LOESS method in R [33]. Among model runs with incidence rates between 20 and

400 cases per 100,000 person-years. Shaded regions represent 95% confidence intervals.

https://doi.org/10.1371/journal.pcbi.1008713.g003
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To ensure that the impact of HHCT was not sensitive to input parameter combinations and

endemic incidence levels (e.g., to account for effect modification), we plotted the density of RR

values within all pairwise distributions of incidence and network parameter strata (e.g., inci-

dence level by average degree, or average degree by average connection radius). This enabled

us to determine whether e.g., average degree affects the impact of HHCT for a given incidence

level (S8–S12 Figs). Overall, there did not appear to be any additional emergent trends. See for

details.

Comparator interventions

Contrary to the robustness of HHCT across settings, community CT was sensitive to average

degree, average connection radius, and clustering coefficient with the effect of incidence level

being similar to HHCT. For example, as average degree increased, community CT became less

effective (Fig 4). Notably although community CT was sensitive to network parameters, stan-

dard deviations associated with the RRs were greater than the differences between strata. See

S14 Fig and S5–S8 Table for all results.

With respect to community-wide ACF, its effects were close to null and it was most sensi-

tive to incidence level. See S15 Fig and S9–S12 Tables for results.

We made additional comparisons between interventions to further assess the performance

of HHCT. First, we examined the infectious period duration for each intervention and found

that the median infectious period was�1 month shorter for HHCT compared with commu-

nity CT, community-wide ACF and passive surveillance only scenarios (S16 Fig). Next, we

estimated the number of secondary cases averted among household contacts due to preventive

therapy. As expected, the modeled HHCT intervention prevented more cases than the mod-

eled community CT which in turn, prevented more cases than the modeled community-wide

ACF (S17 Fig). We then examined the relative number of preventive therapy administrations

compared with treatment administrations for each screening scenario. HHCT led to substan-

tially more preventive therapy administrations compared with the other screening scenarios

indicating that it may be a more effective approach to identify and treat individuals with recent

Fig 4. Effectiveness of community CT varying average degree. Fitted splines representing relationship between all

community CT RRs and the average degree. Lines are splines calculated using the LOESS method in R [33]. Among

model runs with incidence rates between 20 and 400 cases per 100,000 person-years. Shaded regions represent 95%

confidence intervals.

https://doi.org/10.1371/journal.pcbi.1008713.g004
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infection at highest risk of progression (S18 Fig). Finally, we examined the prevalence of LTBI

and active TB among household and community contacts. We found that HHCT resulted in

lower prevalence of active TB among both household and community contacts, but the preva-

lence of LTBI was similar between interventions (S19 Fig). The prevalence of LTBI was similar

because it represents a cumulative lifetime exposure status and therefore changes substantially

more slowly than the prevalence of active TB. Therefore, because we only ran the intervention

for 5 years, we did not see major changes in the LTBI prevalence.

Sensitivity analyses

We conducted additional sensitivity analyses to investigate the extent to which different

sources of variability affected the estimated screening scenario impacts. To do this we exam-

ined the relative contributions of stochasticity in the disease transmission model, using results

from multiple network realizations, and variability in parameter inputs. We constructed a

hierarchical regression model to examine the relative contributions of these inputs to variation

in estimated RRs across simulations (S13 Table). We found that stochasticity and network real-

ization had only modest effects on RR values, contributing to�5% and�3.5% of variability in

RRs, respectively. Finally, the overall model R2 was�85.6% indicating that the parameteriza-

tion of the model contributed substantially to overall changes in RRs.

Next, we incorporated imported TB cases into the force of infection to understand if a low

background level of risk for the entire population might affect the projected impact of inter-

ventions. Results from this analysis revealed that although the impacts of all screening inter-

ventions were reduced, the main conclusions from our analysis did not change (S22–S24 Figs).

Finally, to explore whether variation in the implementation of HHCT might lead to less

robust results, we conducted an additional sensitivity analysis varying the coverage of HHCT.

We found that in higher incidence settings (>100 cases per 100,000 person-years), lower

HHCT coverage levels resulted in much smaller population-level benefits (S21 Fig).

Discussion

Our analyses suggest that the protective benefits of HHCT are likely to be robust across diverse

settings characterized by variation in incidence level and community contact patterns (Fig 3).

As compared to the consistent effectiveness of HHCT, community CT appeared to be more

sensitive to different network parameters, suggesting that its utility is more limited to specific

scenarios. For instance, as average degree increased, the protective benefits of community CT

decreased (S14 Fig). Overall, this suggests that HHCT is robust to different relative propor-

tions of TB transmission occurring in households and the community while community CT is

not.

Despite the relative effectiveness of HHCT in reducing community incidence, community

transmission was the dominant mode of infection in all but the lowest-incidence settings (see

Table 2 and S5 and S7 Figs). This can be partially explained by contact saturation within

households [32]. Additionally, transmission causing more infections in higher-incidence set-

tings is consistent with molecular epidemiology studies which have revealed that, in these set-

tings, the majority of co-prevalent TB cases within households are genetically discordant [34,

35]. Thus, both the transmission rates and the number of contacts are important drivers of TB

transmission. One might expect HHCT to appear less effective in settings where most TB

transmission occurs in the community. However, our results challenge this intuition, as we

found that the benefits of HHCT were maintained despite differences in the proportion of

transmission events occurring in the community (S20 Fig). This finding is consistent with a
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recent model-based analysis indicating that the effects of HHCT are robust to observed varia-

tion in local community-level exposure [28].

Our finding of the robustness of the projected benefits of HHCT across settings suggests

that differences in community and household forces of infection probably do not explain

mixed results of randomized control trials of HHCT to reduce TB incidence [8, 9]. Others

have suggested that HHCT may have limited effects in high transmission settings where evi-

dence suggests that a minority of transmission events occur within the home [34–36]. Our

results reveal that HHCT has a substantial impact even when within-home transmission does

not account for the majority of infection events because household contacts represent a

higher-risk population given the likelihood of clustering of exposure risk. This suggests that

other explanations may be needed for the mixed results of trials of HHCT, including the cover-

age and quality of case finding activities. Our sensitivity analysis examining the impacts of

varying HHCT coverage confirms that this might be a potential explanation (S21 Fig)

Our approach has some limitations that should be considered in interpreting these findings.

For the sake of parsimony, we did not include additional factors in our model that could have

altered the risk of TB at the individual level. For example, TB can cluster due to shared risk fac-

tors (aside from transmission) like alcohol use and malnutrition [37]. Future models exploring

the impact of individual-level heterogeneity on the robustness of HHCT will be helpful in clar-

ifying the real-world utility of this approach. Next, our model does not include an interaction

between the intensity of symptoms and the infectiousness of cases, as has been done in earlier

models [38]. Including these dynamics would have likely affected the relative performance of

all interventions in the same way so it would have not changed our overall conclusions regard-

ing the efficacy of HHCT. At the same time, models including the time-dynamics of infec-

tiousness will be extremely helpful for guiding the timing of the proposed interventions.

It is important to note that the implementation of contact patterns were simplified to

reduce the computational demands of our model. First, we assumed static network connec-

tions. Dynamic network connections would have allowed infection to escape more easily from

local clusters [39], dampening differences across more and less clustered networks. To ensure

that we accounted for this, we conducted our analyses across different networks (i.e., with dif-

ferent clustering coefficients) and this likely accounts a wide range of distributions of TB. We

also assumed that number of individuals per household is fixed (i.e., at 5 people). Although

this is unrealistic, keeping the household size fixed allowed us examine how variation in com-

munity contact alone might impact the effectiveness of different screening interventions.

Examining the impact of variation in two dimensions (i.e., on both the household and com-

munity levels), may lead to different effects. Finally, our births reshuffling scheme based on

[39] is not realistic, however, it allows for the population size to be constant and prevents our

model from placing susceptible individuals into areas of high endemic transmission.

These results suggest important future directions this research can take to understand the

real-world applicability of HHCT in high-burden settings. Our model focused on the effects of

heterogeneity across networks with varying average degrees and average connection radii but

relatively low within-network variability in connectivity. Future work should consider the

effects of heterogeneity within a single network in more detail to capture the impact of variable

household sizes, variable average degrees, super-spreading individuals, spatial hotspots, and

other causes of right-skewed community contact distributions. Adding within network hetero-

geneity will alter the local risk of TB. Although the effects of HHCT have been found to be

robust to observed variation in local community-level exposure in one setting [28], it is unclear

what a systematic exploration of different within network heterogeneities would reveal. Addi-

tionally, mechanisms that impact susceptibility and the risk of progression to active TB (e.g.,

HIV, malnutrition, diabetes) may also lead to more community-level heterogeneity.
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Supporting information

S1 Fig. Features of generated networks. Community Average Degree by average connection

radius colored by community global clustering coefficient. We generated a wide array of net-

works i.e., long range connections vs. short range clustered connections and/or many commu-

nity contacts vs. few community contacts. The parameters we used to specify the networks (see

Table 1) were different from the actual calculated metrics on the generated networks. The

range of average degrees of generated networks was�20 to�190. The range of average con-

nection radii of generated networks was from�0.8 to�6.2.

(TIFF)

S2 Fig. Distributions of latent TB progression times and probabilities. For all parameter

sets, fraction progressing among those in the early latent state and across all latent TB states

(left) and the time to progression for individuals in the early latent state and across all latent

TB states (right).

(TIF)

S3 Fig. Workflow of analysis.

(TIFF)

S4 Fig. Active TB prevalence per 100,000 individuals vs. latent TB prevalence. Active TB

prevalence per 100,000 individuals vs. latent TB prevalence across all model runs in which no

intervention (passive-detection only) was administered. Points correspond to monthly average

values over the final year of the simulation. Latent levels were calculated by summing early

latent and late latent states.

(TIFF)

S5 Fig. Infections attributable to community household transmission by incidence level.

Annual number of TB infections (i.e., new cases of EL) attributed to community vs. household

transmission (y-axis) and incidence levels immediately before ACF (x-axis). Points are colored

by community clustering coefficient. These results are excluding model runs that did not result

in an outbreak. The line is the fitted spline calculated using the LOESS method in R [33].

(TIFF)

S6 Fig. Active TB incidence vs. network clustering coefficient. Active TB Incidence per

100,000 person-years vs. clustering coefficient. These results are excluding model runs that did

not result in an outbreak. The line is the fitted spline calculated using the LOESS method in R

[33].

(TIFF)

S7 Fig. Transmission parameters vs. network parameters. Community beta vs. average

degree colored by incidence (top left). Community beta vs. average connection radius colored

by incidence (top right). Household beta vs. average degree colored by incidence (bottom left).

Household beta vs. average connection radius colored by incidence (bottom right). These

results are excluding model runs that did not result in an outbreak.

(TIF)

S8 Fig. Performance of HHCT across incidence levels. Ridgeline plot showing performance

of HHCT across different pre-ACF incidence levels (per 100,000 person years) using passive

detection only as a reference group. The median is denoted by the solid vertical black line and

the dashed vertical black line denotes a null rate ratio (RR) equal to 1.

(TIFF)
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S9 Fig. Performance of HHCT across incidence level and average degree. Ridgeline plot

showing performance of screening interventions within strata of average degree and incidence

(per 100,000 person years). The median is denoted by the solid vertical black line. The dashed

vertical black line denotes a null RR equal to 1.

(TIFF)

S10 Fig. Performance of HHCT across incidence level and average connection radius.

Ridgeline plot showing performance of screening interventions within strata of average con-

nection radius (σ) and incidence (per 100,000 person years). The median is denoted by the

solid vertical black line. The dashed vertical black line denotes a null RR equal to 1.

(TIFF)

S11 Fig. Performance of HHCT across average degree and average connection radius

strata. Ridgeline plot showing performance of screening interventions within strata of average

degree and average connection radius (σ). The median is denoted by the solid vertical black

line. The dashed vertical black line denotes a null RR equal to 1.

(TIFF)

S12 Fig. Performance of HHCT across incidence level and clustering coefficient. Ridgeline

plot showing performance of screening interventions within strata of community clustering

coefficient and incidence level. The median is denoted by the solid vertical black line. The

dashed vertical black line denotes a null RR equal to 1.

(TIFF)

S13 Fig. 100 best performing model runs. The 100 best performing model runs (i.e., with the

lowest rate ratios), for HHCT and among incidence rates between 100 to 200 cases per 100,000

person years. We plotted these trajectories immediately before and after ACF was imple-

mented. The vertical dashed red line indicates the time step in which active screening interven-

tions were implemented. The line is the fitted spline calculated using the LOESS method in R

[33].

(TIFF)

S14 Fig. Performance of community CT across settings. Fitted splines representing relation-

ship between all RRs comparing community CT to passive surveillance only and (1) the inci-

dence rate immediately before community CT (per 100,000 person-years) (top left), (2) the

average degree (top right), (3) the community clustering coefficient (bottom left), and (4) the

average connection radius (bottom right). Lines are splines calculated using the LOESS

method in R [33]. Among model runs with incidence rates between 20 and 400 cases per

100,000 person-years. Shaded regions represent 95% confidence intervals.

(TIF)

S15 Fig. Performance of community-wide ACF across settings. Fitted splines representing

relationship between all RRs comparing community-wide ACF to passive surveillance only

and (1) the incidence rate immediately before community-wide ACF (per 100,000 person-

years) (top left), (2) the average degree (top right), (3) the community clustering coefficient

(bottom left), and (4) the average connection radius (bottom right). Lines are splines calculated

using the LOESS method in R [33]. Among model runs with incidence rates between 20 and

400 cases per 100,000 person-years. Shaded regions represent 95% confidence intervals.

(TIF)

S16 Fig. Average infectious period duration. Ridgeline plot showing how the average infec-

tious period in months varies by screening intervention. The median is denoted by the solid
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vertical black line.

(TIFF)

S17 Fig. Average secondary cases averted from preventive therapy. Ridgeline plot showing

how the average number of secondary cases averted among household contacts varies by

screening intervention. The median is denoted by the solid vertical black line.

(TIFF)

S18 Fig. Ratio of preventive therapy to treatment by interventions. Ridgeline plot showing

the total number of preventive therapy administrations divided by the total number of treat-

ment administrations by screening intervention. The median is denoted by the solid vertical

black line.

(TIFF)

S19 Fig. Prevalence of LTBI and active TB among household and community contacts.

Ridegeline plots representing the prevalence of LTBI and active TB among household and

community contacts across all simulation runs. (1) LTBI among household contacts (top left),

(2) Active TB among household contacts (top right), (3) LTBI among community contacts

(bottom left), and (4) Active TB among community contacts (bottom right). The median is

denoted by the solid vertical black line.

(TIF)

S20 Fig. Household vs. Community transmission and HHCT performance. Fitted splines

representing relationship between all RRs comparing HHCT to passive surveillance only and

the number of community attributable infections to household attributable infections. We

removed extreme community to household transmission ratios <2.5% and>97.5% to make

the figure easier to interpret. Lines are splines calculated using the LOESS method in R [33].

Among model runs with incidence rates between 20 and 400 cases per 100,000 person-years.

Shaded regions represent 95% confidence intervals.

(TIFF)

S21 Fig. Varying HHCT coverage. Ridgeline plot showing performance of screening inter-

ventions within strata of HHCT coverage and incidence level. The median is denoted by the

solid vertical black line. The dashed vertical black line denotes a null RR equal to 1.

(TIFF)

S22 Fig. Performance of HHCT across settings with Imported TB Cases. Fitted splines rep-

resenting relationship between all RRs comparing HHCT to passive surveillance only and (1)

the incidence rate immediately before HHCT (per 100,000 person-years) (top left), (2) the

average degree (top right), (3) the community clustering coefficient (bottom left), and (4) the

average connection radius (bottom right). Lines are splines calculated using the LOESS

method in R [33]. Among model runs with incidence rates between 20 and 400 cases per

100,000 person-years. Shaded regions represent 95% confidence intervals.

(TIF)

S23 Fig. Performance of community CT across settings with Imported TB Cases. Fitted

splines representing relationship between all RRs comparing Community CT to passive sur-

veillance only and (1) the incidence rate immediately before community CT (per 100,000

person-years) (top left), (2) the average degree (top right), (3) the community clustering

coefficient (bottom left), and (4) the average connection radius (bottom right). Lines are

splines calculated using the LOESS method in R [33]. Among model runs with incidence

rates between 20 and 400 cases per 100,000 person-years. Shaded regions represent 95%
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confidence intervals.

(TIF)

S24 Fig. Performance of community-wide ACF across settings with imported TB cases. Fit-

ted splines representing relationship between all RRs comparing Community-wide ACF to

passive surveillance only and (1) the incidence rate immediately before Community-wide ACF

(per 100,000 person-years) (top left), (2) the average degree (top right), (3) the community

clustering coefficient (bottom left), and (4) the average connection radius (bottom right).

Lines are splines calculated using the LOESS method in R [33]. Among model runs with inci-

dence rates between 20 and 400 cases per 100,000 person-years. Shaded regions represent 95%

confidence intervals.

(TIF)

S1 Table. HHCT RRs by incidence strata in order of performance.

(PDF)

S2 Table. HHCT RRs by average degree strata in order of performance.

(PDF)

S3 Table. HHCT RRs by average connection radius in order of performance.

(PDF)

S4 Table. HHCT RRs by clustering coefficient strata in order of performance.

(PDF)

S5 Table. Community CT compared with passive surveillance only RRs by incidence strata

in order of performance.

(PDF)

S6 Table. Community CT compared with passive surveillance only RRs by average degree

strata in order of performance.

(PDF)

S7 Table. Community CT compared with passive surveillance only RRs by average connec-

tion radius in order of performance.

(PDF)

S8 Table. Community CT compared with passive surveillance only RRs by clustering coef-

ficient strata in order of performance.

(PDF)

S9 Table. Community-wide ACF compared with passive surveillance only RRs by inci-

dence strata in order of performance.

(PDF)

S10 Table. Community-wide ACF compared with passive surveillance only RRs by average

degree strata in order of performance.

(PDF)

S11 Table. Community-wide ACFcompared with passive surveillance only RRs by average

connection radius in order of performance.

(PDF)

S12 Table. Community-wide ACF compared with passive surveillance only RRs by cluster-

ing coefficient strata in order of performance.

(PDF)
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S13 Table. Hierarchical model. Exploring the impacts of stochasticity, network realization

and model parameterization on RRs.

(PDF)

S1 Text. Additional details about methods, and results. Network kernel formula, generated

network features, more details about natural history model and interventions, simulation

workflow, epidemiology of modeled population, performance of screening interventions

within strata of network parameters and incidence, model trajectories of best performing runs.

(PDF)
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