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Abstract: The maximum correntropy Kalman filter (MCKF) is an effective algorithm that was pro-
posed to solve the non-Gaussian filtering problem for linear systems. Compared with the original
Kalman filter (KF), the MCKF is a sub-optimal filter with Gaussian correntropy objective function,
which has been demonstrated to have excellent robustness to non-Gaussian noise. However, the per-
formance of MCKF is affected by its kernel bandwidth parameter, and a constant kernel bandwidth
may lead to severe accuracy degradation in non-stationary noises. In order to solve this problem, the
mixture correntropy method is further explored in this work, and an improved maximum mixture
correntropy KF (IMMCKF) is proposed. By derivation, the random variables that obey Beta-Bernoulli
distribution are taken as intermediate parameters, and a new hierarchical Gaussian state-space model
was established. Finally, the unknown mixing probability and state estimation vector at each moment
are inferred via a variational Bayesian approach, which provides an effective solution to improve
the applicability of MCKFs in non-stationary noises. Performance evaluations demonstrate that the
proposed filter significantly improves the existing MCKFs in non-stationary noises.

Keywords: Kalman filter; maximum correntropy criterion; mixture correntropy; variational Bayesian
inference

1. Introduction

The state estimation problem in dynamic systems is an important research topic
in engineering applications and scientific research. As an excellent optimal state-space
estimator, the Kalman filter (KF) is commonly applied in various fields like control systems
and signal processing. Unfortunately, the optimality of KF requires exact system models
and ideal noise conditions as summarized in [1].

The widely used KF, which usually refers to the Kalman filter based on the Hidden
Markov Models (HMM), has rigorous requirements for the noise models. Both process and
measurement noise are assumed as ideal independent Gaussian noise sequences. However,
in practical applications, ideal noise conditions are not likely, and model uncertainties
such as system structure changes and environmental disturbances are generally inevitable.
Moreover, unexpected noise interference, such as colored noise and non-Gaussian noise,
widely exist, and the performance of the KF is likely to worsen when applied to such
situations. For example, when the independent noise assumption no longer holds, and the
colored noise needs to be considered in the system model, as one of the efficient solutions,
the pairwise Markov models (PMM), which can be deemed a general form of HMM, can be
taken as an efficient improvement scheme for KF. In [2], the framework of the KF based on
PMM is derived, which allows the cross-dependence between observations conditionally
on hidden variables. As an extension, the KF based on triplet Markov chains is provided
in [3]. These methods provided efficient solutions for the colored noise filtering from
the perspective of the state-space models. On this basis, to solve the model parameters’
uncertain problems in practical applications. The robust parameter estimation problem for
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the PMM model is further explored in [4,5], which provided several representative schemes
for the state estimation problems in colored noise or model parameter uncertain conditions.

On the other hand, the research on filtering algorithms under non-Gaussian noise has
also attracted extensive attention. Generally, non-Gaussian distribution noises are often
caused by impulsive noise, which gives the overall noise distributions obvious heavy-tailed
features (such as some special Gaussian-mixture distributions). Extensive research has been
carried out regarding the filtering problems in non-Gaussian noises. H-Infinity filtering and
m-estimators are typical robust methods used for this purpose [6]. The Huber Kalman filter
(HKF) is one of the most representative m-estimators, which retains a consistent form with
KF and provides reliable robustness to external impulsive noise interference. In the existing
relevant studies, various improvements based on the HKF have also been proposed, such
as a batch mode [7] and several typical nonlinear schemes [8,9]. Besides m-estimators,
student-t distribution filters have also been designed to deal with state estimate problems
under heavy-tailed noise conditions. The filters attenuate the interference of outliers by
their heavy-tailed distribution statistical characteristics [10,11]. However, student-t filters
suffer from high-order statistics’ loss due to moment matching and inaccurate parameter
selection, such as the degrees of freedom limiting their applicability. To solve the problem,
another novel student-t filter based on the hierarchical Gaussian state-space model and
variational Bayes (VB) inference approach is proposed, which is compactly called the robust
student-t Kalman filter (RSTKF) [12]. Compared with the student-t filter, several unknown
parameters, such as the degrees of freedom of the student-t distribution and the scale
coefficient, are updated accordingly in the RSTKF [13–15].

Recently, a new robust maximum correntropy Kalman filter (MCKF) was proposed for
the filtering problem in non-Gaussian noises [16,17]. The MCKF is derived on the maximum
correntropy criterion (MCC), which introduces the Gaussian correntropy as a novel local
similarity measure, and a novel object function based on correntropy is utilized to overcome
the non-Gaussian noise interference [18]. Compared with other existing robust filters, the
Gaussian correntropy-based MCKF has better statistical characteristics[19]. Meanwhile, the
MCKF can be formulated in the same form as the KF. Similarly, the states constrained [20]
and nonlinear forms [21,22] have been proposed and validated in various applications [23].
Moreover, an adaptive MCKF was proposed to improve the filtering performance by
updating the measurement noise covariance via VB approach [24].

Due to the excellent robustness to outliers, in many cases, the filtering problem of
a linear system corrupted by impulsive noise can be solved effectively by the MCKF.
However, just like other robust filters, the filtering performance of the MCKF is closely
related to its initial parameters, which are usually obtained by experience or trial and error
method. Similar to many existing robust filtering algorithms with fixed parameters, it might
result in performance degradation in non-stationary noises. Several studies have focused
on the parameter problem of correntropy function. In prior works, heuristic solutions
were proposed to adjust the kernel bandwidth during filtering [25,26]. As it is difficult
to directly find an optimal kernel bandwidth during filtering, the mixture correntropy
concept was proposed in [27,28], the method takes mixture Gaussian correntropy with
different kernel parameters instead of the Gaussian correntropy, and a new maximum
mixture correntropy criterion (MMCC) is derived from replacing MCC. However, the
mixing probability of the mixture correntropy needs to be configured manually and fixed,
which results in performance degradation similar to that of the MCKF.

To improve the filtering performance when applied to non-stationary noise conditions,
it may be an efficient improved solution that considers the model’s switching scenarios.
For instance, in [29], the optimal recursive filtering method is studied for non-Gaussian
Markov switching models, in which a semi-supervised parameter estimation method is
used. In addition, for the non-stationary noise conditions concerned in this paper, the
variable Bayesian approach is an implementation scheme worthy of consideration. Based
on the triplet Markov chain model, the general form of variable Bayesian inference is
deduced in [30], and a structured variable Bayesian inference frame with regime switching
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is obtained. For typical linear filtering applications, the RSTKF proposed in [12] also
adopts a similar operation scheme, where VB approximation is operated by rescaling
the covariance and inferring parameters to deal with the non-stationary non-Gaussian
noises. In [31], a similar problem is further studied, and a VB-based robust student’s t
KF is applied to the linear PMM systems, which extends the filter’s applicability to more
general conditions, and independent noise assumption is no longer needed. Therefore,
inspired by the related references, the model switch concept is adopted in this work, and
the variational Bayesian approach is also operated to infer estimation results. In view of the
filtering accuracy degradation problem of MCKF in the non-stationary and non-Gaussian
noise, a series of studies are carried out.

In this work, an improved maximum mixture Kalman filter (IMMCKF) is therefore
proposed, the intermediate random variables are used to represent the mixing probability
of mixture correntropy. The state variables and mixing probability are approximated by
the derived variational Bayesian approach. Compared with the existing MCKF algorithms,
the numerical test results demonstrate that the proposed filter could deal with the filtering
problem well in a non-stationary non-Gaussian noises environment. The contributions of
this paper are listed as follows:

(a) The accuracy degradation problem of existing fixed-parameter robust filtering
algorithms in non-stationary noise environment is considered. By analyzing, it is
inferred that the mixture correntropy function can be improved as the breakthrough
point and applied to the filtering problem in such noise conditions. On this basis, a
novel improved robust filtering algorithm is then further derived.

(b) By employing Beta-Bernoulli distributed intermediate random variables, a new
hierarchical Gaussian state-space model is therefore derived, the system state vector,
and the unknown variables are simultaneously estimated by utilizing the variational
Bayesian technique.

(c) Through analyses and derivations, the necessary selection strategy of initial param-
eters is derived, and the numerical test results show that the filtering performance
is enhanced obviously after several iterations. On the one hand, it achieved desired
robust filtering performance when applied to non-stationary noise conditions. On
the other hand, the proposed algorithm effectively avoids the possible filtering
divergence difficulties of MCKF in practical application.

This paper is organized as follows: In Section 2, we review the concept of correntropy
and existing MCKF. In Section 3, a variational Bayesian-based improved maximum mixture
correntropy KF is derived to solve the filtering problem in non-stationary non-Gaussian
noises, in which the variational Bayesian approach is applied in the proposed filter. Section 4
provides performance evaluations and analysis, demonstrating the advantages of the
proposed filter in different noise conditions. Conclusions are given in Section 5.

2. Materials and Methods
2.1. Definition of Correntropy and Properties

Correntropy is a useful local similarity measure tool for state estimation in heavy-
tailed noise environments. Given two random variables X, Y ∈ R with a joint distribution
function FXY(x, y), correntropy can be defined as

V(X, Y) = E[κσ(X, Y)] =
∫

κσ(x, y)dFXY(x, y) (1)

where κσ(·) is a shift-invariant Mercer kernel. In this work, the Gaussian kernel function is
given by

κσ(X, Y) = Gσ(e) = exp(− e2

2σ2 ) (2)
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where e = X − Y, and σ > 0 denotes the kernel bandwidth. In order to make corren-
tropy applicable to complex noise conditions, the default Gaussian kernel function can be
extended into a mixture correntropy form as follows:

M(X, Y) = E[ρGσ1(e) + (1− ρ)Gσ2(e)] (3)

where Gσ1 , Gσ2 represent the Gaussian correntropy with two different kernel bandwidth
parameters, and ρ ∈ [0, 1] represents the mixing probability. For convenience of application,
(3) can be approximately expressed as

M(X, Y) =
1
N

(
N

∑
i=1

ρ exp(−
e2

i
2σ2

1
) + (1− ρ) exp(−

e2
i

2σ2
2
)

)
(4)

where N represents the number of samples. The mixture correntropy can be taken as a
generalization of the original correntropy, if ρ = 1 or ρ = 0, it reduces to the Gaussian
correntropy with single kernel parameter and M(X, Y) = 1 if X = Y.

2.2. Robust Kalman Filter Based on Maximum Correntropy Criterion

Consider the linear state-space system based on HMM, the equations to be

xk = Fkxk−1 + wk (5)

yk = Hkxk + vk (6)

where k is a discrete time index, xk ∈ Rn is the system state vector at discrete-time index k,
Fk is the state transition matrix, yk ∈ Rm is the measurement vector, Hk is the measurement
matrix; wk and vk are zero-mean process and measurement noise vector with nominal
covariance Qk and Rk, respectively. It is assumed that both process and measurement noise
are statistically independent and time uncorrelated. When the process and measurement
noises are assumed ideal Gaussian distributions, and initial state x0 is random Gaussian
variables, the state can be inferred by the KF, which is an optimal filter in the minimum
mean square error (MMSE) criterion. Additionally, the quadratic objective function can be
formulated as follows:

x̂k|k = arg min
xk

J(xk)= arg min
xk

(
1
2

∥∥∥xk − x̂k|k−1

∥∥∥2

P−1
k|k−1

+
1
2
‖yk −Hkxk‖2

R−1
k

)
(7)

where ‖x‖2
A = xTAx. To minimize Equation (7), the KF is implemented in two steps as

below, the prior estimation is

x̂k|k−1 = Fk x̂k−1|k−1 (8)

Pk|k−1 = FkPk−1|k−1FT
k + Qk−1 (9)

and the posterior measurement update is

Kk = Pk|k−1HT
k (HkPk|k−1HT

k + Rk)
−1 (10)

x̂k = x̂k|k−1 + Kk(yk −Hk x̂k|k−1) (11)

Pk|k = (In −KkHk)Pk|k−1 (12)

where Pk|k−1 and Pk|k represents the prior and posterior covariance matrix, respectively. The
KF is an optimal estimator in an ideal white Gaussian noise environment. In Equation (7),
only the second-order statistics are used during the state update, and the KF is susceptible
to non-Gaussian noise interference.

To solve the filtering problem in non-Gaussian noise conditions, recently, MCC is often
considered an efficient potential solution. As described in Section 2, correntropy has several
necessary properties that make it capable of dealing with the non-Gaussian estimation
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problem. Different from the global similarity measure-mean square error (MSE), which
only contains the second-order statistics, Gaussian correntropy incorporates all even order
moments [17,18]. In geometric meaning, MSE gives the L2 norm distance while correntropy
offers a hybrid norm distance, where the correntropy behaves like the L2→L0 norm with
the increasing difference between two points.

As proved by the research in [17], maximizing the correntropy of two different random
variables can be used as a criterion in dealing with the non-Gaussian noise problem,
especially the filtering problem in heavy-tailed noises, which leads to MCC. Therefore,
to enhance the robustness of the Kalman filter, the objective function based on MCC is
introduced to replace the original quadratic cost function, and the new objective function
therefore can be formulated as:

x̂k= argmax
xk

JMCC(xk)= arg max
xk

(
n
Σ

i=1
aiGσm(ei) +

m
Σ

j=1
bjGσp(fj)

)
(13)

where e =
∥∥∥yk −Hk x̂k|k−1

∥∥∥
R−1

k

, f =
∥∥∥x̂k − Fk x̂k−1|k−1

∥∥∥
P−1

k|k−1

the subscript i represents the ith

element of the vector; a and b are tuning parameter vectors; and σm, σp denotes the kernel
bandwidths corresponding to the Rk and Pk|k−1, respectively. For simplicity, it is assumed
that σm = σp = σ, to ensure the filter converges to the KF when the kernel bandwidth goes
to infinity, assuming that ai = σ, bj = σ [21]. The prior estimation steps of the MCKF are
the same as in Equations (8) and (9) and the posterior state estimation of xk is obtained by
below KF like equations with the updated filter gain as

K̄k = P̄k|k−1HT
k (HkP̄k|k−1HT

k + R̄k)
−1

(14)

P̄k|k−1 = SPk|k−1
Λ−1

p ST
Pk|k−1

(15)

R̄k = SRk Λ−1
m ST

Rk
(16)

where Λp = diag(Gσ(f1)Gσ(f2)...Gσ(fn)), Λm = diag(Gσ(e1)Gσ(e2)...Gσ(em)), and
Pk|k−1 = SPk|k−1

ST
Pk|k−1

, Rk = SRk ST
Rk

. It is worth noting that the MCC solution cannot
be obtained in a closed form and usually solves it using an iterative update algorithm such
as the fixed-point iterative algorithm, which involves no step size and may converge fast,
the condition that guarantees the convergence of the fixed point MCC was given in [32].

3. Main Results
3.1. Robust Kalman Filter Based on Mixture Correntropy Criterion

The kernel parameters of Gaussian correntropy determine the filtering performance
of the MCKF, and an improper kernel bandwidth might lead to filtering performance
degradation or even diverge. For this reason, the mixture correntropy is an alternative
solution to improve the solution of problem by reducing the filter’s sensitivity to the
kernel parameters.

The maximum mixture correntropy Kalman filter (MMCKF) is derived in this section.
According to the mixture correntropy Function (4), the objective function of the maximum
mixture correntropy criterion can be formulated as

x̂k = arg max
xk

JMMCC(xk) = arg max
xk

(
n
Σ

i=1
ai M(ei) +

m
Σ

j=1
bj M(fj)

)
(17)

where M(ei) represents the mixture correntropy function as (3). Similar to Equation (13), it
is assumed that ai = bj = λ, and mixture correntropy is the convex combination of the two
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Gaussian correntropy functions. To maximize this objective function, the solution can be
obtained by solving

∂JMMCC(xk)

∂xk
= λ

(
n
Σ

i=1
øi M(ei) +

m
Σ

j=1
øj M(fj)

)
= 0 (18)

where

øi =

(
ρGσ1(ei)

σ2
1

+
(1− ρ)Gσ2(ei)

σ2
2

)
(19)

represents the derivation of the correntropy function.
To maintain consistency to the KF, a tuning factor λ should be properly assigned as

λ =
σ2

1 σ2
2

ρσ2
2 + (1− ρ)σ2

1
(20)

and the MMCKF converges to the optimal KF while the process and measurement noises
obey ideal Gaussian distributions. A modified mixture correntropy function C(ei) is then
formulated as

C(ei) = λøi = µGσ1(ei) + (1− µ)Gσ2(ei) (21)

with µ = ρσ2
2
/
(ρσ2

2 + (1− ρ)σ2
1 ), and the optimal estimate of xk is obtained by KF like

equations, where Λp = diag(C(f1)C(f2)...C(fn)), Λm = diag(C(e1)C(e2)...C(em)), and
µ ∈ [0, 1]. Here, C(ei) can be regarded as a linear transformation of M(ei), they are positive
correlated, and C(ei) = M(ei) if ρ, µ ∈ {0, 1}.

3.2. Improved MMCKF via Variational Bayesian Approximation

Similar to the Gaussian correntropy of the MCKF, in Equation (21), the mixing proba-
bility parameters are constant, which inevitably results in the filtering performance degra-
dation in non-stationary noises. To improve the filtering performance in such complex noise
environments, an improved algorithm is derived in this section. The mixing probability of
the mixture correntropy is reassigned as an unknown random variable that can be further
approximated during filtering.

According to the Bayesian theorem, the posterior probability density function (PDF)
p(xk|y1:k) is formulated as

p(xk|y1:k) ∝ p(yk|xk)p(xk|y1:k−1) (22)

in which p(xk|y1:k−1) is determined using the Chapman–Kolmogorov equation. Therefore,

p(xk|y1:k−1) ∝
∫

p(xk|xk−1)p(xk−1|y1:k−1)dxk−1 (23)

where p(xk|xk−1) is the posterior density at time k − 1 and p(xk−1|y1:k−1) is the transi-
tion density.

In this work, we assumed that µ is an unknown random variable, and µ ∈ [0, 1].
In order to approximate the unknown state and reasonable mixing probability via VB
approach, we first need to determine the assumed distribution of unknown variable. Then,
it is necessary to introduce a prior probability distribution p(µ). According to the desired
scenario, µ is assumed to be an Beta distributed variable. Since the likelihood distribution
of the mixing probability µ can be formulated as a Bernoulli distribution by introducing
Bernoulli random variables ξ, according to the Bayesian probability theory, we have

p(µ|ξ) = p(ξ|µ) · p(µ)∫
p(ξ|µ) · p(µ)dξ

(24)

and then, p(µ|ξ) ∝ p(ξ|µ) · p(µ). According to the Bayesian formula, the posterior probabil-
ity distribution is directly proportional to the product of the prior probability distribution
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and the likelihood function. The form of the posterior probability distribution will be the
same as that of the prior. Therefore, the conjugate prior distribution of µ is selected as a
Beta distribution according to Bayesian probability theory, have p(µ) = Be(µ; a, b), where
E(µ) = a/(a + b).

Now that we have determined the distribution of the required intermediate variables,
we can further derive the following specific formula based on the system model. Using
two random variables sk and tk obey Bernoulli distribution to generate the likelihood
distribution. In order to ensure that the prior and posterior probability distributions retain
the same form, the Beta distribution is taken as the prior conjugation distribution for
inference. Therefore, the conditional probability p(tk|αk) and p(sk|βk) can be formulated as

p(tk|αk) = α
tk
k (1− αk)

(1−tk), s.t.tk ∈ {0.1} (25)

p(sk|βk) = β
sk
k (1− βk)

(1−sk), s.t.sk ∈ {0.1} (26)

in which αk and βk obey the Beta distribution as

p(αk) = Be(αk; a0, b0) (27)

p(βk) = Be(βk; c0, d0) (28)

where a0, b0, c0 and d0 represent the prior Beta parameters for the mixing probabilities.
Then, the conditional PDF p(yk|xk, tk) and p(xk|y1:k−1, sk) can be rewritten as the following
hierarchical Gaussian form by

p(yk|xk, tk) = N(yk; Hkxk, R̃k)
tk N(yk; Hkxk, R̄k)

(1−tk) (29)

p(xk|y1:k−1, sk) = N(xk; x̂k|k−1, P̃k|k−1)
sk N(xk; x̂k|k−1, P̄k|k−1)

(1−sk) (30)

where R̃k, P̃k|k−1 and R̄k, P̄k|k−1 represent the updated covariance matrix corresponding to
the Gaussian correntropy functions Gσ1 and Gσ2 , respectively. The modified prior error covari-
ance is formulated as P̃k|k−1 = SPk|k−1

Λ−1
p,σ1

ST
Pk|k−1

and P̄k|k−1 = SPk|k−1
Λ−1

p,σ2
ST

Pk|k−1
, and the

measurement noise covariance is formulated as R̃k = SRk Λ−1
m,σ1

ST
Rk

and R̄k = SRk Λ−1
m,σ2

ST
Rk

.
Therefore, the conditional probability density distribution of p(yk|xk, αk, tk) and

p(xk|y1:k−1, βk, sk) can be formulated as

p(yk|xk, αk, tk) = N(yk; Hkxk, R̃k)
tk

N(yk; Hkxk, R̄k)
(1−tk)p(tk|αk)p(αk)s.t. tk ∈ {0, 1}

(31)

p(xk|y1:k−1, βk, sk) = N(xk; x̂k|k−1, P̃k|k−1)
sk

N(xk; x̂k|k−1, P̄k|k−1)
(1−sk)p(sk|βk)p(βk)s.t. sk ∈ {0, 1}

(32)

According to the likelihood PDF derived above and the Bayesian theorem, the joint PDF
can be given as follows:

p(Θk, y1:k) = p(y1:k−1)N(xk; x̂k|k−1, P̃k|k−1)
sk N(xk; x̂k|k−1, P̄k|k−1)

(1−sk)N(yk; Hkxk, R̃k)
tk

N(yk; Hkxk, R̄k)
1−tk α

tk
k (1− αk)

(1−tk)β
sk
k (1− βk)

(1−sk)Be(αk; a0, b0)Be(βk; c0, d0)
(33)

where Θk
∆
= {xk, sk, tk, αk, βk} contains the state variable xk that needs to be estimated, and

the Beta-Bernoulli variables {αk, βk}, {sk, tk} are used for the inference of mixing probability
parameters. Therefore, to obtain the estimated value of Θ using the VB inference, according
to prior work [12,33], the approximate posterior PDF of the element in Θ needs to satisfy
the following equation:

log q(θ) = E
Θ−θ

k
[log p(Θk, y1:k)] + Cθ (34)
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where θ is an element of Θk, Θ−θ means the remain elements of Θ except θ, and Cθ is
a constant with respect to θ. As (34) cannot be solved analytically, fixed-point iteration
is required to achieve an approximate solution. By expanding (34), the following can
be obtained:

log p(Θk, y1:k) = (1− sk) log N(xk; x̂k|k−1, P̄k|k−1)+sklogN(xk; x̂k|k−1, P̃k|k−1)

+(1− tk)logN(yk; Hkxk, R̄k) + tk log N(yk; Hkxk, R̃k) + tk log αk + (1− tk) log(1− αk)
+sk log βk + (1− sk) log(1− βk)+logBe(αk; a0, b0) + log Be(βk; c0, d0) + CΘk

(35)

Initialize the parameters a0, b0, c0, d0 and calculate E(i+1)[tk] = a0/(a0 + b0), E(i+1)[sk] =
c0/(c0 + d0), note that E(0)[log(α0)] = ψ(a0)− ψ(a0 + b0), E(0)[log(β0)] = ψ(c0)− ψ(c0 +
d0), where ψ represents the digamma function.

By exploiting (35), the estimation of the unknown parameters in Θk is implemented
by fixed-point iteration loop in (a)–(c).
(a) Let θ = xk, utilizing (34) in (35), and log q(i+1)(xk) can be rewritten as

log q(i+1)(xk) = E(i)[sk] log N(xk; Hk x̂(i)k|k, P̃(i)
k|k) + (1− E(i)[sk]) log N(xk; Hk x̂(i)k|k, P̄(i)

k|k)

E(i)[tk] log N(yk; Hkxk, R̃(i)
k ) + (1− E(i)[tk]) log N(yk; Hkxk, R̄(i)

k ) + Cxk

(36)

where i represents the ith fixed-point iterations. Using E(i+1)[sk] and E(i+1)[tk] replace
the mixing probability ρ in (21) and then calculate the conditional PDF p(xk|y1:k−1) and
p(yk|xk) by proposed mixture correntropy as

q(i+1)(xk|y1:k−1)q(i+1)(yk|xk) = N(xk; x̂k−1, P̂k|k−1)N(yk; Hkxk, R̂k) (37)

where the modified prediction error covariance matrix P̂(i+1)
k|k−1 and the modified measure-

ment noise covariance matrix R̂(i+1)
k are used. After deformation, the posterior PDF

q(i+1)(xk) can be formulated as

q(i+1)(xk) ∝ N(xk; Hk x̂(i)k|k−1, P̂(i)
k|k−1)N(yk; Hkxk, R̂(i)

k ) (38)

According to (38), q(i+1)(xk) is updated using a nominal Gaussian distribution as q(i+1)(xk) =

N(xk; Hk x̂(i)k|k, P̂(i+1)
k|k ). Then x̂(i)k|k and the corresponding estimation error covariance matrix

P̂(i+1)
k|k are obtained by the measurement update of the KF as shown in (10)–(12) with P̂(i+1)

k|k−1

and R̂(i+1)
k .

(b) As for the expectation of the Bernoulli distribution, E(i+1)[sk] and E(i+1)[tk] can be
updated as follows:

E(i+1)[sk] =
Pr(i+1)(sk = 1)

Pr(i+1)(sk = 1) + Pr(i+1)(sk = 0)
(39)

E(i+1)[tk] =
Pr(i+1)(tk = 1)

Pr(i+1)(tk = 1) + Pr(i+1)(tk = 0)
(40)

By setting θ = sk and θ = tk, and then updating q(i+1)(sk) and q(i+1)(tk) using the Bernoulli
distribution, the probabilities of sk and tk being 1 are given by:

Pr(tk = 1) = ∆i+1
1 exp{E(i)[log αk] + 0.5tr(log Λm,σ1)− 0.5tr(Ai+1

k R̄−1
k )} (41)

Pr(sk = 1) = ∆i+1
2 exp{E(i)[log βk] + 0.5tr(log Λp,σ1)− 0.5tr(Bi+1

k P̄−1
k|k−1)} (42)

where ∆ is a normalizing constant, and two auxiliary variables A, B are used to evaluate
the prior probability covariance and measurement covariance as
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A(i+1)
k = E(i+1)[(yk −Hkxk)(yk −Hkxk)

T ] (43)

B(i+1)
k = E(i+1)[(xk − x̂k|k−1)(xk − x̂k|k−1)

T ] (44)

To implement the fixed-point iteration, (43) and (44) is approximated as

A(i+1)
k = (yk −Hk x̂(i+1)

k|k )(yk −Hk x̂(i+1)
k|k )T + HkPi+1

k|k HT
k (45)

B(i+1)
k = P(i+1)

k|k + (x̂(i+1)
k|k − x̂k|k−1)(x̂

(i+1)
k|k − x̂k|k−1)

T (46)

(c) Next, q(i+1)(αk) and q(i+1)(βk) are updated using the Beta distribution as shown in (27)
and (28). Take the PDF of the Beta distribution into derivation, and, by setting θ = αk and
θ = βk, then

q(i+1)(αk) = (a0 − E(i+1)[tk]) log(αk) + (b0 + E(i+1)[tk]− 1) log(1− αk) + Cα (47)

q(i+1)(βk) = (c0 − E(i+1)[sk]) log(βk) + (d0 + E(i+1)[sk]− 1) log(1− βk) + Cβ (48)

where q(i+1)(αk) and q(i+1)(βk) can be updated with new shape parameters, therefore, the
shape parameters of the Beta prior distribution can be updated as follows:

a(i+1)
k = a0 + E(i+1)[tk] (49)

b(i+1)
k = b0−E(i+1)[tk] + 1 (50)

c(i+1)
k = c0 + E(i+1)[sk] (51)

d(i+1)
k = d0−E(i+1)[sk] + 1 (52)

After completing c), checking the convergence of the iteration according to the preset error

threshold, if

∥∥∥x̂(i+1)
k −x̂(i)k

∥∥∥∥∥∥x̂(i)k

∥∥∥ < ε then stop the iteration and output the result. Otherwise, return

to (a) for the next iteration.
In addition to the previous state and measurement vector, to begin the algorithm,

the proposed filter only needs two kernel parameters and the initial prior beta shape
parameters for the mixture of Gaussian correntropy. Among them, the kernel parameters
of the Gaussian correntropy subfunction are more likely to be chosen by experience. In
most cases, they have minimal impact on the filtering performance. This conclusion will be
confirmed in the subsequent simulations.

On the other hand, the chosen of prior Beta distribution parameters needs a simple
discussion. By combining the characteristics of the Beta distribution, the initial mixing
probability ρ is determined by its prior shape parameters. If a0 = c0 = 0 or b0 = d0 = 0,
the proposed filter converges to the original MCKF. In order to reduce input parameters
and simplify the algorithm, it is generally assumed that a0 = c0 and b0 = d0 in most cases.

In this work, two Gaussian correntropies with different kernel parameters are used
to cope with the stable filtering process and the process corrupted by dynamic abnormal
errors, such as impulsive noise disturbance. In order to ensure filtering accuracy and
stability, the prior parameters are not arbitrarily set, but obey a certain regularity. For
example, in an ideal Gaussian noise environment, we have E(j+1)[tk] → 1 and then the
performance of the mixture correntropy converge to the Gaussian correntropy with a large
kernel parameter, so that it has basic robustness and retains convergence to KF as much as
possible, expanding (41) and we can find that
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E(i+1)[tk] =
p(i+1)(tk = 1)

p(i+1)(tk = 1) + p(i+1)(tk = 0)

=
1

1 + p(i+1)(tk = 0)/p(i+1)(tk = 1)

=
1

1 + exp(E(i+1)(1− α0)− E(i+1)(α0) + Ck)

=
1

1 + exp(ψ(b0)− ψ(a0) + Ck)
→ 1

(53)

where Ck represents the terms independent of a0 and b0. According to (41) and (42), if the
distributions of measurement and state noise nearly meet the ideal Gaussian assumption
is needed.

In contrast, for the filtering process corrupted by severe impulsive noise, the mixing
probability is likely to be redistributed appropriately to enhance the robustness to abnormal
noise, and then

E(i+1)[tk] =
1

1 + p(i+1)(tk = 0)/p(i+1)(tk = 1)
→ 0

⇒ exp(ψ(b0)− ψ(a0) + Ck) >> 0
(54)

As the definition of Gaussian correntropy Equation (2), if σ1 > σ2, for the residual term ei
with significant abnormality, there is a great of difference between Gσ1(ei) and Gσ2(ei), and
Gσ1(ei)� Gσ2(ei). Therefore, it is further inferred that Ck increases significantly and then
ψ(b0)− ψ(a0) + Ck � 0 at this time, where ψ(b0)− ψ(a0) can be taken as a constant term
to regulate the transition of E(i+1)[tk], and a0 > b0 still applies to this case.

Therefore, in this work, the parameters can be chosen within the range 0.95 ≤ a0 ≤ 0.85
and b0 = 1− a0, which can be used as a typical parameter configuration. On this basis, it
may sometimes be useful to make a minor adjustment on the initial parameter configura-
tions according to the specified application. This will contributes to further improving the
algorithm’s performance in complex environments. The related results are shown in the
later simulation.

4. Performance Evaluations and Analysis
4.1. Example I: 2-D Moving Target Tracking Model

Consider a two-dimensional (2D) moving target tracking system as

F =


1 sin(wT)

w 0 − (1−cos(wT))
w

0 cos(wT) 0 − sin(wT)
0 − (1−cos(wT))

w 1 sin(wT)
w

0 sin(wT) 0 cos(wT)

, Γ =


0.5T2 0

T 0
0 0.5T2

T 0

, H =

[
1 0 0 0
0 0 1 0

]
(55)

in which Γ represents the process noise gain matrix, T = 0.2, w = 0.2, and the total
simulation steps N = 200/T. It is assumed that Qk = 0.1I2 and Rk = 10I2. The true initial
state x0 = [1 1 1 1]T, the initial state estimation x̂0 = [0 0 0 0]T and the error covariance
matrix P0|0 = I4. In addition to the KF, the HKF with loss function parameter r = 1.345; the
MCKF with typical kernel parameters σ = 2, σ = 3, σ = 5 and σ = 9, are used for comparison.
For the algorithm proposed in this paper, we chose σ1 = 9, σ2 = 3 and a0 = 0.9 as the
default initial parameters. The maximum iteration times Nm = 10 for the robust filters.
The numerical test was coded with MATLAB and executed on a computer with Intel Core
i7-9700 CPU @3.0 GHz.

In order to evaluate the filtering performance, the root mean square errors (RMSE)
and averaged RMSE (ARMSE) are chosen as evaluation indicators of position and velocity
estimation, which are defined as follows:
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RMSE(k) ∆

=

√
1
M

M
∑

s=1
((xs

k − x̂s
k)

2 + (ys
k − ŷs

k)
2)

ARMSE ∆
=

√
1

MN

N
∑

k=1

M
∑

s=1
((xs

k − x̂s
k)

2 + (ys
k − ŷs

k)
2)

(56)

where (xs
k, ys

k) and (x̂s
k, ŷs

k) are the true and estimated positions(or velocity) at the kth step
of the sth Monte Carlo run, and RMSEpos(k) is the RMSE of position at k step. The ARMSEs
of position and velocity are denoted as ARMSEpos and ARMSEvel , respectively [12,21].

In order to verify whether the proposed filtering algorithm improve the solution of
accuracy degradation problem of original MCKF in no-stationary non-Gaussian noise
conditions, the simulation was divided into two stages, and the noises with different
distributions were used to test the performance of the proposed filter. To simulate the
non-Gaussian noise sequence contaminated by impulsive noise interference, the Gaussian
mixture distribution model with specific parameters are used to generate the noise.

The number of Monte Carlo runs was M = 1000 and the specific noise parameters
were set as follows:{

wk ∼ 0.95N(0, Qk) + 0.05N(0, 100Qk), stage1 : 1 < t ≤ N/2
wk ∼ 0.90N(0, Qk) + 0.10N(0, 100Qk), stage2 : N/2 < t ≤ N{
vk ∼ 0.90N(0, Rk) + 0.10N(0, 100Rk), stage1 : 1 < t ≤ N/2
vk ∼ 0.95N(0, Rk) + 0.05N(0, 100Rk), stage2 : N/2 < t ≤ N

The RMSEs of the position and velocity from different filters are shown in
Figures 1 and 2. In addition, the ARMSEs from different filters at all stages are listed in
Table 1 for comparison. In the intervals (0, N/2] and (N/2, N], the process and mea-
surement vectors were contaminated by non-Gaussian heavy-tailed noise with different
distributions. The plots show that the RMSEs from different filters have obvious dif-
ferences, and the best kernel size for the MCKF at each stage varied accordingly. For
example, MCKF2 (σ = 3) and MCKF3 (σ = 5) achieved higher accuracy, respectively, at
these two stages; nevertheless, a too large or small kernel size also resulted in the filtering
performance to degrade or even diverge, as shown by MCKF1 (σ = 2) and MCKF4 (σ = 9).
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Figure 1. RMSEs of the position from different filters.
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Figure 2. RMSEs of the velocity from different filters.

Table 1. ARMSEs of different filters at each stage.

Filters
Stage 1 Stage 2 All Stages

Position (m) Velocity (m/s) Position (m) Velocity (m/s) Position (m) Velocity (m/s)

KF 4.014 1.207 3.420 1.302 3.729 1.255
HKF 2.347 0.970 2.945 1.268 2.663 1.129
MCKF1 (σ = 2) 2.346 0.977 3.081 1.290 2.738 1.144
MCKF2 (σ = 3) 2.167 0.953 2.659 1.242 2.426 1.107
MCKF3 (σ = 5) 2.201 0.953 2.572 1.226 2.394 1.098
MCKF4 (σ = 9) 2.552 0.993 2.683 1.231 2.618 1.118
IMMCKF1 (σ1 = 9, σ2 = 3) 2.084 0.939 2.503 1.218 2.303 1.087
IMMCKF2 (σ1 = 9, σ2 = 2) 2.078 0.939 2.508 1.218 2.303 1.088

In comparison, the proposed filter had the lowest estimation error at each stage,
especially in the case of noise distribution change, the results show that the proposed
VB interference method played a positive role in the filtering process, which takes into
account both stability performance and robustness to non-Gaussian noise. Therefore, by
comparing the filtering performance of all stages, the superiority of the proposed algorithm
is preliminarily verified.

For the existing robust filters with fixed parameters, such as the classic MCKF or HKF,
the filtering parameters can be obtained by experience or trial and error methods, which are
more applicable to stationary noise conditions. However, as mentioned before, the classic
MCKF does not always achieve satisfactory estimation accuracy in non-stationary noise
environment. In order to show this change more concretely, the process and measurement
noise distribution can be expressed as wk ∼ (1− p1)N(0, Qk) + p1N(0, 100Qk) and vk ∼
(1− p2)N(0, Rk)+ p2N(0, 100Rk), where p1 and p2 represent the outlier percentage of noise.

In Figures 3 and 4, the outlier percentage of process noise was fixed as p1 = 0.05, and
the ARMSEs of the different filters varying with p2: 0 ∼ 0.15 are shown. The overall perfor-
mance of the ARMSEs showed an increasing trend, which means that as the proportion
of impulsive noise increased, the estimation accuracy of the filters also decreased. In this
test, the MCKFs with different kernel parameters obtained significant filtering accuracy
differences. This means that, under the interference of different non-Gaussian noise, the
MCKFs with a fixed kernel parameter could not ensure reliable estimation results, and the
MCKFs lack enough self-adaptive ability.

In addition, the fixed-parameters MMCKF without variational Bayesian iteration also
taken for comparison. The comparison shows that the results of MMCKF always converges
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to the MCKF of a specific fixed parameter. Therefore, although it achieves better accuracy
than MCKF in some cases, it does not avoid similar accuracy degradation problem as
MCKF. Since the filtering results of MMCKF are similar to the typical MCKF with specific
parameters, therefore, the comparison and discussion of the simulation mainly focus on
the classic MCKF.

Compared with other filtering results, it can be concluded that the proposed filter has
better performance than other existing algorithms. On the one hand, the algorithm does
not lose much optimality of estimation caused by changing the objective function of KF,
and on the other hand, it retains robustness to the increased impulsive noise probability.
Therefore, the proposed filter further demonstrates its performance advantage in various
non-Gaussian noise environments.
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Figure 3. ARMSEs of position from different filters with varying p2.
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Figure 4. ARMSEs of velocity from different filters with varying p2.

In addition, the simulation tests were performed to compare the filtering performance
with different initial parameter configurations. For the proposed IMMCKF, the Gaussian
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correntropy Gσ1(e), Gσ2(e) were mixed to generate the mixture correntropy, where σ1 and
σ2 represent the specific kernel parameters, and σ1 > σ2. It has been proved that Gaussian
correntropy with a smaller kernel bandwidth is more sensitive to impulsive noise. However,
this also degrades the filtering stability and might lead to divergence.

Table 2 lists the RMSEs of the proposed filter with different σ1 and σ2. In general, the
filtering results of the proposed filter with different σ1 and σ2 were not significant. Within
a certain range, the filtering accuracy improved with the increase of σ1, as it provided
better compatibility to Gaussian noises for the filtering algorithm. As too large of a kernel
bandwidth may reduce Gaussian correntropy’s robustness to impulsive noise, σ1 much
greater than σ2 would not be considered as the parameter set. Therefore, generally speaking,
it is easy to choose appropriate σ1 and σ2 for the proposed algorithm.

Table 2. ARMSEs of the proposed filter with different σ1 and σ2.

Filters
Stage 1 Stage 2 All Stages

Position (m) Velocity (m/s) Position (m) Velocity (m/s) Position (m) Velocity (m/s)

KF 4.014 1.207 3.420 1.302 3.729 1.255
IMMCKF1 (σ1 = 6, σ2 = 3) 2.117 0.943 2.530 1.221 2.332 1.091
IMMCKF2 (σ1 = 6, σ2 = 2) 2.108 0.942 2.532 1.222 2.330 1.091
IMMCKF3 (σ1 = 9, σ2 = 3) 2.084 0.939 2.503 1.218 2.303 1.087
IMMCKF4 (σ1 = 9, σ2 = 2) 2.078 0.939 2.508 1.218 2.303 1.088
IMMCKF5 (σ1 = 12, σ2 = 3) 2.074 0.938 2.494 1.217 2.294 1.086
IMMCKF6 (σ1 = 12, σ2 = 2) 2.054 0.936 2.502 1.218 2.289 1.086

In this case, several potential shape parameter options were used for comparison.
Table 3 lists the ARMSEs of position and velocity from the proposed filter with different
initial shape parameters. As demonstrated, the estimation accuracy can be improved
somewhat by fine-tuning the parameter within the given range, but in general, it does not
significantly affect the overall filtering performance. In summary, for the state estimation
problem in non-stationary noises, the filter proposed in this work has good compatibility
with the initial parameter sets.

Table 3. ARMSEs of the proposed filter with different a0.

Filters
Stage 1 Stage 2 All Stages

Position(m) Velocity (m/s) Position (m) Velocity (m/s) Position (m) Velocity (m/s)

KF 4.014 1.207 3.420 1.302 3.729 1.255
IMMCKF1 (a0 = 0.94) 2.118 0.943 2.514 1.218 2.324 1.089
IMMCKF2 (a0 = 0.92) 2.095 0.940 2.505 1.218 2.309 1.088
IMMCKF3 (a0 = 0.90) 2.084 0.939 2.503 1.218 2.303 1.087
IMMCKF4 (a0 = 0.88) 2.079 0.938 2.504 1.218 2.301 1.087
IMMCKF5 (a0 = 0.86) 2.077 0.938 2.510 1.219 2.304 1.088

In order to balance the computational efficiency and the filtering performance, it is
necessary to choose a reasonable number of iterations for the proposed filter. Figure 5
shows the ARMSEs of filters with different numbers of iterations. For comparison, several
filtering results with similar performance in the simulation are also taken into accounts. It
can be concluded that the accuracy of the proposed algorithm can be greatly improved after
several iterations, and the filtering result also gradually converged. In practical applications,
the increase of iteration times brings more computational burden. As shown from Figure 5,
when the number of iterations Nm is 3∼5, the filtering algorithm has obtained satisfactory
estimation accuracy. Therefore, when considering the accuracy and calculation burden
factors, the number of iterations Nm set as 3∼5 is reasonable.
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Figure 5. ARMSEs versus iteration number from different filters.

The implementation time of the proposed filter and existing filters in a single-step run
with Nm = 1 is evaluated. It shows that KF (0.0054 ms) is the fastest, MCKF (0.0253 ms),
HKF (0.0251 ms) and MMCKF (0.0212 ms) has similar computational burden and the
proposed IMMCKF (0.0490 ms). Compared with the MCKF and MMCKF, the computation
complexity of the proposed filter increased simultaneously due to the additional variational
Bayesian iterations. In view of this, the additional computation cost of the IMMCKF can be
compensated by adjusting the number of iterations. Therefore, it is still feasible to apply
this algorithm in real-time applications.

4.2. Example II: INS/GPS Integrated Navigation System

To validate the effectiveness and superiority of the proposed algorithm in this paper,
the experimental data collected in a vehicle-mounted INS/GPS integrated navigation
experiment was used for the test. The experiment was carried out in the campus of Harbin
Engineering University, the test trajectory is shown in Figure 6. A low-cost MEMS-IMU
based INS/GPS integrated navigation system is used to provide the navigation data.

An INS/GNSS integration navigation system includes a self-made navigation-grade
fiber optic strap-down INS and a double-antenna GPS receiver is used for reference. The
initial velocity and position of INS/GPS are obtained directly from GPS measurement, the
initial level attitude information is acquired from the alignment results of high accuracy
SINS. In the experimental test, the car moves along a bumpy road, and the GPS might work
abnormally due to the occlusion of trees and buildings.

The sampling frequencies of the low-cost IMU and GPS were 100 Hz and 1 Hz, re-
spectively. The loosely coupled configuration is used in the integration, and a linear
closed-loop feedback scheme as [15,23] is used. The state variables vector is defined as
xk = [ϕn δvn δpn εb ∇b]T , where ϕn, δvn, δpn denote the attitude error, velocity error
and position error expressed in the n-frame, respectively. The bias of the gyro and ac-
celerometer are εb = 10

◦
/h and ∇b = 100 µg, respectively. The initial estimation was

x̂0|0 = 015×1. The process noise vector is expressed as w = [wb
gx wb

gy wb
gz wb

ax wb
ay wb

az]
T

,
where wb

g = 1◦/
√

h and wb
a = 1500 µg/

√
Hz, respectively, and the measurement noise co-

variance matrix R = diag(0.5 m/s · I3 1.5 m · I3). The initial position and velocity errors
were set as δp = [1.5 m 1.5 m 1.5 m]T , δVn = [0.1 m/s 0.1 m/s 0.1 m/s]T , and attitude

errors φ = [0.1
◦

0.1
◦

0.1
◦
]
T

.
The filter only performs time update while there are no GPS outputs. To compare the

robustness of different filters to non-Gaussian measurement noise interference, inspired by
the scheme in [34,35], the gross errors were added artificially to the measurement data. In
the integrated navigation system, the velocity and position state variables are susceptible to
external interference. Therefore, the velocity and position errors are used for comparison.
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Figure 6. The test trajectory of the vehicle.

For comparison, several typical filtering results are shown in Figures 7 and 8. It can be
seen that most filters obtain similar results in stable periods, as the measurement output
is reliable in these periods. For the existing robust filters with fixed-parameter, due to the
uncertain interference factors in practical application. In this example, both MCKF1 (σ = 2)
and MCKF2 (σ = 3) have a divergence trend in the filtering process. In contrast, MCKFs
with larger kernel parameters and the proposed filter have more stable performance.

In this example, the measurement sequence is disturbed by impulsive noise with a
certain probability. It is evident from the Figures that the estimation accuracy of KF is
seriously corrupted during filtering. Generally, a small kernel size can be more effective
in attenuating the measurement outliers, but at the same time, it inevitably decreases
the filter’s stability, e.g., MCKF1 (σ = 2) failed to obtain reliable filtering results due to
divergence. By comparing the robustness of MCKF3 (σ = 5), MCKF4 (σ = 9), and other
algorithms to non-Gaussian noise, it can be concluded that, for existing MCKFs, it is difficult
to obtain both stable and robustness estimation results.
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Figure 7. The position errors from different filters in non-Gaussian noises.



Entropy 2022, 24, 117 17 of 19

0 100 200 300 400 500 600 700 800 900 1000

Time(s)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

N
o

rt
h

 v
e

lo
c
it
y
 e

rr
o

r 
(m

/s
)

KF

MCKF( =3)

MCKF( =5)

IMMCKF(
1
=9,

2
=2)

0 100 200 300 400 500 600 700 800 900 1000

Time(s)

-4

-3

-2

-1

0

1

2

3

E
a

s
t 

v
e

lo
c
it
y
 e

rr
o

r 
(m

/s
)

KF

MCKF( =3)

MCKF( =5)

IMMCKF(
1
=9,

2
=2)

Figure 8. The velocity errors from different filters in non-Gaussian noises.

The results listed in Table 4 confirmed that the filter proposed in this work solves
the problem well. NaN represents invalid output due to filter divergence. Compared
with other robust filters, the proposed filter achieves better filtering results by taking into
account both the robustness and stability of the filter, which demonstrated the conclusions
of the previous simulation example.

Table 4. The RMSEs of position, velocity from different filters.

Filtering Algorithms PosE (m) PosN (m) PosU (m) VelE (m/s) VelN (m/s) VelU (m/s)

KF 1.736 1.726 0.799 0.466 0.363 0.118
HKF 1.817 1.428 0.681 0.488 0.320 0.112
MCKF1 (σ = 2) NaN NaN 0.675 NaN NaN 0.117
MCKF2 (σ = 3) NaN 1.187 0.671 NaN 0.333 0.112
MCKF3 (σ = 5) 1.069 1.061 0.671 0.379 0.290 0.111
MCKF4 (σ = 9) 1.121 1.111 0.674 0.385 0.300 0.111
MMCKF1 (σ1 = 2, σ2 = 9, α = 0.8) NaN NaN 0.711 NaN NaN 0.120
MMCKF2 (σ1 = 3, σ2 = 9, α = 0.5) 1.221 0.995 0.674 0.400 0.275 0.112
MMCKF3 (σ1 = 3, σ2 = 9, α = 0.2) 1.026 1.007 0.673 0.374 0.278 0.111
IMMCKF1 (σ1 = 9, σ2 = 3) 0.888 0.903 0.657 0.345 0.261 0.110
IMMCKF2 (σ1 = 9, σ2 = 2) 0.751 0.775 0.640 0.319 0.238 0.110

5. Conclusions

In this work, the performance degradation problem of the existing MCKF in non-
stationary noises is explored, and a new improved mixture correntropy filtering algorithm
is proposed as an effective solution. To cope with the dynamic process where both Gaussian
and non-Gaussian noises may occur, the intermediate random variables is used to construct
the mixture correntropy. By derivation, the state variables and intermediate parameters
are approximated via a variational Bayesian approach. The theoretical derivation and
numerical test results show that the proposed method significantly improves upon the
existing MCKF algorithms in different conditions, which offers a promising improvement
for the robust filtering problem in complex noise environments.
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