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Mortality is significantly higher among patients with ad-
vanced kidney disease compared with the general popula-
tion (1). The two leading causes of death in dialysis patients 
are CVD and infectious diseases (2, 3). CVD is increased 
35-fold in patients with stage 5 chronic kidney disease 
(CKD) (1), and CVD mortality is not reduced upon initia-
tion of dialysis therapy. Although CVD mortality has been 
declining, the rate of infectious hospitalizations and deaths 
has been increasing (4). In observational studies, higher 
total cholesterol and LDL cholesterol (LDL-C) are associ-
ated with better survival in chronic hemodialysis (HD) and 
peritoneal dialysis patients (5–9). Although treatment of 
hyperlipidemia or dyslipidemia has a modest effect on 
CVD outcomes in patients with CKD, neither overall mor-
tality nor CVD-related events are significantly affected by 
lipid-lowering therapy among HD patients (10, 11). If in-
deed LDL-C has no clear effect on CVD outcomes and is 
associated with reduced risk of death, the question of the 
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relationship between LDL-C and other outcomes may pro-
vide insight into potential mechanisms of protection.
The second leading cause of death among HD patients is 

infection (4). Epidemiologically, lipoprotein levels have 
been associated with protection from infectious events  
(12, 13). HDL cholesterol (HDL-C) plays a role in the trans-
fer of lipotoxins, endotoxin, and lipopolysaccharide (LPS) 
to the liver, where it is degraded (14–16). HDL-C contains 
LPS binding protein (LBP) that participates in this transfer 
(17). Inflammation even in the absence of clinical infec-
tion is strongly associated with all-cause and CVD mortality 
in patients with end-stage renal disease (18). HDL has been 
shown to be protective against polymicrobial sepsis in mice 
(19). LDL-C has been shown to be inversely associated with 
infectious outcomes in patient populations with normal re-
nal function (12) and likely plays a key role in host defense 
against both bacterial and some viral pathogens (13). In-
terventional studies in animal models strongly suggest that 
lipoproteins may potentially play an important role in the 
innate immune response (20–22) and protect against sep-
sis in experimental animal models (19). Additionally, in-
fection per se may alter the structure and function of 
lipoproteins (22, 23). Thus, it is plausible that the observed 
association of high total cholesterol and LDL-C levels with 
survival (5–7) and the lack of an effect of lipid-lowering 
therapies on all-cause mortality in interventional studies 
(11) is based at least in part upon a protective effect of lipo-
protein classes on infectious outcomes.
Some lipoproteins also behave as acute-phase proteins in 

response to inflammation (24–26), so that it is important 
to distinguish between lipoprotein levels prior to an infec-
tious event as opposed to their levels during infection, as 
well as to control for variables associated with inflamma-
tion to try to separate cause from effect. We conducted a 
retrospective cohort study to analysis the outcomes in an 
international cohort of in-center HD patients from the 
Monitoring Dialysis Outcomes (MONDO) database (27) to 
study the relationship between lipid levels during the prior 
4-year period and all-cause mortality, death attributed to 
infectious diseases, and death attributed to cardiovascular 
(CV), and in order to establish whether any protective ef-
fects against infectious death by specific lipoprotein classes 
offset potential injurious effects on CVD mortality. We also 
investigated the relationship between each of the lipopro-
tein classes and noninfectious and non-CV mortality (other 
causes of mortality) to determine whether the entire effect 
of specific lipoprotein classes were the result of CV-related 
mortality, infection-related mortality, or other causes.

MATERIALS AND METHODS

Data source
The MONDO initiative is an international retrospective cohort 

study that comprised all the chronic HD patients from 41 coun-
tries of Fresenius Medical Care (FMC) Europe, Middle East, and 
Africa; FMC South America; FMC Asia Pacific; and United States–
Renal Research Institute (RRI); FMC Latin America; Maastricht 
University Hospital and University of Einthoven in the Netherlands; 

Hadassah Medical Center in Israel; Imperial College in the United 
Kingdom; National Heart Institute of Mexico City in Mexico; 
Nephro Solution and Kuratorium für Dialyze und Nierentrans-
plantation in Germany; and Pontifical Catholic University of Pa-
rana in Brazil (27). Corresponding data providers were responsible 
for the primary data collection and safeguarding the usage of pa-
tient data in accordance with local data protection laws and pri-
vacy. Patients were stratified into regions per the United Nations 
geographical scheme (28). All the identifiable variables were re-
moved before data were transferred to FMC-RRI (New York, NY). 
Multiple levels of internal data validation controls were applied 
before the data were integrated into a master database. All the 
research conducted by the MONDO Initiative complied with na-
tional and international ethical, compliance, and legal standards. 
The study was approved by the Western Institutional Review 
Board (ES-16-005).

Patient selections and study design
All the adult patients who survived more than 90 days on HD 

and with at least one complete lipid panel [LDL-C, HDL-C, and 
triglycerides (TGs)] measured between January 1, 2000 and De-
cember 31, 2012 within the MONDO master database were in-
cluded. Therefore, the final study population consisted of 37,250 
patients from Eastern, Southern, and Western Europe, as well as 
West Asia and the RRI (Fig. 1A). Patients were included at the first 
available lipoprotein measurement and were followed for up to 4 
years until an event (death, censored, loss-to-follow-up, or recov-
ered from renal failure) occurred (Fig. 1B).

Exposures and outcomes
The primary exposures of interest were time-varying serum 

lipid levels of calculated LDL-C, HDL-C, and TG. Given the fact 
that albumin, creatinine, C-reactive protein (CRP), and neutrophil- 
to-lymphocyte ratio (NLR), BMI, age, and dialysis vintage (time 
after initial start of renal replacement therapy) also measured 
routinely in majority of the study cohort, each of the parameters 
of interest was treated as a time-dependent parameter while 
performing the analyses. The primary outcomes of interest were 
time to all-cause and infectious-based hospitalizations that re-
sulted in mortality (infection-related mortalities; see supplemental 
data). Secondary outcomes of interest were CV-based hospitaliza-
tions that resulted in mortality (CV-related mortality; see supple-
mental data) and other mortalities that were not infection-related 
and not CV-related causes.
CV-based hospitalizations were chosen to report arterial injury 

similar to outcomes chosen in the SHARP trial (11). We consid-
ered died due to infection-related or CV-related if the primary 
International Classification of Diseases (ICD), 9th revision, Clini-
cal Modification (for RRI’s patients) or ICD, 10th revision (for 
Europe and West Asia’s patients) diagnosis code was related to 
infection-related or CV-related hospitalizations. The correspond-
ing documented free-text descriptions were applied to further 
validate the cause-specific mortalities.

Statistical analyses
Continuous variables were reported as means (± SD) or me-

dian (interquartile range) depending on the distribution of the 
data. To test the significant differences of the continuous vari-
ables, Kruskal-Wallis, one-way ANOVA, or ANOVA were performed. 
Categorical variables were presented as proportions and test via 
chi-square tests.
Cox proportional hazard regression models with time-varying 

covariates (29) were performed to examine the univariate associa-
tions between each of the lipoproteins (LDL-C, HDL-C, and TGs 
per mmol/l) and all-cause mortality, infection-related mortality, 
and CV-related mortality as well as other mortalities in separate 
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models. Up to 48 time-varying values of each lipoprotein per par-
ticipant using lipoprotein values measured at different time 
points were included in each analysis. For patients with more than 
one lipid measurement during the baseline period, the previous 
value was replaced by the upcoming value while conducting the 
analyses. To account for changes in serum lipid levels over time 
and assess the associations between lipid levels and each of the 
cause-specific deaths, the following six models with incremental 
levels of adjustments were conducted: 1) model 1: each serum li-
poprotein (noted as continuous value) with age, dialysis vintage, 
gender, vascular access, and BMI, as well as the geographical 
region that the patients came from; 2) model 2: model 1 plus 
diabetic status; 3) model 3: model 2 plus serum creatinine levels; 
4) model 4: model 3 plus serum albumin; 5) model 5: model 3 
plus serum CRP; and 6) model 6: model 3 plus serum albumin, 
creatinine, CRP, and NLR levels. We defined model 6 as the pref-
erable model, which contained nutritional and inflammation 
markers, because we hypothesized that the inverse association 
between HDL-C, LDL-C, and infection-related mortality should 

remain while accounting for the effect of nutritional status and 
inflammation.
Analyses were performed with SAS (Version 9.4; Cary, NC) and 

R (Version 3.1.3) (30).

Clinical and laboratory analyses
Clinical and laboratory data were directly imported electroni-

cally in all the European, West Asian, and all North America-RRI 
clinics. All the lipoproteins were measured routinely from 
monthly to half-yearly in Europe and West Asia clinics, measured 
annually in FMC-RRI clinics. Serum albumin was measured by the 
bromocresol green method in most of the studied clinics. In Por-
tugal, bromocresol purple method was used. Both methods were 
calibrated to international standard European Reference Materi-
als DA 470k/International Federation of Clinical Chemistry and 
Laboratory Medicine. Serum creatinine was measured routinely 
by the Jaffe method in all FMC Europe and RRI clinics. Serum 
CRP level was measured with conventional assay in all the studied 
clinics. NLR were measured routinely monthly in all the regions. 

TABLE  1.  Baseline characteristics of the study cohort

Parameters All Patients
Died from All  

Reasons Died from CV
Died from All  

Infections
Died from Others (Not 
Infections and Not CV)

Patients Who 
Survived

No. of patients 37,250 6,147 1,183 812 4,152 31,103
Age (years), Median  
(Q1, Q3)

64 (52, 74) 72 (63, 79) 71 (62, 78) 72 (63, 79) 73 (63, 79) 62 (51, 73)

BMI 25.71 ± 6.62 24.27 ± 5.48 24.74 ± 5.06 24.59 ± 5.54 24.06 ± 5.58 26.72 ± 5.57
Diabetics (%) 15.57 18.50 17.95 21.43 18.08 15.00
Gender: male (%) 58.60 59.77 62.55 57.64 59.39 58.37
Catheter (%) 44.68 47.37 50.04 47.04 46.68 44.14
Vintage (years),  
Median (Q1, Q3)

3.04 (0.13, 4.15) 2.63 (0.11, 3.78) 2.73 (0.11, 4.00) 2.51 (0.10, 3.41) 2.64 (0.11, 3.74) 3.12 (0.13, 4.24)

Serum albumin (g/dl) 3.85 ± 0.42 3.68 ± 0.49 3.75 ± 0.45 3.62 ± 0.52 3.67 ± 0.49 3.89 ± 0.41
Serum creatinine 
([mg/dl)

7.74 ± 2.35 6.77 ± 2.09 6.96 ± 2.07 6.74 ± 2.08 6.72 ± 2.09 7.94 ± 0.36

CRP (mg/dl),  
Median (Q1, Q3)

8.73 (1.16, 10.09) 12.64 (1.83, 16.00) 11.29 (1.53, 15.07) 14.76 (2.66, 19.34) 12.61 (1.82, 15.72) 7.96 (1.08, 1.24)

NLR 3.22 ± 2.47 3.75 ± 3.00 3.52 ± 2.05 4.00 ± 3.40 3.77 ± 3.11 3.12 ± 2.34
LDL-C (mmol/l)
  All regions 2.45 ± 0.87 2.39 ± 0.88 2.46 ± 0.92 2.30 ± 0.91 2.39 ± 0.87 2.47 ± 0.87
  Eastern Europe  

(n = 6,246)
2.64 ± 1.02 2.54 ± 0.97 2.57 ± 1.03 2.51 ± 1.00 2.53 ± 0.95 2.66 ± 1.03

  Southern Europe  
(n = 18,358)

2.27 ± 0.78 2.21 ± 0.81 2.20 ± 0.83 2.18 ± 0.83 2.22 ± 0.81 2.29 ± 0.77

  Western Europe  
(n = 1,058)

2.31 ± 0.93 2.31 ± 0.93 2.20 ± 0.83 2.05 ± 1.63 2.35 ± 0.92 2.31 ± 0.93

  West Asia (n = 10,699) 2.71 ± 0.83 2.70 ± 0.87 2.84 ± 0.85 2.65 ± 1.03 2.67 ± 0.85 2.71 ± 0.83
  United States (n = 888) 2.03 ± 0.82 2.08 ± 0.81 1.96 ± 0.87 2.15 ± 0.71 2.07 ± 0.82 2.02 ± 0.82
HDL-C (mmol/l)
  All regions 1.05 ± 0.34 1.03 ± 0.34 1.01 ± 0.32 1.07 ± 0.34 1.03 ± 0.34 1.06 ± 0.34
  Eastern Europe  

(n = 6,246)
1.06 ± 0.36 1.00 ± 0.39 1.06 ± 0.39 1.04 ± 0.38 0.98 ± 0.38 1.07 ± 0.36

  Southern Europe  
(n = 18,358)

1.14 ± 0.34 1.11 ± 0.33 1.09 ± 0.34 1.14 ± 0.33 1.11 ± 0.33 1.15 ± 0.34

  Western Europe  
(n = 1,058)

1.90 ± 0.41 1.12 ± 0.35 1.14 ± 0.41 1.32 ± 0.19 1.11 ± 0.34 1.20 ± 0.42

  West Asia (n = 10,699) 0.89 ± 0.26 0.88 ± 0.27 0.87 ± 0.24 0.84 ± 0.25 0.89 ± 0.27 0.90 ± 0.25
  United States (n = 888) 1.09 ± 0.37 1.10 ± 0.38 1.00 ± 0.31 1.06 ± 0.30 1.11 ± 0.40 1.09 ± 0.36
TG (mmol/l)
  All regions 1.86 ± 1.02 1.72 ± 0.95 1.80 ± 1.01 1.71 ± 0.95 1.69 ± 0.93 1.89 ± 1.02
  Eastern Europe  

(n = 6,246)
1.92 ± 1.13 1.87 ± 1.10 1.81 ± 1.13 1.89 ± 0.94 1.89 ± 1.11 1.93 ± 1.14

  Southern Europe  
(n = 18,358)

1.74 ± 0.88 1.57 ± 0.78 1.63 ± 0.82 1.59 ± 0.78 1.55 ± 0.77 1.77 ± 0.90

  Western Europe  
(n = 1,058)

1.63 ± 0.90 1.42 ± 0.68 1.50 ± 0.78 1.17 ± 0.71 1.41 ± 0.66 1.65 ± 0.91

  West Asia (n = 10,699) 2.07 ± 1.13 1.93 ± 1.09 2.06 ± 1.18 1.98 ± 1.28 1.88 ± 1.04 2.10 ± 1.14
  United States (n = 888) 1.84 ± 1.07 1.78 ± 1.09 1.71 ± 0.75 2.04 ± 1.34 1.73 ± 1.04 1.86 ± 1.07

Data are presented as mean ± SD for normal distributed variables, or median for not normal distributed variables (25th and 75th percentile). All 
the categorical variables were reported at the time of first lipid measurement. Contentious variables were presented as the average value during the 
study period.
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All the clinical and laboratory parameters that were measured by 
different methods were calibrated to US standards before any 
analyses were conducted (31).

RESULTS

In total, 37,250 HD patients were included in this multi-
national cohort, with median age of 64 years; 59% male; 
36% entered the study cohort as incident patients; me-
dian dialysis vintage (time on dialysis) was 3.04 years at 
the beginning of the study; median follow-up time (time 
from first lipid measurement to event) was 3.4 years; 6,246 
(16.77%) from Eastern Europe, 18,358 (49.28%) from 
Southern Europe; 1,058 (2.84%) from Western Europe; 
10,699 (28.72%) from West Asia; and 888 (2.38%) from 
United States-RRI. Patient characteristics stratified by 
cause-specific death are presented in Table 1. The flow 
chart of the study cohort and study design is presented in 
Fig. 1A. Out of 37,250 patients included in the study, 6,147 
died due to all causes, with the rate of 163 per 1,000 patient 
years; 1,183 (19.24%) died due to CV, 883 (13.21%) died 
due to infections, 4,024 died due to any other causes that 
are not CV and not infections, and 57 (0.9%) had missing 
information of cause of death (Fig. 1A).

All-cause mortality
By univariate analyses, LDL-C [hazard ratio (HR): 0.85, 

95% CI: 0.82–0.87], HDL-C (HR: 0.64, 95% CI: 0.59–0.79), 
and TG (HR: 0.77, 95% CI: 0.75–0.79) levels were posi-
tively associated with survival in HD patients (Table 2). By 
multivariate analysis, higher LDL-C (HR: 0.82, 95% CI: 

0.79–0.85), HDL-C (HR: 0.42, 95% CI: 0.38–0.47), and TG 
(HR: 0.86, 95% CI: 0.84–0.89) concentration were signifi-
cantly associated with lower all-cause mortality after adjust-
ment for demographics and diabetic status, as well as 
following adjustment for nutritional marker, noted as se-
rum creatinine (Fig. 2, model 3). Higher LDL-C, HDL-C, 
and TGs remain significantly associated with lower all-cause 
mortality while adding serum albumin (Fig. 2, model 4) or 
CRP (Fig. 2, model 5) into the model. In the fully adjusted 
model (Fig. 2, model 6) LDL-C (HR: 0.87, 95% CI: 0.84–
0.90), HDL-C (HR: 60, 95% CI: 0.55–0.66), and TGs (HR: 
0.93, 95% CI: 0.90–0.96) (Fig. 2, model 6) remained associ-
ated with lower mortality, suggesting that the effects of the 
lipoproteins were not mediated by nutritional or inflam-
matory status.

CVD-related mortality
We found no statistically significant associations between 

LDL-C and CV mortality despite adjustment for demo-
graphics, nutritional or inflammatory surrogates (HR 0.95, 
95% CI 0.88–1.02, model 6) (Table 2 and Fig. 3). HDL-C 
levels were significantly associated with reduced CV mortal-
ity in all models (Table 2 and Fig. 3). TG was significantly 
associated with reduced CV mortality (HR: 0.89, 95% CI: 
0.84–0.94, Table 2) in the univariate analyses, but lost its 
significance when further adjusted for demographics, mal-
nutrition, and inflammation (Fig. 3, models 1–6).

Infection-related mortality
Higher LDL-C was significantly associated with lower in-

fection-related mortality in the univariate model (HR: 0.76; 
95% CI: 0.70–0.82). The inverse associations between 
LDL-C and infection-related mortality remained statistically 

Fig.  1.  Study population, study flow chart, and study design. TC, total cholesterol.

TABLE  2.  Association between time-varying serum lipid levels and outcomes without adjustments

Lipid Parameters

All-Cause Mortality CV-Related Mortality Infection-Related Mortality
Other Mortality (Not Infection  

and CV Related)

HR (95% CI) P HR (95% CI) P HR (95% CI) P HR (95% CI) P

LDL (mmol/l) 0.87 (0.84–0.89) <0.0001 0.97 (0.92–1.03) 0.32 0.78 (0.72–0.84) <0.0001 0.84 (0.82–0.87) <0.0001
HDL (mmol/l) 0.68 (0.64–0.74) <0.0001 0.61 (0.52–0.73) <0.0001 0.89 (0.74–1.07) 0.22 0.70 (0.65–0.76) <0.0001
TG (mmol/l) 0.79 (0.77–0.82) <0.0001 0.90 (0.85–0.95) 0.0001 0.77 (0.71–0.83) <0.0001 0.77 (0.74–0.79) <0.0001
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significant after adjustment for demographics (HR: 0.75; 
95% CI: 0.68–0.83; Fig. 4, model 1), demographics plus 
diabetic status (HR: 0.77; 95% CI: 0.70–0.86; Fig. 4, model 
2), demographics, plus diabetes, creatinine (HR; 0.78; 95% 
CI: 0.70–0.86; Fig. 4, model 3), and in the fully adjusted 
model (HR: 0.83; 95% CI: 0.75–0.91; Fig. 4, model 6), al-
though there was some attenuation in the protective effect 
after adjusting for creatinine and albumin. HDL-C was 
protective against infectious mortality in univariate and 
multivariate analyses (Table 2 and Fig. 4) independent of 
both nutritional and inflammatory biomarkers. TGs were 
also inversely associated with infectious mortality in the 
univariate model (HR: 0.75; 95% CI: 0.69–0.81; Table 2), 
as well as in the models adjusted for demographics, diabe-
tes, serum creatinine, and CRP (Fig. 4, models 1–3 and 5) 
but not following adjustment for serum albumin (Fig. 4, 
models 4 and 6).

Other (not infection-related and not CVD-related) 
mortality
All the lipoproteins (LDL-C, HDL-C, and TGs) were sig-

nificantly associated with reduced noninfectious and non-
CV-related mortality, both in univariate analyses (Table 2) 
and multivariate analyses with incremental adjustments 
(Fig. 5).

DISCUSSION

Mortality is inversely associated with total cholesterol 
and LDL-C cholesterol in the dialysis population (7, 32) in 
contrast to the general population (33). In this present 
study, we also found higher LDL-C, HDL-C, and TG levels 
measured over time were significantly associated with bet-
ter survival. Additionally, we did not observe any association 
between LDL-C level or TG and CV mortality, even after 

Fig.  2.  Association between each lipoprotein and all-cause mortality. Model 1: LDL-C or HDL-C or TG plus age, vintage, gender, vascular 
access, BMI, regions; model 2: model 1 plus diabetes; model 3: model 2 plus serum creatinine level; model 4: model 3 plus serum albumin 
level; model 5: model 3 plus serum CRP; model 6: model 3 plus serum albumin, CRP, and NLR level. All the analyses were performed by Cox 
proportional model with time-varying covariates. HRs are reported as per mmol/l. 
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adjustment for nutritional surrogate biomarkers or the in-
flammatory biomarkers CRP and NLR, whereas HDL-C is 
protective. Because the association between cholesterol lev-
els and mortality in the general population is primarily a 
consequence of vascular disease (34), our observations that 
LDL-C levels have no association with CV outcomes par-
tially explain the difference between the dialysis popula-
tion and general population. Part of the residual protective 
effect of lipoproteins, accounting for their association with 
reduced mortality, appears to be a consequent part of re-
duced infectious mortality, because the second leading 
cause of death is infections (2, 35). Additionally, all of the 
lipoprotein classes were associated with reduction in other 
causes of mortality that were not categorized as infectious 
or CV mortality.

The finding of reduced infectious mortality may be 
linked to known protective effects both of HDL-C and  
of other lipoprotein classes. Infection has been shown to 

affect the structure of lipoproteins (22, 23) and lipoprotein 
structure independent of lipoprotein concentration has 
also been shown to be associated with infectious risk (36). 
The lack of an association between lipids, and specifically 
LDL-C and CV outcomes, may be that non-lipoprotein-
related processes associated with inflammation (18, 37, 38) 
or calcium and phosphorous metabolism (39, 40) that 
play a more limited role in the general population are re-
sponsible for the large increase in CVD outcomes (1) and 
dominate CVD outcomes in dialysis patients, obscuring li-
poprotein-related pathways of injury. Analysis of patients 
enrolled in the CHOICE study found that total cholesterol 
increased CVD risk if only subjects who were not inflamed 
were included in the analysis (37, 38); nevertheless, in that 
study, the mortality risk for uninflamed patients with high 
total cholesterol was significantly less than that for inflamed 
patients at any level of cholesterol. We found no effect of 
LDL-C, even after adjusting for inflammatory processes, 

Fig.  3.  Association between each lipoprotein and CV-related mortality. Model 1: LDL-C or HDL-C or TG plus age, vintage, gender, vascular 
access, BMI, regions; model 2: model 1 plus diabetes; model 3: model 2 plus serum creatinine level; model 4: model 3 plus serum albumin 
level; model 5: model 3 plus serum CRP; model 6: model 3 plus serum albumin, CRP, and NLR level. All the analyses were performed by Cox 
proportional model with time-varying covariates. HRs are reported as per mmol/l.
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both in this population as well as in a smaller prospective 
study in which LDL-C was measured directly (41), although 
infectious hospitalizations rather than infectious mortality 
were the primary outcome in that study. The question 
raised then now is not why LDL-C levels do not increase 
mortality risk, but what is the mechanism whereby LDL-C is 
protective in this population?
It has been observed that among patients with normal re-

nal function, both LDL-C and other apo B-associated lipo-
proteins are associated with lower risk of infection (42) and 
improved survival among patients with sepsis (43). However, 
many of these observations were based on lipid levels at the 
time of hospitalization for septic events, which might be con-
founded by severity of inflammation, because greater inflam-
mation is expected to reduce lipid levels more (24, 26, 44, 
45). Our observations here are strengthened by the predic-
tive effect of measurements carried out at a time distant from 
the outcomes, as much as 4 years prior to any event noted. 

Furthermore, in longitudinal analysis of the relationship be-
tween apoB and apo AI and their ratio with inflammatory 
events measured as CRP, we previously reported no temporal 
variability of apo B associated with changes in CRP, whereas 
apo A I varied reciprocally with CRP (24).

The observation that infectious mortality is inversely 
associated with both LDL-C and HDL-C levels, even after 
adjusting for nutritional and inflammatory markers, is con-
sistent with prior observations by us (41) and consistent 
with reported protective effect of LDL-C and other lipopro-
teins from infection or bacterial toxins (19, 20) and protec-
tion against the lethal effect of injected LPS in animal 
models (46, 47). Lipoproteins interact with bacterial toxins, 
many of which are lipids, providing a potential biological 
link between epidemiologic observations and mechanism 
(48–53). In addition, LDL-C absorbs exotoxins secreted 
by Gram-positive bacteria (47). The presence of increased 
inflammation (18) and endogenous endotoxin exposure 

Fig.  4.  Association between each lipoprotein and infection-related mortality. Model 1: LDL-C or HDL-C or TG plus age, vintage, gender, 
vascular access, BMI, regions; model 2: model 1 plus diabetes; model 3: model 2 plus serum creatinine level; model 4: model 3 plus serum 
albumin level; model 5: model 3 plus serum CRP; model 6: model 3 plus serum albumin, CRP, and NLR level. All the analyses were per-
formed by Cox proportional model with time-varying covariates. HRs are reported as per mmol/l.
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in dialysis patients (54, 55) would be expected both to in-
crease CV risk from inflammation and change the overall 
effect of lipoproteins, specifically of LDL-C, to favor protec-
tion, as observed here.
HDL-C contains LBP (17), an acute phase protein that is 

in part carried by HDL-C and plays a role in neutralizing 
the biological effect of LPS (56), in part by transferring 
LPS from HDL-C to lipoproteins targeted by the hepatic 
LDL-C receptor (57) for subsequent hepatic uptake and 
disposal (58). This could help to support the explanation 
of the protective effect that HDL-C played in the cause of 
death due to infections. The effect of TG-rich lipoproteins 
may be more difficult to estimate from these data because 
VLDLs, chylomicrons, and remnant particles were not 
measured directly. However, we also found that LDL-C and 
HDL-C are associated with a reduced rate of mortality from 
other residual causes of death. This result is similar to what 

is observed in the general population for total cholesterol 
(34). Unlike the statistically significant reduction in infec-
tious death, there is no obvious mechanism to explain the 
protective effect of LDL-C and HDL-C against residual 
causes of death, and one weakness of this study is that we 
did not further analyze the distribution of deaths not asso-
ciated with CV or infectious hospitalizations. Many of these 
deaths occurred outside of the hospital. It remains possible 
that residual nutritional factors contributed, although we 
have controlled for BMI as well as albumin and creatinine. 
Cancer represents approximately 7% of all-cause mortality 
in a study of European HD patients (59). There may also 
be a protective effect of total cholesterol and cancer 
outcomes in some forms of cancer (60), although there 
may be confounding effects of nutritional intake as well 
(34); however, the relationship between cancer death, and 
specifically cancer type and lipids and outcomes in HD 

Fig.  5.  Association between each lipoprotein and other (not infection-related and not CV-related) mortality. Model 1: LDL-C or HDL-C or 
TG plus age, vintage, gender, vascular access, BMI, regions; model 2: model 1 plus diabetes; model 3: model 2 plus serum creatinine level; 
model 4: model 3 plus serum albumin level; model 5: model 3 plus serum CRP; model 6: model 3 plus serum albumin, CRP, and NLR level. 
All the analyses were performed by Cox proportional model with time-varying covariates. HRs are reported as per mmol/l.
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patients is beyond the scope of this investigation. Cachexia 
and withdrawal from dialysis each represent approximately 
5% from the same data base and would be expected to be 
associated with reduced levels of nutritional biomarkers 
and decreased lipid levels (47). A variety of nutritional 
measures are associated with increased overall mortality 
risk in HD patients (61, 62).
These observations should also be viewed in the context 

that LDL-C was not measured directly nor fasting; however, 
the lack of a relationship between LDL-C levels and CV out-
comes is consistent with the failure of interventional trials 
to alter CVD risk in HD patients (10, 11). Our CV rate is 
lower than reported by the U.S. Renal Data System (4); 
however, we focused our CV classification to represent arte-
rial injury rather than all CV events that may be due to vol-
ume overload or electrolyte abnormalities. Although the 
majority of our study cohort is from Europe, the event rate 
is similar to those reported in a European population fo-
cusing on the same outcomes (59).
One of the strengths of current study is that the sample 

size is relatively large, and the sample was diverse according 
to geographical regions. This allowed us to study regions 
that routinely perform lipid panels as well as CRP measure-
ment without indication reducing a selection bias in sam-
pling. Most of the study cohort is from Europe, which 
contains more than 95% white patients, which may limit the 
applicability of these finding to other racial groups. Al-
though the current study is a retrospective observational 
study, we have very limited documentation of medication to 
include in this analysis in the current study. Another limita-
tion of the current study is that we do not have enough 
documentation of comorbid conditions in the current sub-
set study cohort. Furthermore, a number of additional nu-
tritional related biomarkers—Subjective Global Assessment, 
muscle mass, skin fold thickness—are unavailable. Thus, 
residual confounding factors still cannot be eliminated.
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