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Synopsis Allometry—patterns of relative change in body

parts—is a staple for examining how clades exhibit scaling

patterns representative of evolutionary constraint on phe-

notype, or quantifying patterns of ontogenetic growth

within a species. Reconstructing allometries from ontoge-

netic series is one of the few methods available to recon-

struct growth in fossil specimens. However, many fossil

specimens are deformed (twisted, flattened, and displaced

bones) during fossilization, changing their original mor-

phology in unpredictable and sometimes undecipherable

ways. To mitigate against post burial changes, paleontolo-

gists typically remove clearly distorted measurements from

analyses. However, this can potentially remove evidence of

individual variation and limits the number of samples

amenable to study, which can negatively impact allometric

reconstructions. Ordinary least squares (OLS) regression

and major axis regression are common methods for esti-

mating allometry, but they assume constant levels of resid-

ual variation across specimens, which is unlikely to be true

when including both distorted and undistorted specimens.

Alternatively, a generalized linear mixed model (GLMM)

can attribute additional variation in a model (e.g., fixed or

random effects). We performed a simulation study based

on an empirical analysis of the extinct cynodont,

Exaeretodon argentinus, to test the efficacy of a GLMM

on allometric data. We found that GLMMs estimate the

allometry using a full dataset better than simply using only

non-distorted data. We apply our approach on two em-

pirical datasets, cranial measurements of actual specimens

of E. argentinus (n¼ 16) and femoral measurements of the

dinosaur Tawa hallae (n¼ 26). Taken together, our study

suggests that a GLMM is better able to reconstruct patterns

of allometry over an OLS in datasets comprised of extinct

forms and should be standard protocol for anyone using

distorted specimens.

Spanish Alometria—el estudio de patr�ones midiendo los

cambios de proporci�ones entre diferentes partes del

cuerpo—es un m�etodo popularmente usado para estudiar

como clados exhiben patr�ones fenot�ıpicos que representan

restricci�ones evolutivas, o para cuantificar patr�ones de

ontogenia entre una especie. Reconstruyendo alometrias

para series ontogeneticas es uno de los pocos m�etodos

disponibles para reconstruir el crecimiento de especies

f�osiles. Sin embargo, f�osiles sufren de deformaci�ones tafo-

nomicas que alteran la morfolog�ıa original y algunas veces

en maneras no deseadas. Para mitigar estas alteraciones

tafonomicas, paleont�ologos excluyen mediciones alteradas

de sus an�alisis. Desafortunadamente, esto limita el numero

de muestras y potencialmente elimina evidencia de var-

iaci�on individual, impactando reconstrucciones alometri-

cas. M�ınimos Cuadrados Ordinarios (MCO) es un

m�etodo frecuentemente usado para estimar alometria,

pero asume niveles constantes de varici�on entre

espec�ımenes; esto es improbable cuando uno incluye

espec�ımenes deformados y espec�ımenes indeformables.

Alternativamente, Modelos Lineales Generalizados Mixtos

(MLGM) pueden atribuir varici�ones adicionales en un

modelo. Nosotros corrimos simulaciones basadas en

an�alisis emp�ıricos del cinodonte extinto, Exaeretodon

argentinus, para determinar la eficacia de MLGM con

datos alometricos. Nosotros descubrimos que MLGM

estima la alometria usando un conjunto de datos comple-

tos, en lugar de solo usar datos distorsionados. Aplicamos

este m�etodo en dos conjuntos de datos emp�ıricos: medi-

das craneales de espec�ımenes de E. argentinus (n¼ 16) y

medidas femorales del dinosaurio Tawa hallae (n¼ 26).

Nuestros estudios indican que MLGM puede reconstruir

mejor los patr�ones de alometria sobre MCO con conjun-

tos de datos que incluyen espec�ımenes extintos, y deber�ıa

ser el protocolo est�andar cu�ando se usan espec�ımenes que

est�an deformados.

� The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/

by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Integrative Organismal Biology
Integrative Organismal Biology, pp. 1–14
doi:10.1093/iob/obab017 A Journal of the Society for Integrative and Comparative Biology

https://orcid.org/0000-0001-9389-4995
https://academic.oup.com/


Introduction
All living multicellular organisms grow and change

through time, whether solely in absolute size or with

changing proportions of individual features

(Thompson 1917; Huxley 1932; Gould 1968, 1977;

Gatsuk et al. 1980; Hochuli 2001; Rowe 2004; Tanner

et al. 2010; Chagnon et al. 2013; Griffin et al. 2021).

These patterns of growth can also influence evolu-

tionary trajectories and allmetries among species, as

they can reflect constraints on the variation available

to evolutionary change (Gould 1966; Cheverud 1982;

Alexander 1985; Klingenberg 1996a; Marroig and

Cheverud 2005; Voje et al. 2014; Cardini 2019;

Krone et al. 2019). Changes in the patterns of

growth, or the study of allometry, has been explored

extensively across the tree of Life (see Gould 1966),

including extinct animals (e.g., Abdala and Giannini

2002; Kilbourne and Makovicky 2010; Jasinoski et al.

2015; Griffin and Nesbitt 2016a, 2016b; Krone et al.

2019). Allometric studies tend to focus on either

identifying scaling patterns present in entire clades

or reconstructing allometric patterns of a single pop-

ulation or species (Cheverud 1982; P�elabon et al.

2014; Klingenberg 2016).

Measuring allometric relationships is commonly

used to characterize the likely evolutionary con-

straints of extant groups (Newell 1949; Marshall

and Corruccini 1978; Radinsky 1984; Niklas 1994;

Ungar 1998; Pyenson and Sponberg 2011; Boyer et

al. 2013), as well as reconstructing patterns of growth

in extinct species to better interpret their growth,

taxonomy, and function (e.g., Abdala and Giannini

2000; Kilbourne and Makovicky 2010; Zhao et al.

2013; Foth et al. 2016; Chapelle et al. 2020).

However, most fossils have been buried, undergoing

post burial distortion which can cause bones to be

compressed, twisted, and broken—which complicates

their use in allometric studies (Behrensmeyer et al.

2000). Frequently, paleontologists are left with a

mixture of well-preserved and distorted specimens.

Post-burial distortion is common, particularly in

terrestrial fossils, where any deformation to the sur-

rounding geologic environment has direct conse-

quences on the fossil material. Post-burial

deformation has often been grouped into one, or

some combination, of crushing, shearing, breakage,

displacement (via faulting), sub-burial abrasion, and

erosion (e.g., Webster and Hughes 1999). Each of

these modes of deformation may introduce variation

into fossils through different means. Crushing, or

compaction, may elongate gracile elements, while

compacting and shortening more robust elements,

or in the case of complexes of elements (e.g., a

skull), crushing will often obscure surfaces from

view entirely. Shearing will often introduce twisting,

or sliding, of elements out of position, often repre-

sented as introducing a degree of asymmetry into

bilaterally symmetrical elements (e.g., vertebrae or

skulls). Displacement is often a consequence of com-

paction, wherein articulated elements are disarticu-

lated and repositioned, but can also be caused via

faulting, in which entire regions of a fossil will be

shifted, and likely broken, to align with the degree of

faulting in the surrounding rock unit. Finally, sub-

burial abrasion and erosion produce similar results,

with the destruction of fossil material, though ero-

sion operates on a more extreme scale than sub-

burial abrasion. Though, not an exhaustive list of

taphonomic processes, each of these types of defor-

mation introduces variation either in altering the

shape, angle, or position of elements, or in removing

information from a fossil that is otherwise necessary

for analyses aimed at recovering biologic patterns.

For the cases in which the fossil material is left

fully intact (e.g., shearing and light to moderate

crushing), paleontologists have turned to retrodefor-

mation analyses, in an attempt to return biological

results from taphonomically altered materials.

Largely utilized with geometric morphometrics (see

Angielczyk and Sheets 2007; Schlager et al. 2018),

these methods use either bilateral symmetry or mor-

phology of a reference point (e.g., the orbit in

Arbour and Currie 2012), to assign initial landmarks

that are then retrodeformed to better reflect the orig-

inal morphology in question and allow for compar-

ison between specimens or species (Schlager et al.

2018). When complete skeletal models are necessary

for analyses (e.g., finite element analysis), 3D proc-

essing software can be used to manipulate elements

back into original biologic positions, given compar-

isons to exemplar specimens/modern correlates

(Rayfield 2007; Arbour and Currie 2012; Cuff and

Rayfield 2015; Lautenschlager 2016). These methods

can be challenging to implement and may have

biases (see Kammerer et al. 2020), but are extremely

promising for the future of paleontological studies.

However, such methods are not readily accessible

and challenging to implement for the majority of

current practitioners. In this contribution, we suggest

that readily available statistical approaches are simple

and straigthforward alternatives that can allow for

usage of distorted data and can be widely-adopted

to improve allometric coefficients from fossil data.

Measuring allometry will naturally depend on the

definitions, assumptions, and mathematical models

used (Alexander 1985). Herein, we focus on a

regression-based approach that focus on the
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covariation among different traits (Huxley 1932;

Jolicoeur 1963), as opposed to focusing on the co-

variation between size and shape (Mosimann 1970).

The most often used methods to estimate the scaling

of different features are the ordinary least squares

(OLS) regression (hereafter called “linear

regression”), and the reduced major axis analysis,

which both aim to summarize linear relationships

between variables (Gould 1966; Smith 2009). An al-

ternative method is the multivariate allometry

method (e.g., eigen analysis), which summarizes the

greatest variation in variances and covariances be-

tween all variables simultaneously, using principal

component analysis (Klingenberg 1996a;

Klingenberg 2016). However, it is common practice

to use models that assume the measurement data

have identically distributed residual variation (i.e.,

the assumption of homoscedasticity). However, pa-

leontological data often challenge researchers with

specimens subject to additional sources of non-

biologic variation (e.g., deformation), which violate

this assumption by introducing an additional source

of error for only a subset of observations.

Consequently, while retrodeformation analyses is a

promising solution (see above), the high demands

of these approaches mean that more commonly

researchers resort to removing perceived distorted

measurements from analyses entirely, or including

them despite the known uncertainty in their mea-

surement (e.g., Abdala and Giannini 2000, 2002;

Brown and Vavrek 2015). The former solution com-

plicates the results of the analysis by removing po-

tentially informative and hard to obtain data, while

the latter adds variation unrepresentative of the sam-

ple as a whole. Given the often limited nature of

fossil material, neither of these solutions are ideal.

Ideally, our statistical tools should be able to incor-

porate additional sources of variation, so individual

measurements and whole specimens do not have to

be eliminated and maximal information can be

extracted from our limited datasets.

In this article, we demonstrate the utility of a gen-

eralized linear mixed model (GLMM) in estimating

allometry in fossil samples with clear distortion. We

chose GLMMs because they follow the assumptions

of linear models and can incorporate additional var-

iation based on previously made observations as ran-

dom effects (distortion) in the model (Bolker et al.

2009). We use measurements of fossilized specimens

to simulate realistic datasets, adding additional vari-

ation in half the samples, and testing three different

models: (1) linear regression of sample with no

added variation, (2) linear regression of sample

with added variation, and (3) GLMM of sample

with added variation. We apply the approach on

two fossil datasets, the crania of the Late Triassic

cynodont, Exaeretodon argentinus (Cabrera 1943),

and the femora of the Late Triassic dinosaur, Tawa

hallae (Nesbitt et al. 2009), to demonstrate the effect

of including both undistorted and distorted speci-

mens analyzed with GLMMs.

Materials and methods
Simulation study

To assess the ability of GLMMs to recover allometric

relationships, we built a simulation study based on

cranial measurements from 16 specimens of the Late

Triassic cynodont, E. argentinus (Fig. 1), 11 of which

are accessioned at the Harvard Museum of

Comparative Zoology (MCZ; Supplementary Table

S1) and the rest are accessioned at the Colecci�on

de Paleontolog�ıa de Vertebrados del Instituto

Miguel Lillo (Supplementary Table S1). A linear re-

gression model of skull length against snout length

was performed on 15 of the 16 specimen sample

(snout length is often robust and undistorted in E.

argentinus, personal observation)—wherein eight

measurements were scored as distorted a priori—us-

ing the lm command in the base R statistical envi-

ronment (version 3.6, R Core Team 2018), to

recover starting values of coefficient of allometry

(¼ slope), y-intercept, and residual variation to be

used in our simulation. We chose to use snout

length for our empirical dataset because a GLMM

of snout length returns no additional variation due

to the random effect, fossilization (see below). As

such, a regression of snout length reflects constant

levels of variation across sample sizes (homoscedas-

ticity) and is the most suitable measurement to as-

sess how additional variation is modeled. The

variance for the undistorted and distorted measure-

ments of snout length is 0.021 and 0.019, respectively.

Because the allometric equation is a power law equa-

tion, we log transform all measurements to fit them

into a simple regression equation (Alexander 1985).

We then built a normal distribution from the skull

length measurements of our sample (logarithmic

mean¼ 2.39, standard deviation¼ 0.14).

Y ¼ aX þ bþ e: (1)

We used the coefficient of allometry (a¼ 0.91), y-

intercept (b¼�0.37), and normally-distributed residual

variation (e;mean ¼ 0:3; standarddeviation ¼ 0:1)

from the regression analysis with the estimated skull

lengths to generate four datasets consisting of 10, 15,

25, and 50 specimens. For each dataset, values of skull

length (X) were sampled (n¼ 10, 15, 25, or 50) from
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our normal distribution and then were used in Equation

(1) along with values for y-intercept and residual vari-

ation to generate estimated values for snout length (Y).

To include additional variation due to random

effects (e.g., fossilization), we sampled a normal dis-

tribution (c) with mean 0, and standard deviation

0.4 (on average, 1.5 times e to simulate high varia-

tion due to fossilization). To ensure that the addi-

tional variation was not applied to all simulated

measurements, we sampled a binomial distribution

(C), with peaks at 0 (undistorted) and 1 (distorted),

with a 50% sampling rate. Because mixed effects

models require at least five to six blocks (i.e., indi-

viduals) per treatment (0 or 1; Bolker et al. 2009),

the binomial distribution is unable to consistently

produce sufficient analyzable samples at 10 speci-

mens; to overcome this, we generated a vector with

five observations of 0 and 1 each to ensure that the

model will appropriately reconstruct allometry at

sample sizes of 10 specimens. For the 15 specimen

sample, we also generated a vector with five obser-

vations of 0 and 10 observations of 1, to test model

efficacy with a largely distorted sample. We include

this additional variation to Equation (1) to generate

the equation

Y ¼ aX þ bþ eþ Cc: (2)

We implement this model in the R package lme4

(Bates et al. 2007), such that C is coded as 0 or 1,

and corresponds to distorted (1) or undistorted (0).

This route allows us to sample a broad range of

“distorted” specimens. When c � 0 and/or C¼ 0

(the specimen is undistorted), then the last term in

Equation (2) adds no additional variation for that

specimen.

To validate our estimated data, we ran a linear

regression on the simulated data with no added var-

iation, the results of which should closely match the

input parameters. We then tested a simple linear

regression model on the dataset that included the

both original measurements and �50% that included

additional variation (c), the results of which should

not closely match the input parameters. Finally, we

tested a GLMM with one random effect on the data-

set that includes additional variation. For each of the

three models, we recovered coefficient of allometry

(slope) and y-intercept values. We repeated simula-

tions for each model 2000 times, and generated

probability density curves for the estimated results

to evaluate model performance. To assess the effect

of sample size on model performance, we performed

our simulation with four different sample sizes (10,

15, 25, and 50 specimens with �50% distorted speci-

mens in each sample; Fig. 1). To evaluate differences

between the coefficients of allometry returned for the

linear regression on distorted and undistorted data

versus the GLMM, we performed a paired t-test,

which assesses overlap between two different distri-

butions. To test the effects of the common practice

Fig. 1 Flowchart depicting simulation methodology. Colors

depicted here are reflected throughout the manuscript for the

three different models. Distributions and scatterplots throughout

the flowchart are not based on real data but visualization tools.

The kernel density plot on the bottom is based on muzzle length

in E. argentinus.
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of excluding distorted specimens relative to includ-

ing them in our model, we compared how including

all specimens (distorted and undistorted) in

Equation (2) to only undistorted specimens in

Equation (1). For each sample, any simulated meas-

urements where C¼ 1, were not included and the

remaining samples (C¼ 0) were tested using

Equation (1). With this, we were able to compare

the same data with and without the inclusion of

additional variation due to fossilization, effectively

testing the method that paleontologists have been

using.

We only compared the GLMM with ordinary lin-

ear models, and did not compare with reduced ma-

jor axis analysis or multivariate allometry

(Klingenberg 1996a; Kilmer and Rodr�ıguez 2017),

which account for variation in both the X and Y

parameters. More importantly, a reduced major

axis analysis assumes that the X and Y parameters

are independent of one another (symmetrical), such

that the variation in X is not influenced by the var-

iation in Y and vice versa (Smith 2009; Kilmer and

Rodr�ıguez 2017). Reduced major axis and linear re-

gression are both useful methods, but they measure

different things, and in regards to questions of al-

lometry a linear regression is often more appropriate

(see Hansen and Bartoszek 2012). Although incorpo-

rating our method in a multivariate allometry would

be beneficial for studies including variance covari-

ance matrices, it would require a priori estimations

of the variation due to deformation and a novel

method to incorporate that variation into the cova-

riances, which is beyond the scope of this work.

Empirical applications to E. argentinus and T. hallae

We tested two separate datasets, the crania of

E. argentinus (n¼ 16, with 17 different cranial meas-

urements), and the femora of T. hallae (n¼ 26, with

five different femoral measurements). Specimens of

T. hallae are accessioned at the Ruth Hall Museum

of Paleontology (GR; Supplementary Table S1). For

each measurement (e.g., snout length or femoral

head width), we scored them as either distorted

(C¼ 1) or undistorted (C¼ 0). We scored each

measurement rather than individuals because the

fossilization process does not uniformly distort

specimens, and some regions of fossils can retain

more morphological integrity than others. For exam-

ple, the snout region of E. argentinus is a complex of

thick, tightly sutured bones forming a strong, dense,

integrated structure, whereas the braincase is made

up of thin bony walls and few supporting structures,

resulting in many skulls with intact snouts but dis-

torted braincases. No measurements were taken for

features that were broken or those where the features

were not visible; for example, many skulls of E.

argentinus are still encased in plaster, such that the

dorsal surface of the skulls are not presently avail-

able. Importantly, total length is often not greatly

distorted in either E. argentinus or T. hallae, such

that we expect low additional variation due to fos-

silization in estimations of X (see Table 1).

We performed a Shapiro–Wilk test on each mea-

surement for each taxon to evaluate whether or not

the input data were normally distributed. For E.

argentinus, the palate length and upper post-canine

length were marginally significant (P< 0.1), whereas

orbit length and diastema length were significant

(P< 0.05), suggesting that these data are non-

normally distributed. For T. hallae only the mini-

mum midshaft diameter was significant (P¼ 0.047)

indicating a non-normal distribution for these data.

We performed a Shapiro–Wilk test on all of the

distorted-only measurements and found that all fol-

low normal distributions, with the exception of skull

width and transverse process width in E. argentinus

which were marginally significant (P< 0.1), and

basicranial length and diastema length in E. argenti-

nus which were significantly different from normality

(P< 0.05). The distorted measurements for upper

post-canine length and zygoma height in E. argenti-

nus lacked the necessary sample size to perform a

Shapiro–Wilk test. We focus herein on snout length

in E. argentinus and femoral head length in T. hallae

(see supplement for analyses of additional measure-

ments; Supplementary Table S2), which have 15

specimens with 8 distorted measurements and 26

Table 1 Sample size and variance for fossil datasets

Taxon Feature

Number of

distorted

Variance

distorted

Number of

undistorted

Variance

undistorted

Number

of total

Exaeretodon Skull length 0 0 16 0.019 16

Exaeretodon Snout length 8 0.019 7 0.021 15

Tawa Femur length 0 0 26 0.009 26

Tawa Femoral head length 10 0.016 16 0.01 26
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specimens and 10 distorted measurements,

respectively.

To further assess model performance on specimen

data given possible non-normality, we performed a

non-parametric bootstrap analysis using two fossil

datasets (Fig. 2). A non-parametric bootstrap resam-

ples the data with replacement to assess model error,

effectively testing how the model would respond if

some of the data were left out. We chose a non-

parametric bootstrap to assess model error and the

effect of sample size on results. We ran the non-

parametric bootstrap analyses on the two datasets

using three different models: linear regression on

only undistorted specimens (C¼ 0), linear regression

on the full sample (distorted and undistorted speci-

mens), and GLMM on the full sample (distorted and

undistorted specimens); just as in the simulation

study, to compare the effects of model and data on

estimation of model parameters. For 5000 bootstrap

iterations, we examined density distributions of co-

efficient of allometry and compare the 95%

confidence intervals across models. We also com-

pared intercept, but primarily focus on the coeffi-

cient of allometry as it is the most meaningful

parameter for most allometric studies. Following

the bootstrap analysis, we performed a likelihood

ratio test with a chi-squared test (Stram and Lee

1994), to compare Equation (2) to a GLMM where

variation is allowed in both X and Y, testing whether

or not variation in slope has significant effects on

reconstructed patterns.

For the GLMM, we follow Equation (2), where e
is random variation that is interpreted here as being

produced by the fossilization process. We estimate

fossilization as a random effect, because across all

of our samples, we do not expect fossilization to

consistently produce the same amount of variation

across samples. However, if deformation is expected

to have a consistent effect, it could be investigated as

a fixed effect or be fit in a multiple linear regression.

With this, Cc represents random error that only

applies to distorted specimens, where C¼ 1. An

Fig. 2 Varying degrees of deformation in samples of (A) E. argentinus (top row MCZ VPRA-4470 and MCZ VPRA-4472; middle row

MCZ VPRA-4493 and MCZ VPRA-4468; bottom row MCZ VPRA-4505 and MCZ VPRA-4486) and (B) T. hallae (top row GR 244;

middle row GR 578 and GR 226; bottom row GR 1050 and GR 1043). Specimen numbers follow left to right. Scale bars equal 5 cm.
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important caveat to this model is that it requires at

least five individual blocks (specimens) in each of the

two categories to reliably reconstruct the random

effects (Bolker et al. 2009). Because of this, the

GLMM is not suitable for small datasets (n< 10).

However, the model is conservative, and when the

model finds no random variation, even with regions

coded as distorted, it returns a linear model with �0

variance allocated to the additional parameter Cc(see

Supplementary Table S3), indicating that the model

will not underestimate the residuals when distorted

measurements are included as random effects. This

allows researchers to be cautious in scoring their

specimens and still recover results representative of

the biology.

Results
Simulation study

For each of the sample sizes, the linear regression on

the undistorted sample (with no added variation)

consistently performed best, based on the most fre-

quent outcome at a mean coefficient of allometry of

0.91 (¼ true mean for simulation) and the lowest

95% confidence intervals (Fig. 3). This is to be

expected, as the linear regression on the undistorted

set acts as our benchmark for parameter estimation

under an idealized dataset. For each sample size, the

mixed effects model consistently estimated the slope

closer to the expected mean (¼0.91), than a linear

regression that included distorted specimens. To test

if the results were biased, we performed a paired t-

test between the GLMM and the linear regression on

the undistorted dataset across all simulated sample

sizes, and found no significant difference (n¼ 10,

t¼ 0.92, P¼ 0.36; n¼ 15, t¼�0.96, P¼ 0.33;

n¼ 25, t¼ 0.17, P¼ 0.86; n¼ 50, t¼�0.02,

P¼ 0.99). To assess how well the GLMM model

compared with a control, we compared the distorted

GLMM with the linear regression of only undistorted

data at differing sample sizes. We found that a sam-

ple of 25 specimens—�50% of which are scored as

distorted—in the GLMM model closely overlapped

with the kernel density plot of a linear regression of

15 undistorted specimens (Fig. 4A). The overlap was

less profound in comparing kernel density plots of

15 distorted specimens (GLMM) to 10 undistorted

specimens (linear regression), but they still share a

clear peak at the expected mean value (Fig. 4B).

Looking at the entire distribution of data (Fig. 4C),

the distorted datasets always perform worse than the

undistorted data, as expected. However, the GLMM

consistently outperforms the linear regression on the

Fig. 3 Simulation results of four different sample sizes where the

linear regression on undistorted data consistently performs best,

followed by the GLMM. GLMM is tested on a dataset with �50%

of each dataset having additional variation. Dotted lines represent

the upper and lower 95% confidence intervals for each model.

(A) 10 specimens, (B) 15 specimens, (C) 25 specimens, and (D)

50 specimens.
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same full dataset (both distorted and undistorted

measurements).

Non-parametric bootstrap

For both the E. argentinus and T. hallae datasets,

across all features, the linear regression on the

undistorted data produced density peaks with the

narrowest 95% confidence intervals (Fig. 5). For

the majority of T. hallae and E. argentinus measure-

ments, the density distribution for coefficient of al-

lometry closely followed the patterns of the linear

regression on the undistorted sample (see

Fig. 4 Simulation results comparing across different sample sizes, showing close similarity between GLMM and linear regression.

GLMM is tested on a dataset with �50% of each dataset having additional variation. Dotted lines represent the upper and lower 95%

confidence intervals for each model. (A) Fifteen specimens under a GLMM compared to 10 specimens from a linear regression. (B)

Twenty-five specimens under a GLMM compared to 15 specimens from a linear regression. (C) Box plot representing all of the

returned distributions for the three different models.
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Supplementary Figs. S1–S6). The bootstrap analysis

using the GLMM on both undistorted and distorted

specimens frequently recovered coefficients of allom-

etry that were distinct from the other two models.

Our chi-squared test between GLMMs both with and

without variation in Y found no significant differ-

ence (chi-squared¼ 0.86, P> 0.95), which indicates

that accounting for variation in Y is not necessary

for these studies. A bootstrap of femoral midshaft

diameter against total length in T. hallae shows

that the regression of undistorted specimens and

the GLMM closely mirror one another around isom-

etry to slightly positive allometry, whereas the linear

model on the full dataset recovers a pattern of dis-

tinctly negative allometry (Fig. 6A). Similar results

are reported for the recovered y-intercept values

(Fig. 6B); however, the GLMM and regression on

undistorted data do not converge on the median in-

tercept (regression¼�1.26; GLMM¼�1.34) which

can have downstream consequences for extrapolating

data from these models (log 10 difference¼ 0.072; ret-

rotransformed differenced¼ 0.0082 mm; see Fig. 6C).

These reconstructed y-intercepts produce minor differ-

ences in estimating feature sizes (with slope constant)

when the independent variable (femur length here), is

relatively small; for example, estimating midshaft diam-

eter on a 100 mm femur produces a minimum mid-

shaft diameter of 5.82 and 6.89 mm for the linear

regression and GLMM y-intercepts, respectively. In

this example, the y-intercept from the linear regression

reconstructs femur length at 84.8% the size of the y-

intercept from the GLMM, which can lead to distinct

Fig. 5 Bootstrap results for samples from (A) E. argentinus muzzle versus skull length and (B) T. hallae femoral head length versus

femoral length. Each plot shows strong overlap between the returned distributions suggesting overall similarity in error. Dotted lines

represent the upper and lower 95% confidence intervals for each model. Coefficient of allometry is more similar in the T. hallae sample

than the E. argentinus sample, which is to be expected given the difference in sample size (E. argentinus n¼ 15; T. hallae n¼ 26). Skull is

specimen MCZ VPRA-4470 and femur is specimen GR 244.
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Fig. 6 GLMM closely approximates the truth when significant deformation is introduced into the model for a sample of T. hallae. (A)

Slope and (B) y-intercept suggest high similarity between the results of the linear regression on undistorted data and the GLMM.

However, panel (C) shows that the inclusion of undistorted specimens (black dots) with a linear regression on only these undistorted

specimens (blue line), distinctly crushed specimens (red circles) in a linear regression (red line), and the GLMM has a significant effect

on recovering the intercept. Dotted lines represent the upper and lower 95% confidence intervals for each model. The y-intercepts

betweenthe linear regression on undistorted data and the GLMM suggest that one should not heavily weigh interpretations based on y-

intercept returned from a GLMM. Femur is specimen GR 244.
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estimations of feature size when femur length is large

(e.g., >200 mm). A logarithmic plot of femur length

against midshaft diameter reveals a cluster of six speci-

mens that are distinctly offset from the regression line

and were coded as distorted a priori (Fig. 6C), indicat-

ing strong deformation that is accounted for in the

GLMM. We sample basicranial length and palate

length in E. argentinus (see Supplementary Figs. S2

and S4), neither of which have a distorted sample

that meets minimum block size (n� 5). Together,

they illustrate that the GLMM will default to an OLS

regression when confronted with small datasets

(Supplementary Fig. S2), or, if there is considerable

variance in the undistorted sample, both the GLMM

and OLS regression will struggle to optimize a single

peak for either coefficient of allometry or y-intercept

(Supplementary Fig. S4). Although the GLMM always

has slightly greater model error than the linear regres-

sion on undistorted data, we find support for its effi-

cacy in reconstructing allometry in specimens that

exhibit deformation.

Discussion
Simulations appropriately incorporate additional
variation

Our simulations of datasets with distorted fossils

suggest that a GLMM is able to account for addi-

tional sources of variation when reconstructing allo-

metric relationships. As expected, a sample of only

undistorted data (i.e., no additional variation) con-

sistently produced density distributions closest to the

true value and acted as a benchmark for each of our

selected sample sizes. The GLMM consistently pro-

duced density distributions that more closely fol-

lowed the sample of only undistorted data than the

linear regression on the dataset with undistorted and

distorted measurements (i.e., with additional varia-

tion), such that trials returned lower overall variance

in the allometric parameters (slope, intercept, and

residuals) and higher density around the input

parameters. These results suggest that a GLMM can

account for unknown sources of variation in a sam-

ple, making such a test amenable to fossil samples

that include considerable variation in preservation

state (Abdala and Giannini 2000; Kammerer et al.

2012; Wang et al. 2017). However, a GLMM should

not be used with small sample sizes (n< 10) or those

that have few distorted or undistorted measure-

ments, as GLMM’s fail to infer random effects where

there are fewer than five to six specimens for the

random effects to understand the distinction be-

tween distorted and undistorted in the sample

(Bolker et al. 2009). Though this is a challenge for

many datasets (particularly paleontological datasets),

the lme4 package is forgiving to the cautious ob-

server, such that it will not attribute variation to

external samples when there is none (see

Supplementary Table S3). If the GLMM finds that

all of the datapoints lie within the residuals of the

regression, then it will assign no additional variation

to the random effect and will simply return the

results of a linear regression. Our simulation results

indicate that a GLMM is a viable replacement for a

linear regression model when there are sources of

unknown variation throughout a sample that would

otherwise preclude those specimens from the study.

Furthermore, including the full dataset can give bet-

ter approximations of the parameters of interest, and

the individual variation that is representative of the

full sample (see Brown and Vavrek 2015).

Linear mixed effects models can estimate allometric
parameters

We tested the GLMM with allometric data to esti-

mate its efficacy as a replacement for OLS regression

given fossil datasets. The results of our simulation

suggest that the GLMM closely approximates the in-

put parameters, and has peak densities lower than,

but close to our control of a linear regression on

undistorted data (Figs. 3 and 4). This suggests that

while not as consistent as the undistorted dataset, the

GLMM has an overall variance and precision similar

to the linear regression on undistorted data, and has

considerably lower variance in returned parameter

estimates than the linear regression on the distorted

dataset, indicating that it can accurately reconstruct

allometric parameters. For any studies that would

include marginally distorted measurements or esti-

mations of measurements, an OLS approach with

few specimens could greatly affect any returned

parameters. Therefore, it is important to use a

GLMM on samples that would have otherwise been

forced into an OLS model and treated as if they were

undistorted. Furthermore, the deviation from the in-

put parameters is relatively small in observing allo-

metric patterns, such that one would not expect to

see a negative allometric signal with the linear regres-

sion versus a positive allometric signal with the

GLMM. One may see deviations from isometry

based on model choice; however, this would likely

occur when sample sizes are low (�5) for undis-

torted specimens, and the residual variation would

indicate that neither model is significantly different

from isometry (see Supplementary Figs. S1–S7).

Although this simulation suggests that GLMMs can

be used in estimating allometric and isometric
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patterns given additional sources of variation, it does

not address model efficacy when confronted with

actual data.

Our bootstrap analysis tests efficacy between dis-

tinct models by estimating the error present in the

data, which is largely reflective of sample size, and

comparing the overlap in the distributions of

returned traits (Hinkley 1988), such as coefficient

of allometry or y-intercept. The bootstrap analyses

on the T. hallae samples (see Fig. 5) suggest that

the GLMM results have clear overlap with the results

from the linear regression on only undistorted meas-

urements (i.e., control), but their peaks do not di-

rectly overlap one another. This is to be expected, as

many of the distorted specimens in the T. hallae

sample are clustered near our smallest and largest

samples, and thus including these specimens will in-

fluence the slope and as a result, the intercept value

for these parameters. Furthermore, the GLMM con-

sistently produces results with narrower 95% confi-

dence intervals than the linear regression on the

complete dataset, suggesting that it is appropriately

accounting for additional sources of variation, given

real data. The results of the E. argentinus sample

share consistencies with the T. hallae dataset, but

also show greater variance in how much overlap

exists between the GLMM and the linear regression

on undistorted measurements. This is due to sample

size and preservation in E. argentinus, where we only

have access to measurements from 16 specimens, and

many of them show clear deformation or breakage in

and around the braincase. Because of this, bootstrap

replicates have high variance in regression parame-

ters. However, even with this, multiple features (see

Supplementary Figs. S2, S5, and S6) with closely

overlapping parameter distributions between the

GLMM and the linear regression on undistorted

datasets, suggesting that given enough samples (10–

15 specimens), the GLMM is a suitable substitution

for a linear regression. Taken together, the results of

our analyses suggest that a GLMM can reconstruct

allometric relationships in cases where distorted

specimens result in heteroscedasticity. Given any de-

formation in a sample, the GLMM is an appropriate

model to estimate additional variance without re-

moving specimens or introducing individual biases

(Bolker et al. 2009).

These analyses carry a simple assumption, that

variation during fossilization is non-directional,

with no discernable pattern between specimens.

This suggests, variation should not consistently bias

a sample toward one end of the distribution. This

assumption is clearly violated in the case for mini-

mum midshaft diameter in T. hallae (see Fig. 6B),

where variation consistently results in underestimat-

ing the midshaft diameter of the femur. Importantly,

this can be modeled into a GLMM as a fixed effect

(Bolker et al. 2009), indicating that these specimens

should produce a consistent directional effect on pa-

rameter estimations. The degree of distortion, and

consistency in the types of distortion, must be

addressed a priori to assess whether the patterns ap-

pear to be directional or random. GLMMs are ver-

satile models that can be tailored to the data, using

prior information, to most appropriately estimate

allometric patterns given differing forms of distor-

tion (see Bolker et al. 2009), and thus should be

further explored by the paleontological community.

Individual variation, post-burial distortion, growth
trends, and their importance

Allometric relationships have been used extensively

to study the how patterns of divergence in trait-

scaling relationships (i.e., the evolutionary allometry)

can be related to variation at the individual (onto-

genetic) or population level (Cock 1966; Lande 1979;

Klingenberg 1996b; Klingenberg et al. 2001; Marroig

and Cheverud 2005; Griffin and Nesbitt 2016b;

Cardini 2019). These distributions can only be un-

derstood when sampling a wide breadth of individ-

uals, where each individual defines a distinct point

on any plot (Brown and Vavrek 2015), which is of-

ten a challenge for paleontological studies. For stud-

ies of allometry or any linear relationship within a

species or population, every specimen for an analysis

is informative and useful, and while not a major

issue for many easily-obtained extant species, this

is often insurmountable for those working with fossil

specimens. Not only are the number of individuals

limited, but they are often incomplete, broken, or

misshapen, making any measurements non-

reflective of the morphology of the organism during

life. The remedies to this have been to estimate the

distorted measurements or to simply leave them out

of the analysis, sacrificing individual variation in the

process. We show here that no specimens need to be

removed in these analyses, and furthermore, our

simulations reveal that a mix of 15 distorted and

undistorted specimens is often a stronger sample

than 10 undistorted specimens, when the right

model is employed. We find that a GLMM is able

to estimate additional variation, reconstruct allome-

tric relationships, and retain the critical individual

variation in studies of allometry in specimens show-

ing any degree of distortion. We recommend that

either retrodeformation or statistical techniques

12 B. M. Wynd et al.



that account for distortion should be used, rather

than sacrificing the precious data that we have.
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