
PNAS Nexus, 2024, 3, pgae535 

https://doi.org/10.1093/pnasnexus/pgae535
Advance access publication 29 November 2024 

Research Report

Temporal attention amplifies stimulus information 
in fronto-cingulate cortex at an intermediate 
processing stage
Jiating Zhu a,*, Karen J. Tiana,b, Marisa Carrasco b,c and Rachel N. Denison a,b,c

aDepartment of Psychological and Brain Sciences, Boston University, 64 Cummington Mall, Boston, MA 02215, USA
bDepartment of Psychology, New York University, 6 Washington Place, New York, NY 10003, USA
cCenter for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA
*To whom correspondence should be addressed: Email: jtszhu@bu.edu
Edited By Stephen Fleming

Abstract
The human brain faces significant constraints in its ability to process every item in a sequence of stimuli. Voluntary temporal attention 
can selectively prioritize a task-relevant item over its temporal competitors to alleviate these constraints. However, it remains unclear 
when and where in the brain selective temporal attention modulates the visual representation of a prioritized item. Here, we 
manipulated temporal attention to successive stimuli in a two-target temporal cueing task, while controlling for temporal expectation 
with fully predictable stimulus timing. We used magnetoencephalography and time-resolved decoding to track the spatiotemporal 
evolution of stimulus representations in human observers. We found that temporal attention enhanced the representation of the first 
target around 250 ms after target onset, in a contiguous region spanning left frontal cortex and cingulate cortex. The results indicate 
that voluntary temporal attention recruits cortical regions beyond the ventral stream at an intermediate processing stage to amplify 
the representation of a target stimulus. This routing of stimulus information to anterior brain regions may provide protection from 
interference in visual cortex by a subsequent stimulus. Thus, voluntary temporal attention may have distinctive neural mechanisms 
to support specific demands of the sequential processing of stimuli.
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Significance Statement

When viewing a rapid sequence of visual input, the brain cannot fully process every item. Humans can attend to an item they know 
will be important to enhance its processing. However, how the brain selects one moment over others is little understood. We found 
that attending to visual information at a precise moment in time enhances visual representations around 250 ms after an item ap-
pears. Unexpectedly, this enhancement occurred not in the visual cortex, but in the left fronto-cingulate cortex. The involvement 
of frontal rather than posterior cortical regions in representing visual stimuli has not typically been observed for spatial or feature- 
based attention, suggesting that temporal attention may have specialized neural mechanisms to handle the distinctive demands of 
sequential processing.
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Introduction
Attention as a cognitive process allows us to select the most rele-
vant sensory information to guide our behavior given our limited 

processing resources. Attentional selection happens not only 

across space but also across time as we process continuous visual 

input in our dynamic environment (1–5). The goal-directed priori-

tization of a task-relevant time point is voluntary temporal atten-

tion (6, 7). For example, when returning a table tennis serve, we 

voluntarily attend to the ball at the moment it bounces on the 

table, because it is critical to see the ball at this time to successful-

ly return the serve (8). Attending earlier or later is less useful for 

predicting the trajectory of the ball.
In the temporal domain, limitations in continuous visual pro-

cessing are often studied by using a rapid sequence of stimuli, in 

which observers are asked to prioritize one or more events. 

Various behavioral findings indicate that the brain cannot fully 

process each stimulus in a rapid sequence (9, 10). In the attention-

al blink, detection accuracy for the second of two target stimuli 
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suffers when the stimuli are separated by 200–500 ms (10, 11). In 
temporal crowding, the identification of a target stimulus is im-
paired when it is surrounded by other stimuli in time, across simi-
lar intervals of 150–450 ms (12, 13). At this timescale, voluntary 
temporal attention can flexibly prioritize stimuli at relevant 
time points, improving perceptual sensitivity and reaction time 
for temporally attended stimuli at the expense of the processing 
of stimuli earlier and later in time, effectively reducing temporal 
constraints by selecting one stimulus over others (4, 6, 14–16).

Despite the behavioral evidence for selectivity in temporal at-
tention, little is known about the neural mechanisms underlying 
the ability to selectively attend to one point in time over another. 
Neural correlates of temporal anticipation have generally been 
studied by manipulating the timing predictability of a single target 
stimulus (5, 7, 17–21). Predictability increases the firing rates of in-
ferotemporal neurons in nonhuman primates (17) and the ampli-
tude of visual evoked potentials in human electroencephalogram 
(EEG) around 100–150 ms after stimulus onset (18, 22) and induces 
anticipatory activity in human EEG before the expected time (23, 
24). However, studies with a single target stimulus cannot disen-
tangle the process of attending to a task-relevant time point from 
processes associated with the temporal predictability of the target 
onset, or temporal expectation. In the spatial and feature-based 
domains, attention and expectation can have distinct behavioral 
and neural effects, indicating the importance of experimentally 
dissociating these two processes (25–29). In addition, mechanisms 
for selecting a task-relevant stimulus from a sequence may differ 
from those involved in enhancing a single stimulus with no other 
temporally proximal stimuli. This is because multiple stimuli in a 
rapid sequence may create competition for processing resources 
that a single, isolated stimulus does not.

Consequently, it remains unknown how humans use voluntary 
temporal attention to flexibly select a relevant stimulus represen-
tation within a sequence, at the expense of temporal competitors. 
Specifically, it is unclear what stage or stages of visual processing 
are affected by temporal attention. Temporal attention, like spa-
tial attention (30–32) and feature-based attention (33–35) could af-
fect early visual representations, and there is initial evidence that 
temporal attention can improve the reliability of visual responses 
(36). Alternatively or in addition, temporal attention could affect 
later visual representations or the transfer of stimulus informa-
tion to downstream processing stages.

To study how temporal attention meditates selection, we 
therefore designed a minimal stimulus sequence with two tem-
porally predictable stimuli on each trial (4, 6). Only the time 
point to be attended, indicated at the beginning of each trial by 
a precue, varied across trials. With timing predictability con-
trolled, differences in the neural representations of a stimulus 
when it was temporally attended vs. unattended could be attrib-
uted to temporal attentional selection. We used magnetoence-
phalography (MEG) together with this psychophysical task to 
investigate when and where in the brain selective temporal at-
tention affects representations of visual stimuli. Our behavioral 
results confirmed that temporal attention improved perceptual 
sensitivity and speeded reaction time.

Using time-resolved decoding, we found that voluntary tem-
poral attention enhanced the orientation representation of the 
first grating target 235–300 ms after target onset, an intermediate 
time window following the earliest visual evoked responses. This 
time interval is consistent with temporal processing constraints 
revealed behaviorally by tradeoffs due to voluntary temporal at-
tention (4, 6), the attentional blink (10), and temporal crowding 
(13). In source space reconstructions, we found that although 

orientation decoding was strongest in occipital areas, as ex-
pected, the strongest effects of temporal attention on orientation 
representations appeared in left fronto-cingulate regions. 
Additionally, we found no impact of temporal attention on univari-
ate visual responses, unlike previous studies that manipulated 
temporal attention without isolating its effect from temporal ex-
pectation. Altogether the results suggest that voluntary temporal 
attention selectively prioritizes a target stimulus by amplifying its 
representation in fronto-cingulate regions at an intermediate 
processing stage around 250 ms, perhaps to protect it from a subse-
quent temporal competitor in visual cortex. This result suggests 
that temporal attention achieves stimulus selection using neural 
mechanisms for routing a stimulus representation not typically ob-
served for spatial or feature-based attention, perhaps due to the 
distinctive demands of sequential processing.

Results
Temporal precueing improved perceptual 
sensitivity
To investigate the effects of voluntary temporal attention, we re-
corded MEG while observers performed a two-target temporal cue-
ing task (Fig. 1A).  At the start of each trial, a precue tone instructed 
observers to attend to either the first target (T1) or the second target 
(T2). The two sequential grating targets were separated by a 300 ms 
stimulus onset asynchrony (SOA). At the end of each trial, a re-
sponse cue tone instructed observers to report the tilt (clockwise 
or counterclockwise) of one of the targets. The precue and response 
cue were matched on 75% of the trials (valid trials) and mis-
matched on 25% of the trials (invalid trials), so observers had an in-
centive to direct their attention to the precued target.

Importantly, targets were tilted independently about either the 
vertical or the horizontal axis, allowing us to use MEG to decode a 
sensory feature—axis orientation—that was orthogonal to the 
participant’s report. Targets were oriented near vertical or hori-
zontal, with individually titrated tilt thresholds ranging from 0.4 
to 1.5◦ (mean 0.76◦), and the participant’s report was clockwise 
or counterclockwise tilt with respect to the main axis (Fig. 1B).

Temporal attention improved tilt discrimination performance, 
consistent with previous findings (4, 6, 15, 16, 24, 37). Perceptual sen-
sitivity (d′) was higher for valid trials than invalid trials (Fig. 1C; main 
effect of validity: F(1, 9) = 20.22, P = 0.0015, η2

G = 0.25). Perceptual 
sensitivity was similar for targets T1 and T2. The improvement in 
d′ with temporal attention was significant for both target T1 
(F(1, 9) = 26.98, P < 0.001, η2

G = 0.25) and target T2 (F(1, 9) = 10.19, 
P = 0.011, η2

G = 0.26). There was no main effect of target or inter-
action between validity and target (F(1, 9) < 0.59, P > 0.47).

Reaction time (RT) was faster for valid than invalid trials 
(Fig. 1D; main effect of validity: F(1, 9) = 70.60, P < 0.001, η2

G = 0.32) 
with improvements for both target T1 (F(1, 9) = 61.13, P < 0.001, 
η2

G = 0.35) and target T2 (F(1, 9) = 57.5, P < 0.001, η2
G = 0.30). There 

was no main effect of target or interaction between validity 
and target (F(1, 9) < 0.67, P > 0.43). Therefore, the improvement 
in perceptual sensitivity with the precue was not due to a 
speed-accuracy tradeoff.

No effect of temporal attention on visual evoked 
response peaks
We first investigated whether temporal attention affected uni-
variate visual evoked responses recorded from MEG. To do so, 
we identified visually responsive channels for each participant 
and session by ranking all 157 channels by the magnitudes of their 
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visually evoked responses following stimulus onset, regardless of 
the precue (see Methods). The average for the five most visually 
responsive channels, which were in posterior locations, shows 
clear visual evoked responses after each target (Fig. 2A), with no 
apparent effect of temporal attention. We characterized the 
evoked response peaks quantitatively and found no differences 
between precue conditions in the peak amplitudes of the evoked 
responses for any selected number of channels (Fig. 2B; T1: 
F(1, 9) < 1.31, P > 0.28; T2: F(1, 9) < 5.2 and P > 0.043 uncorrected; 
none survived corrections for multiple comparisons across chan-
nel groupings). Likewise, we observed no differences in evoked re-
sponse peak latencies (Fig. 2C; T1: F(1, 9) < 1.67, P > 0.23; T2: 
F(1, 9) < 2.65, P > 0.14). Thus, we found no evidence that voluntary 
temporal attention affected visual evoked responses, when as-
sessed in a univariate fashion.

Temporal attention increased orientation 
decoding performance following the initial visual 
evoked response
To investigate whether temporal attention improved the re-
presentation of orientation information, we next examined multi-
variate patterns from the MEG channels, using decoding accuracy 
as an index of the quality of orientation representations. For each 
participant and session, we selected the 50 most visually respon-
sive channels for decoding analysis (see Methods). As expected, 
the selected channels tended to be in posterior locations (Fig. 3 in-
set at top right).

We trained separate orientation classifiers for T1 and T2, 
which on each trial had independent vertical or horizontal axis 
orientations. For both targets, decoding performance reached 

about 65% accuracy, peaking around 150 ms after target onset 
(Fig. 3A and B). There was no significant difference between the 
peak decoding performance of the two targets (decoding accuracy 
at 150 ± 25 ms, t = 1.81, P > 0.10). Therefore, stimulus orientation 
was decodable for both targets, with comparable performance 
for T1 and T2, allowing us to investigate the time-resolved orien-
tation representation of each target separately. Note this method 
cannot be used to decode the stimulus orientation before target 
onset, because according to our task design, no orientation infor-
mation is available before the target appears. Thus, this analysis 
would not be able to identify prestimulus effects of temporal at-
tention vs. temporal expectation.

To investigate the effect of temporal attention on the orienta-
tion representation of each target, we next trained and tested 
time-resolved classifiers on target attended trials and unattend-
ed trials separately. T1 decoding accuracy was higher on at-
tended than unattended trials in a time window 235–300 ms 
after target onset (P < 0.05 cluster-corrected; Fig. 3C). This 
significant window started about 100 ms after orientation de-
coding performance peaked and ended just before T2 appeared. 
There was no similar enhancement when decoding the T2 orien-
tation (Fig. 3D).

We confirmed the enhancement of temporal attention on 
orientation decoding for T1 around 250 ms in a separate dataset, 
in which the targets were superimposed on a 20-Hz flickering 
noise patch instead of a blank background (see Fig. S2 and 
Supplementary Text). Again we found no significant attentional 
enhancement for T2. The enhancement of the orientation re-
presentation for T1 around 250 ms in two datasets confirms the 
robustness of this finding and its specificity to the first target.

Fig. 1. Two-target temporal cueing task and behavioral results. A) Trial timeline showing stimulus durations and SOAs. Precues and response cues were 
pure tones (high = cue T1, low = cue T2). B) Targets were independently tilted about the vertical or horizontal axes. Participants were instructed to report 
the clockwise or counterclockwise tilt of the target indicated by the response cue, and axis orientation was the decoded stimulus property. C) Tilt 
discrimination (sensitivity) and D) reaction time for each target (T1, T2) and validity condition. Sensitivity was higher and reaction time was faster for 
valid (V) compared to invalid (I) trials. Error bars indicate ±1 SEM. ∗∗ P < 0.01; ∗∗∗ P < 0.001.
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Widespread decodability of orientation 
representations across cortex
We next asked how orientation representations and the effect of 
temporal attention varied across the cortex. We focused our 
spatial analysis on T1, because we found no effect of temporal at-
tention on T2 decoding at the channel level. Using source recon-
struction, we estimated the MEG response at each time point at 
vertex locations across the cortical surface (38, 39). We then ap-
plied time-resolved decoding analysis to vertices in each of 34 bi-
lateral Desikan–Killiany (DK) atlas regions of interest (ROIs) (40). 
MEG source reconstruction has spatial specificity on the order of 
<5 cm for cortical brain areas (41–43), and the spatial scale of 
the DK atlas is typical for reporting MEG decoding performance 
(44–47). To be conservative, we report all main findings at the scale 
of cortical lobes. In the critical time window, orientation decoding 
performance across all trials was highest in posterior regions, as 
expected (Fig. 4A). We obtained decoding performance for the oc-
cipital, parietal, temporal, and frontal lobes by averaging decod-
ing performance across the ROIs within each lobe (48).

The T1 decoding performance for each of the four lobes at each 
time point showed a systematic pattern of decoding accuracy: 
highest in occipital, lower in parietal and temporal, and lowest 
in the frontal lobe (Fig. 4B). In addition, decoding performance 
peaked later in the frontal lobe than in the other three lobes, 
around 250 ms. Such progression of decoding strength and 

timing across lobes is consistent with the visual processing hier-
archy, demonstrating the feasibility of decoding orientation in 
source space.

Temporal attention enhanced orientation 
representations in left fronto-cingulate cortex
We next asked where in the brain temporal attention increases 
orientation representations of T1 during the critical time window 
(235–300 ms after target onset; Fig. 3). In this time window, al-
though the frontal lobe had lower decoding overall, it showed 
the biggest difference between attended and unattended trials 
(Fig. 4C), which was statistically reliable (F(1, 9) = 7.29, P = 0.024, 
η2

G = 0.12). The occipital lobe (F(1, 9) = 3.40, P = 0.098, η2
G = 0.098) 

and the parietal lobe (F(1, 9) = 3.49, P = 0.095, η2
G = 0.13) showed 

marginal differences between attention conditions, while the 
temporal lobe had no statistically significant difference 
(F(1, 9) < 0.39, P > 0.54).

To more precisely localize the cortical regions underlying the 
enhancement of orientation representations, we examined orien-
tation decoding in the 34 DK ROIs in each hemisphere within the 
critical time window (235–300 ms) in which temporal attention 
improved T1 decoding in sensor space. One spatial cluster showed 
an attentional enhancement of orientation decoding that sur-
vived the cluster permutation correction across ROIs (regions in 
the cluster are marked by © in Fig. 4D). This significant cluster 

Fig. 2. MEG evoked responses. A) Average evoked time series by precue from the five most visually responsive channels. Channels were rank ordered by 
evoked peak prominence. Target onsets are marked with gray vertical lines. Varying the number of selected channels yielded no differences in 
target-evoked B) peak amplitude or C) peak latency between precue conditions for either target in any channel grouping.
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was comprised of eight regions in the left hemisphere: seven in the 
frontal lobe and one in the parietal lobe. The eight regions ranked 
by their P-values were: left rostral middle frontal, pars triangula-
ris, pars opercularis, caudal anterior cingulate, caudal middle 
frontal, superior frontal, lateral orbital frontal, and posterior cin-
gulate. If we treat the cingulate cortex as a separate lobe (48), two 
of the regions in the cluster, including the parietal region, were in 
the cingulate lobe. Therefore, we characterize the significant clus-
ter as located in left fronto-cingulate cortex.

We next investigated the time-resolved decoding performance 
in the fronto-cingulate cluster by averaging across the eight re-
gions at every time point. Orientation decoding performance 
was enhanced in target attended trials in a time window (240– 
270 ms) which fell within the significant time window we found 
in the sensor space (Fig. 4E), confirming that the critical time win-
dow was recovered from the fronto-cingulate cluster alone. In 
addition, decoding performance in the cluster peaked around 
250 ms in target attended trials, with no transient early peak as 
was found in the occipital lobe. This time course indicates that 
the orientation information decoded from the fronto-cingulate 
cluster did not arise from signal leakage from the occipital lobe 
during source reconstruction.

Finally, we investigated the degree of hemispheric lateraliza-
tion in the regions with the strongest attention effects (Fig. 4F). 
Regions located on the lateral surface of the hemisphere were 
strongly lateralized, with significant differences between at-
tended and unattended trials for regions in the left hemisphere 
but not in their right hemisphere counterparts, whereas medial 
regions tended to have bilateral attention effects. It is important 

to note that source estimation may not be sufficiently precise to 
fully localize signals arising from the medial surface to the correct 
hemisphere, due to the spatial proximity of the two hemispheres 
at the midline (49). At the same time, the bilateral pattern for 
these midline regions increases confidence that the signals origi-
nated from cingulate cortex rather than from more lateral frontal 
areas. Altogether, the source analysis reveals that the strongest 
temporal attentional enhancement of orientation representations 
was left-lateralized in the fronto-cingulate cortex.

Discussion
The visual system faces significant constraints in processing the 
continuous visual information it receives. Humans can cognitive-
ly manage these constraints by using voluntary temporal atten-
tion to prioritize stimuli at task-relevant times at the expense of 
processing temporal competitors, but the neural mechanisms 
underlying this ability have received scant investigation. Here, 
we experimentally manipulated temporal attention—while con-
trolling temporal expectation—and used time-resolved MEG de-
coding (45, 50) together with source localization to uncover how 
voluntary temporal attention selectively enhances neural repre-
sentations of oriented stimuli at task-relevant points in time with-
in a stimulus sequence. Our results reveal neural mechanisms of 
temporal attentional selection, and, unexpectedly, argue for a 
specific role of the left fronto-cingulate cortex in amplifying target 
information under temporal constraints.

We found, in two independent datasets, that temporal atten-
tion enhanced the orientation representation of the first target 

Fig. 3. Decoding performance in MEG sensor space. Event onsets are marked with vertical dashed lines. A) T1 orientation decoding performance for all 
trials. B) T2 orientation decoding performance for all trials. Inset in (B) shows the topography of channels used for decoding across all sessions (the 50 
most visually responsive channels per session). C) T1 orientation decoding performance for target attended (precue T1) and unattended (precue T2) trials. 
Enhancement of orientation representation occurred 235–300 ms after target onset; gray shaded region shows cluster-corrected significant window 
(“critical time window”). D) T2 orientation decoding performance for target attended (precue T2) and unattended (precue T1) trials.
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at an intermediate processing stage around 250 ms: later 
than early visual event-related responses and the peak orienta-
tion decoding accuracy (∼120–150 ms after target onset) (50–52), 
but before decoding performance fell to chance (∼500 ms), and 

just before the onset of T2. Interestingly, this window corre-
sponds to the interval when temporal attention is maximally 
selective. In Denison et al. (6), maximal attentional tradeoffs 
in behavior appeared when the two targets were separated 

Fig. 4. Decoding performance in MEG source space and topography of temporal attentional enhancement of orientation representations. A) T1 decoding 
performance for 34 bilateral DK atlas regions averaged across time points within the critical time window. The regions with the highest decoding 
performance were posterior regions in light yellow. B) T1 decoding performance from all trials by lobe. Consistent with T1 decoding performance 
from sensor space, decoding performance for the occipital, parietal, and temporal lobes peaked around 150 ms after target onset, whereas frontal 
decoding peaked later, around 250 ms. C) Effect of temporal attention averaged across time points within the critical time window. Error bars indicate ±1 
SEM. * P < 0.05, ∼ P < 0.1. D) T1 decoding differences between attended and unattended conditions for left (L) and right (R) hemispheres, based on the 
average decoding performance within the critical time window for each of 68 DK ROIs. A connected left fronto-cingulate region survived spatial cluster 
correction (P < 0.05, ROIs in the cluster marked with © symbol). E) Time-resolved decoding accuracy of the cluster (average across the eight ROIs marked 
with © in (D)) recovers enhancement of orientation representation within the critical time window (240–275 ms after target onset, gray shaded region). 
F) Left lateralization of effect of temporal attention on T1 decoding in the critical time window. ROIs ordered by their attended vs. unattended P-values, 
based on the hemisphere with the strongest attention effect (all ROIs with uncorrected P < 0.05 in at least one hemisphere are shown). ROIs on the lateral 
surface of the cortex show strong left lateralization of temporal attention, whereas ROIs on the medial surface show more bilateral effects of temporal 
attention. Error bars indicate ±1 SEM.
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by an SOA of 250 ms, with decreasing tradeoffs at shorter and 
longer SOAs.

Attention enhanced orientation decodability for T1 but not for 
T2, despite equivalent behavioral effects of temporal attention for 
both targets. This dissociation suggests that temporal attention 
modulates the processing of the two targets by different mecha-
nisms. Such differences may not be surprising. Unlike in spatial 
attention, where attending to a stimulus on the left is not funda-
mentally different from attending to one on the right, temporal at-
tention interacts with the directionality of time. T1 processing is 
not complete when T2 appears, whereas T2 appears in the context 
of ongoing T1 processing. One possibility is that temporal atten-
tion may route T1 information to the fronto-cingulate cortex to 
protect it from interference in the visual cortex, at a sensory en-
coding stage, when T2 appears. T2 information, on the other 
hand, does not need to be transferred to fronto-cingulate cortex, 
as there is no subsequent temporal competitor. Selection of T2 
may take place instead at a later stage (e.g. during a decision read-
out). If attentional selection only affects a later stage of T2 pro-
cessing, we would not be able to observe it with our current 
measure, which reflects a sensory feature of the stimulus that is 
orthogonal to the task-relevant stimulus information. The finding 
that attentional enhancement of orientation information was 
specific to the first target is consistent with a previous two-target 
temporal cueing study, which found that temporal attention in-
creased the reliability of T1 responses (36). Thus, modulating 
the first target may be sufficient to bias downstream competition 
for processing T1 vs. T2. Previous behavioral results from a tem-
poral attention task with three sequential targets have also sug-
gested temporal asymmetries (4). Such specialized mechanisms 
for temporal attentional selection may reflect the demands of dy-
namic, sequential processing.

Although studies of temporal expectation have found modula-
tions of visual cortical responses (17, 18, 20–22), we found that the 
most reliable modulations of sensory representations by temporal 
attention were not in the ventral stream. Rather, the left frontal 
cortex and cingulate regions showed the strongest attentional 
modulations of orientation decoding, even though they had lower 
overall orientation decoding levels than occipital regions. Few 
studies have investigated how attention affects stimulus repre-
sentations in frontal or cingulate cortices. Two studies reported 
better decoding of stimulus representations in precentral sulcus 
when the decoded feature dimension was task-relevant vs. irrele-
vant (53, 54). Fronto-cingulate neurons also carry information 
about the location of spatial attention (55–57). Previous studies 
could not have uncovered effects of temporal attention on neural 
representations beyond visual areas, because they used electrode 
penetrations confined to sensory areas, or EEG methods which did 
not permit high spatial resolution source reconstruction. Taking 
advantage of the combined temporal and spatial resolution of 
MEG, the present results revealed which cortical areas were 
modulated by temporal attention during the precise time window 
when this modulation occurred.

The strong left lateralization we observed in frontal and cingu-
late areas is consistent with studies that have recorded a left 
hemisphere bias for temporal cueing using positron emission 
tomography (PET) and fMRI (19, 58–62). In particular, the left infer-
ior frontal gyrus (BA44/6) found in temporal orienting of attention 
(19) overlaps with the pars opercularis region, which is one of the 
frontoparietal regions we found to have the strongest temporal at-
tention effect. In these previous studies, univariate measures 
showed activity in these regions, but their precise function was 
unclear. One interpretation was that these frontoparietal regions 

could be part of a control network for the deployment of attention 
at specific time points (63, 64). The current findings that these 
areas carry orientation-specific information, which is enhanced 
when temporally attended, suggest the alternative possibility 
that these areas are involved in maintaining attended stimulus 
representations. It is also possible that a left frontoparietal net-
work is recruited for multiple aspects of temporal attention, in-
cluding both control and stimulus selection.

The eight connected fronto-cingulate regions showing higher 
decoding performance for attended targets overlap substantially 
with regions that have been associated with the cingulo-opercular 
(CO) network (65). The CO regions—the dorsal anterior cingulate 
cortex/medial superior frontal cortex (dACC/msFC) and anterior 
insula/frontal operculum (aI/fO)—show activity in diverse tasks 
(66). In a visual working memory task, a retrocue directing focus 
to an item already in memory recruited the CO network (67), sug-
gesting that CO regions were selecting the cued item and re-
formatting it into an action-oriented representation (68). The CO 
network has also been found to flexibly affiliate with other net-
works depending on task demands in cognitive tasks with differ-
ent combinations of logic, sensory, and motor rules (69). Based 
on these findings, we might speculate that the CO network pro-
vides extra cortical resources to maintain and possibly reformat 
the representation of the first target, which might otherwise get 
overwritten by the second target within the visual cortex.

The possibility that the CO regions select the cued item and en-
code the reformatted representation could suggest that temporal 
attention contributes to prioritization in working memory by 
selecting stimulus information for working memory encoding or 
reformatting. However, it is unlikely that the transient enhance-
ment of orientation representations we observed is tied to working 
memory maintenance. In typical working memory tasks, the de-
lay period is several seconds (70, 71), whereas here we found 
enhancement around 250 ms and indeed no above-chance orien-
tation decoding after 800 ms.

Previous research supports the idea that temporal anticipation 
can protect target processing from a subsequent distractor. One 
study used a warning signal on some trials to cue observers to 
an upcoming target that could be followed after 150 ms by a dis-
tractor. When the warning signal was present, orientation decod-
ing for the target was enhanced ∼200–250 ms after target onset 
(21), but only when the distractor was present, suggesting that 
the warning signal served to reduce distractor interference. 
Another study, on working memory, presented distractors at a 
predictable time during the retention interval, 1.1 s following the 
final memory target. Occipital alpha power and phase locking in-
creased just before the distractor appeared and were associated 
with reduced impact of the distractor on memory performance 
(72). These studies, which involved different task types, temporal 
scales between targets and distractors, and measured neural sig-
nals, suggest that the brain may have diverse mechanisms for 
shielding target processing from temporally anticipated distrac-
tors. Here, we isolated the contribution of voluntary temporal 
attention to enhancing target processing in the presence of tem-
poral distractors, while controlling other voluntary and involun-
tary processes related to stimulus predictability and alerting, to 
reveal the flexible, top-down mechanisms of temporal selection. 
In this case, attention enhanced target stimulus representations 
even before the temporal competitor appeared.

Isolating temporal attention from other processes also indi-
cated that the mechanisms of temporal attention may be distinct 
from those of temporal expectation. Studies that manipulated 
temporal attention together with temporal expectation by 
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manipulating the timing predictability of a single target stimulus 
found enhancements in early visual evoked responses (17, 18, 22, 
73), which we did not observe in response to our targeted manipu-
lation of temporal attention. Although it is difficult to reach a 
strong conclusion from the absence of an effect, we did observe 
attention-related changes in neural activity at intermediate time 
windows—confirming the sensitivity of our measurements—and 
found no evidence for effects of temporal attention on univariate 
evoked responses across a range of channel selections. It is there-
fore possible that previous observations of early modulations of 
visual responses were more closely linked to timing predictability 
than to the prioritization of a task-relevant time point per se.

Temporal attention may also affect early sensory processing in 
some other way than increasing visual evoked responses. A recent 
study from our group measured occipital cortical responses to 
a steady-state flickering stimulus with overlaid targets (36). 
Temporal attention to the first target transiently increased the ef-
fect of the target on the steady-state response ∼150 ms after target 
onset, demonstrating early modulations specific to temporal at-
tention. In our current data, we also observed an early peak in de-
coding accuracy for T1 that was present when T1 was attended 
but absent when it was unattended, which was localized to occipi-
tal and parietal regions. However, this difference between atten-
tion conditions did not survive cluster correction across the 
whole time series (see Fig. S3 and Supplementary Text), likely 
due to the brief duration of the peak.

Indeed, here when isolating temporal attention from temporal 
expectation, we found the strongest effects of temporal attention 
in fronto-cingulate cortex. Temporal cueing studies that com-
bined temporal attention and expectation were not able to inves-
tigate stimulus representations in these anterior brain regions. 
Therefore, although the present results suggest distinct mecha-
nisms for temporal attention and temporal expectation, future 
studies that independently manipulate these two processes in 
the same experiment will be important for resolving their shared 
and distinct mechanisms.

Conclusions
We found that using voluntary temporal attention to select one 
stimulus over another within a short sequence enhanced the 
neural representation of the selected stimulus identity. This 
enhancement occurred around 250 ms after the onset of the 
first target, reflecting an intermediate stage of processing that 
matches the timing of maximal temporal attentional tradeoffs 
observed behaviorally (6). Surprisingly, the enhancement was lo-
calized not to visual cortical regions but to left-lateralized 
fronto-cingulate cortex. The results suggest that temporal atten-
tion improves visual task performance by routing target infor-
mation to these anterior regions, which may act as a protective 
reservoir for task-relevant information in the presence of a sub-
sequent temporal competitor. In contrast, we found no effect of 
temporal attention—when isolated from temporal expectation 
—on visual evoked responses. The results thus revealed a role 
for cortical areas beyond the ventral stream in the temporal se-
lection of a behaviorally relevant target and uncovered an un-
foreseen effect of voluntary temporal attention.

Methods
Observers
Ten observers (five females, mean age = 29 years old, SD = 4  
years), including authors R.N.D. and K.J.T., participated in the 

study. Each observer completed one behavioral training session 
and two 2-h MEG sessions on separate days for 20 sessions of 
MEG data in total. This approach allowed us to check the reliabil-
ity of the data across sessions for each observer and is similar to 
the approach taken by other MEG studies of vision (74, 75). All ob-
servers had normal or corrected-to-normal vision using MR safe 
lenses. All observers provided informed consent and were com-
pensated for their time. Experimental protocols were approved 
by the University Committee on Activities involving Human 
Subjects at New York University.

Stimuli
Stimuli were generated using MATLAB and Psychtoolbox (76–78) 
on an iMac.

Stimuli were projected using a InFocus LP850 projector (Texas 
Instruments, Warren, NJ, USA) via a mirror onto a translucent 
screen. The screen had a resolution of 1,024 × 768  pixels and a re-
fresh rate of 60 Hz and was placed at a viewing distance of 42 cm. 
Stimuli were displayed on a medium gray background with a lu-
minance of 206 cd/m2. Target timing was checked with photo-
diode measurements. For behavioral training sessions outside of 
the MEG, stimuli were presented on a gamma-corrected Sony 
Trinitron G520 CRT monitor with a resolution of 1,024 × 768  pixels 
and a refresh rate of 60 Hz placed at a viewing distance of 56 cm. 
Observers were seated at a chin-and-head rest to stabilize their 
head position and viewing distance.

Visual targets. Visual targets were full contrast sinusoidal gra-
tings with spatial frequency of 1.5 cpd presented foveally. The gra-
tings were 4◦ in diameter and had an outer edge subtending 0.4◦

that smoothly ramped down to zero contrast.
Auditory cues. Auditory precues and response cues were pure 

sine wave tones 100 ms in duration with 10 ms cosine amplitude 
ramps at the beginning and end to prevent clicks. Tones were ei-
ther high-pitched (1,046.5 Hz, C6) indicating T1 or low-pitched 
(440 Hz, A4) indicating T2.

Task
Observers were asked to direct voluntary temporal attention to 
different time points in a sequence of two visual targets and to dis-
criminate the tilt of one target. On each trial, two targets (T1 and 
T2) appeared one after another in the same location. The targets 
were presented for 50 ms each and separated by a 300 ms SOA 
based on psychophysical studies that have shown temporal atten-
tional tradeoffs at this timescale (4, 6, 16). Each target was tilted 
slightly clockwise (CW) or counterclockwise (CCW) from either 
the vertical or horizontal axis (Fig. 1B). Tilts and axes were inde-
pendent and counterbalanced for each target.

An auditory precue 1,050 ms before the targets instructed ob-
servers to attend to either T1 (high tone) or T2 (low tone). An audi-
tory response cue 950 ms after the targets instructed observers to 
report the tilt (CW or CCW) of either T1 or T2. Observers pressed 
one of two buttons to indicate whether the tilt was CW or CCW 
relative to the main axis within a 1,500 ms response window. At 
the end of the trial, observers received feedback for their tilt report 
via a color change in the fixation circle (green: correct; red: incor-
rect; blue: response timeout).

On every trial, the targets were fully predictable in time follow-
ing the precue. The attended target varied trial-to-trial according 
to the precue, and the target selected for report varied trial-to-trial 
according to the response cue. On trials in which the precue di-
rected attention to one target (80% of trials), the precue and re-
sponse cue usually matched (75% validity), so the observers had 
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an incentive to direct their attention to the time point indicated by 
the precue. The precued target and cue validity were randomly in-
termixed across trials, for 192 trials per precue T1 and precue T2 
condition in each MEG session. Each trial was categorized as at-
tended for the precued target and unattended for the other target, 
yielding 192 attended and unattended trials for each target. Note 
that the response cue allowed us to verify that behavior depended 
on cue validity, but it was irrelevant to the conditions used for de-
coding, as it occurred at the end of the trial. In addition, the audi-
tory precue identity is independent of the orientation identity 
(vertical or horizontal), so it provides no information for decoding 
the stimulus representation.

The experiment also included neutral trials (20% of trials). On 
neutral trials, the auditory precue was a combination of the 
high and low tones, which directed attention to both targets and 
was thus uninformative. The inclusion of neutral trials allowed 
us to confirm the selectivity of temporal attention behaviorally 
(see Fig. S1 and Supplementary Text). However, the neutral condi-
tion had half the number of trials as the precue T1 and precue T2 
conditions and so was not included in the MEG analyses to ensure 
comparability across precue conditions, as decoding performance 
is sensitive to trial counts.

Training. Observers first completed a behavioral training ses-
sion (outside of MEG) to learn the task and determine their tilt 
thresholds. Tilts were thresholded individually per observer 
(mean tilt = 0.76◦) using a 3-up-1-down staircasing procedure 
to achieve ∼79% accuracy on neutral trials.

Eye tracking
Observers maintained fixation on a central circle that was 0.15◦ in 
diameter throughout each trial. Gaze position was measured us-
ing an EyeLink 1,000 eye tracker (SR Research Ltd., Ottawa, ON, 
Canada) with a sampling rate of 1,000 Hz. A five-point-grid cali-
bration was performed at the start of each session to transform 
gaze position into degrees of visual angle.

MEG
Each MEG session included 12 experimental blocks that were 
each approximately 6 min long. Observers could rest between 
blocks and indicated their readiness for the next block with a 
button press.

Before MEG recording, observer head shapes were digitized us-
ing a handheld FastSCAN laser scanner (Polhemus, VT, USA). 
Digital markers were placed on the forehead, nasion, and the 
left and right tragus and peri-auricular points. These marker loca-
tions were measured at the start and end of each MEG recording 
session. To accurately register the marker locations relative to 
the MEG channels, electrodes were situated on the locations iden-
tified by the digital markers corresponding to the forehead and left 
and right peri-auricular points.

MEG data was continuously recorded using a 157-channel axial 
gradiometer system (Kanazawa Institute of Technology, Kanazawa, 
Japan) in the KIT/NYU facility at New York University. 
Environmental noise was measured by three orthogonally posi-
tioned reference magnetometers, situated roughly 20 cm away 
from the recording array. The magnetic fields were sampled at 
1,000 Hz with online DC filtering and 200 Hz high-pass filtering.

Prepossessing
MEG preprocessing was performed in MATLAB using the FieldTrip 
toolbox for EEG/MEG-analysis (79) in the following steps: (i) Trials 
were visually inspected and manually rejected for blinks and 

other artifacts. The number of rejected trials per session ranged 
from 18 to 88 (3.49–17.05%), mean = 51.75 (10.03%), SD = 20.06. (ii) 
Problematic channels were automatically identified based on 
the standard deviations of their recorded time series. (iii) The 
time series from channels with extreme standard deviations 
were interpolated from those of neighboring channels. The num-
ber of interpolated channels per recorded session ranged from 
0 to 6 (0–3.82%), mean = 3.85 (2.45%), SD = 1.50. (iv) The time series 
recorded from the reference magnetometers were regressed from 
the channel time series to remove environmental noise.

Peak analysis
For each session, we sorted channels by their visual responsive-
ness, quantified by the prominence of the evoked response peaks 
in the average time series across all trials. We applied the MATLAB 
algorithm findpeaks.m to a 300 ms window following target onset, 
for each target, to identify the most prominent peak per target. 
Peak prominence quantifies how much the peak stands out rela-
tive to other peaks based on its height and location, regardless 
of the directionality of the peak. Peak directionality in MEG de-
pends on the orientation of the cortical surface with respect to 
the gradiometers, so visually responsive channels can show either 
upward or downward peaks. For each channel, we averaged peak 
prominence magnitude across the two targets, and ranked chan-
nels by this value. We confirmed the top ranked channels were in 
the posterior locations.

To assess whether temporal attention affects the evoked re-
sponse amplitude and latency, we first averaged the trial time 
series, for each observer and precue condition, across the top k 
channels, from k = 1 to k = 50, with channels sorted by their 
peak prominence rankings. Channels with downward peaks 
were sign-flipped, so that the direction of the evoked responses 
was consistent across channels. To capture the early visual 
evoked responses in the visually responsive channels, we ap-
plied the findpeaks.m algorithm to a 100–250 ms window follow-
ing each target and quantified the evoked response amplitude 
and latency per observer and precue condition for each channel 
grouping.

Source reconstruction
To examine the cortical sources of temporal attention effects ob-
served at the channel level, we performed source reconstruction 
using MNE Python (39). For each participant, a 3D mesh of the cor-
tex was generated from their structural MRI, with an approximate 
resolution of 4,000 vertices per hemisphere. The MEG and MRI 
were coregistered automatically (39, 80) based on the three ana-
tomical fiducial points and digitized points on the scalp scanned 
by the laser scanner. Forward models were computed using a 
single-shell Boundary Element Model (BEM), which describes the 
head geometry and conductivities of the different tissues. The for-
ward model was inverted using dynamic statistical parametric 
mapping (dSPM) (38) to compute source estimates for each trial 
and time point. The estimated source for each vertex was a dipole 
that was oriented perpendicular to the cortical surface. The posi-
tive or negative value of the dipole indicated whether the currents 
were outgoing or ingoing, respectively (81). For the dSPM localization 
method, the typical Dipole Localization Error (DLE) is around 2 cm 
and Spatial Dispersion (SD) is around 4 cm (42, 43). DLE measures 
the Euclidean distance between the maximum of maps constructed 
for each dipolar source and the true source location, whereas SD 
quantifies the spatial spread around the true source location (42, 49).
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We divided the brain into 34 bilateral regions defined by the 
DK atlas (40). An approximate mapping of individual “Desikan– 
Killiany” regions of interest (ROIs) to the occipital, parietal, 
temporal, and frontal lobes was applied, following Klein and 
Tourville (48).

Decoding
We trained linear support vector machine (SVM) decoders to clas-
sify stimulus orientation (vertical vs. horizontal) at each time 
point (50, 82). Trials were separated into training and testing 
sets in a 5-fold cross-validation procedure for unbiased estimates 
of decoding accuracy. Separate classifiers were trained for each 
target, yielding a time series of decoding accuracy for each target 
and each precue condition. For example, when decoding T1 orien-
tation, precue T1 trials would be attended and precue T2 trials 
would be unattended. To increase signal-to-noise, we averaged 
small numbers of trials (five trials) to create pseudotrials 
(52, 83, 84) and averaged across small time windows (5 ms) (83), 
and repeated the decoding procedure 100 times with random pseu-
dotrial groupings to remove any idiosyncrasies due to trial 
averaging.

To reduce noise in the classifier, we performed feature selec-
tion in sensor space by determining the number of channels 
that contained the most orientation information across all trials, 
independent of precue condition. We compared the maximum de-
coding accuracy, averaged across T1 and T2, from all sessions 
from the most visually responsive channels, based on peak prom-
inence (top 10, 20, 50, 100 or all channels; see Peak analysis) with 
10 repetitions of the decoding procedure described above. The 
highest decoding accuracy was obtained using the top 50 chan-
nels. Therefore, for each session, we selected the top 50 visually 
responsive channels for sensor space decoding analysis and com-
parison across precue conditions. Most of the selected channels 
were in posterior locations. However, we note that MEG channels 
capture a weighted sum of the activities of all brain sources (85).

In source space, we decoded the stimulus orientation from the 
estimated source activation in atlas-based ROIs. Each ROI con-
tained many vertices, whose activation time series were obtained 
from the source reconstruction procedure (see Source reconstruc-
tion). For each ROI, the number of features (vertices) can be much 
larger than the number of samples (trials). To avoid overfitting, we 
therefore reduced the feature dimension for ROIs with more than 
100 vertices by univariate feature selection using ANOVA F-test 
(39, 86). ANOVA F-test feature selection was applied on the train-
ing set in the 5-fold cross-validation procedure. When training a 
classifier for an ROI with more than 100 vertices, we selected 
100 features (i.e. estimated source activation values from 100 ver-
tices) with the highest scores in the ANOVA F-test. Thus, the input 
of a classifier for a given ROI was the estimated source activation 
from no more than 100 vertices. To obtain the decoding perform-
ance for each of the occipital, parietal, temporal, and frontal lobes 
from the 34 bilateral DK ROIs, we averaged the decoding perform-
ance across the ROIs within each lobe. When investigating the left 
and right hemispheres separately, we decoded 68 DK ROIs with 
34 DK ROIs in each hemisphere. Decoding performance in the crit-
ical time window was calculated by averaging the decoding per-
formance across the time points in the critical time window.

Statistical analysis
The effects of temporal attention on behavior (d′ and RT) were as-
sessed using repeated measures ANOVAs via the pingouin pack-
age in Python. The within-subject factors were target (T1 or T2) 

and validity (valid or invalid, with respect to the match between 
the precue and the response cue), where two sessions for each 
subject were averaged.

The effects of temporal attention on the MEG time series 
(evoked response peak magnitude and latency) were assessed 
using repeated measures ANOVAs via the pingouin package in 
Python, separately for each target and channel grouping. The 
within-subject factor was precue (precue T1 or precue T2), where 
two sessions for each subject were averaged.

To assess the effect of temporal attention on decoding perform-
ance across the full time series, we used a nonparametric test with 
cluster correction (87). The null permutation distribution was ob-
tained by collecting the trials of the two experimental conditions 
in a single set, randomly partitioning the trials into two subsets, 
calculating the test statistic on this random partition, and repeat-
ing the permutation procedure 1,000 times to construct a histo-
gram of the test statistic under the null hypothesis.

For each permutation, the test statistic was calculated as 
follows:

(1) For every sample (decoding performance in a 5-ms time win-
dow), compare the decoding accuracy on the two types of trials 
(precue T1 vs. precue T2) by means of a t-value using a paired 
t-test.

(2) Select all samples whose t-value is larger than some thresh-
old. Higher thresholds are better suited for identifying stronger, 
short-duration effects, whereas lower thresholds are better suited 
for identifying weaker, long-duration effects (87). We selected a 
threshold of t = 1.5 (n = 10 subjects), where two sessions for each 
subject were averaged.

(3) Cluster the selected samples in connected sets on the basis 
of temporal adjacency.

(4) Calculate cluster-level statistics by taking the sum of the 
t-values within a cluster.

(5) Take the largest of the cluster-level statistics.
The spatial cluster permutation for Fig. 4A was calculated in a 

way similar to the steps described above using the MNE package in 
Python with permutation_cluster_1samp_test function, where 
the adjacency matrix for the function was determined based on 
the anatomical surface location of the DK ROIs, and the number 
of permutations n_permutations was set to “all” to perform an ex-
act test. For each ROI, the averaged decoding accuracy across the 
time points in the critical time window for the two types (precue 
T1 vs. precue T2) of trials were compared using a paired t-test 
with threshold t = 2.1 (n = 20 sessions), alpha level 0.05.
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