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Abstract: This paper develops Deep Neural Network (DNN) models that can recognize stroke
gaits. Stroke patients usually suffer from partial disability and develop abnormal gaits that can vary
widely and need targeted treatments. Evaluation of gait patterns is crucial for clinical experts to
make decisions about the medication and rehabilitation strategies for the stroke patients. However,
the evaluation is often subjective, and different clinicians might have different diagnoses of stroke
gait patterns. In addition, some patients may present with mixed neurological gaits. Therefore,
we apply artificial intelligence techniques to detect stroke gaits and to classify abnormal gait patterns.
First, we collect clinical gait data from eight stroke patients and seven healthy subjects. We then apply
these data to develop DNN models that can detect stroke gaits. Finally, we classify four common gait
abnormalities seen in stroke patients. The developed models achieve an average accuracy of 99.35%
in detecting the stroke gaits and an average accuracy of 97.31% in classifying the gait abnormality.
Based on the results, the developed DNN models could help therapists or physicians to diagnose
different abnormal gaits and to apply suitable rehabilitation strategies for stroke patients.

Keywords: gait recognition; deep learning; neural network; stroke gait; IMU (inertial measurement unit)

1. Introduction

Stroke is a common medical emergency with a high mortality rate, ranking second
among the leading causes of death in the last 15 years [1]. However, the patients who
are fortunate enough to survive stroke events usually suffer from partial disability and
inconvenience in their daily lives. Therefore, post-stroke patients usually require long-term
healthcare and rehabilitation. At present, stroke costs are about 34 billion US dollars per
year in the USA [2]. On average, each stroke patient spends about 60,000 US dollars per
year, with 30% of those costs expended on rehabilitation and medical care [3]. The purpose
of rehabilitation is to help these patients recover their ability for independent living,
particularly walking on their own.

Hemiplegia is one of the most common impairments after stroke and contributes
significantly to walking impairments [4]. The hemiplegic gait patterns include decreased
knee flexion and ankle dorsiflexion during swing [5]. Approximately two thirds of stroke
survivors with initial paralysis of the leg can eventually walk with or without assistance [6].
However, many individuals still exhibit considerable gait impairments and cannot achieve
the walking dexterity that enable them to perform all their daily activities. Stroke survivors
normally develop abnormal gaits, such as longer swing phases and decreased stance
phases on the paretic side. Because different and diverse gait problems are encountered in
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stroke survivors, it is important to determine each individual’s gait abnormalities during
the golden time window of rehabilitation to develop appropriate training strategies and
improve patients’ functional outcomes.

Unfortunately, most of the gait training programs have been based mainly on clinical
assessments, which may be influenced by subjective decisions and therapists’ experiences.
For this reason, many researchers have attempted to identify the walking pattern in
objective manners. For example, Zhao et al. [7] proposed the rule-based algorithms to
identify several gait events. Wang et al. [8] developed algorithms to detect three gait events
in real time. Knutsson and Richards [9] used electromyogram signals to identify three types
of abnormal muscle activation patterns in post-stroke patients. Wong et al. [10] applied
load sensors to analyze the foot contact pattern when evaluating walking ability in patients
with hemiplegic stroke. Some studies have also applied machine learning techniques
to develop gait classification models. For instance, Wahid et al. [11] measured spatial-
temporal gait signals for feature extraction and proposed a classification model to diagnose
Parkinson disease (PD); their model achieved an accuracy of 92.6% after normalizing
gait data using a multiple regression approach. Daliri [12], who analyzed gait signals
derived from ground reaction forces, applied support vector machines to diagnose subjects
with PD and achieved an accuracy of 91.2%. Similarly, Dolatabadi et al. [13] applied two
machine learning methods and discriminated normal and pathological gait patterns with
an accuracy of more than 90%. Li [14] used the dynamic time warping algorithm, sample
entropy method, and empirical mode decomposition-based stability index to analyze the
symmetry, regularity, and stability of post-stroke hemiparetic gaits. They then applied the
k-nearest-neighbor classifier to distinguish stroke gaits and achieved an area-under-the-
curve value of 0.94. However, no research has yet been conducted on the classification
of stroke gait patterns. Therefore, the aim of this paper is to develop models that can
recognize stroke gaits.

The gait abnormalities in post-stroke patients vary, and each needs specific rehabili-
tation strategies. For example, the following are four common gait abnormalities seen in
post-stroke patients:

(1) The drop-foot gait [15–17]: Patients develop a drop foot gait because their weakness
or paralysis limits their ability to raise the front part of the foot, so that their toes are
dragged when walking. This abnormal gait can slow walking speed and increased
risk of falls.

(2) The circumduction gait [18–23]: This gait is also known as the neurological or hemi-
plegia gait. The knee and hip movements are insufficient to allow the foot to clear the
ground, so the patients adopt an abnormal walking pattern by taking the leg away
from the body and swinging the leg forward in a semicircular fashion when walking.

(3) The hip hiking gait [18,24,25]: This gait is defined as a frontal plane elevation of
the ipsilateral side of the pelvis to achieve foot clearance. Both hip hiking and
circumduction are secondary gait deviations used to achieve ground clearance during
the paretic swing phase.

(4) The back knee gait [26–29]: This gait is also known as genu recurvatum, which is
defined as full extension or hyperextension of the knee in the stance phase [27]. Genu
recurvatum can lead to functional mobility limitations and early degenerative changes
of knee joint due to progressive knee hyperextension [28].

The abnormal gaits in post-stroke patients not only increase energy consumption
but they also reduce walking efficiency, causing difficulties in ambulation and increasing
the risk of falling. The abnormal gaits can also place extra pressure on the joints, cause
damage to joints or ligaments, and even affect the patient’s mental state and quality of life.
Hence, evaluation and identification of gait abnormalities are important for developing
appropriate training strategies for rehabilitation. In current clinical practice, gait pattern
diagnosis mainly relies on the experience of clinicians or physical therapists to make judg-
ments, and there is no objective diagnostic standard. Different clinicians or therapists might
have different diagnoses of stroke gait patterns. In addition, some patients may present
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with mixed neurological gaits, for example, hemiplegic gait combined with foot inversion
gait due to increased muscle tone or some patients may combine with drop foot because
of receiving over-dose botulinum toxin treatment for legs spasticity. Therefore, many re-
searchers have attempted to identify gait events [7,8] and gait abnormalities [9,10]. Machine
learning techniques are also applied to improve the identification performance [11–14].
However, no research has yet been conducted on the classification of stroke gaits. Hence,
in this paper we apply deep learning technologies to detect and classify stroke gaits as
an aid to diagnosis and for application of appropriate rehabilitation methods for stroke
patients. In this study, the stroke gait patterns were diagnosed by two physical therapists
who were more than 15 years qualified, with at least 10 years of daily experience working
with patients with stroke. Then we apply the clinical data to develop Deep Neural Network
(DNN) models to assist physical therapists or physicians for more optimizing the diagnosis
of different stroke gaits, especially for those with mixed neurological gait problems.

The paper is arranged as follows: Section 2 introduces the experiments for the collec-
tion of gait data. We applied inertial measurement units (IMUs) to acquire the gait infor-
mation. Section 3 develops a deep-learning model for recognizing stroke gaits. Section 4
describes the model training processes and validation. We also test the developed models
by applying a public dataset. Based on the results, we discuss the performance, limitation,
and future development of the developed model in Section 5. Finally, we draw conclusions
in Section 6.

2. Collection and Processing

This section describes the experiments conducted to collect gait data. We invited
stroke patients and healthy subjects to conduct walking tests. Their gaits were measured
and applied to develop a DNN model that can identify and classify the stroke gaits.

First, we recruited eight post-stroke patients; their data are illustrated in Table 1.
The following criteria were applied when selecting the test subjects: (1) the Brunnstrom
Stage (BS) [30] on the lower extremity was stage 3–5; (2) the Functional Ambulation
Category (FAC) [31] was stage 3–5; (3) the Mini-Mental State Examination (MMSE) [32]
score was higher than 24; (4) subjects could walk ten meters indoors with or without
aid devices, and (5) subjects could stand up on their own using a handrail and aids.
Second, we also recruited seven healthy subjects as the normal reference group; their data
are illustrated in Table 2. All test subjects signed informed consent forms approved by
the Human Subject Research Ethics Committee of Institutional Review Board (IRB) [33],
as shown in Appendix A.

Table 1. Basic data of the stroke subjects.

Stroke Subject

Subject Gender Age Height
(cm)

Weight
(kg)

Paretic
Side

MMSE
(Score)

BS
(Stage)

FAC
(Stage)

P1 Male 51 174 66 Right 30 3 6
P2 Male 48 168 61 Right 28 3 6
P3 Female 61 161 56 Right 29 4 6
P4 Male 53 162 75 Left 29 3 6
P5 Male 52 173 81 Right 27 3 6
P6 Male 72 168 75 Left 29 5 6
P7 Male 64 158 61 Left 30 5 6
P8 Female 69 156 90 Right 30 4 6



Sensors 2021, 21, 1864 4 of 18

Table 2. Basic data of the healthy subjects.

Healthy Subject

Subject Gender Age Height (cm) Weight (kg)

H1 Male 24 185 85
H2 Male 24 178 70
H3 Male 25 170 63
H4 Male 25 164 70
H5 Male 24 172 75
H6 Male 26 172 76
H7 Male 23 166 62

Wearable sensor technologies have been frequently applied to gait analyses. For ex-
ample, Diaz et al. [34] surveyed the applications of wearable sensor technologies in an-
alyzing the gait, balance, and range of motion research. Nguyen et al. [35] applied an
IMU-based system to develop deep convolutional neural network models for distinguish
subjects with foot structural abnormalities. In this paper, we applied the APDM OPAL
system [36] to acquire the gait information. The OPAL system contains wearable IMUs
with a sampling rate of 128 Hz and a resolution of 17.5 bits. Each IMU has a size of about
44 mm × 40 mm × 14 mm and weighs less than 25 gm. Two IMUs were attached to the
subjects’ shanks, as shown in Figure 1. Each IMU consists of a 3-axis accelerometer, a 3-axis
gyroscope, and a 3-axis magnetometer. The maximum measurement ranges of the ac-
celerometer, the gyroscope, and the magnetometer are ±200 g, ±200 deg/s, and ±8 Gauss,
respectively. This IMU device can detect a subject’s kinematic data with a highest sampling
rate of 128 Hz. In the experiment, all subjects were required to complete walking tests at
their most comfortable pace.
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Figure 1. Gait measurements by two inertial measurement units (IMUs).

We applied the angular velocity of the shank on the sagittal plane [37], which is the
mediolateral axis (y-axis) in Figure 1, to develop the DNN model. For example, the angular
velocities ωy of patient P8 are shown in Figure 2a,b, where L and R represents the left leg
and the right leg, respectively. Each gait cycle contains the following three important gait
events [38]: (1) Mid-swing: when the angular velocity achieves its maximum in the gait
cycle; (2) Heel strike: when the heel touches the ground, where the angular velocity has
the first negative trough after the mid-swing; (3) Toe off: when the toes leave the ground.
Because these gait events can be evaluated by the angular velocities [37], we can mark
the mid-swing points of each gait and divided the measured data into individual gait
cycles, as shown in Figure 2c,d. Note that we split the gait cycles by the mid-swing in that
labelling the mid-swing is much easier and more direct than labelling the heel-strike [8].
The model development will be similar if the gait cycles are partitioned by the heel-strike
or the toe-off. We then normalized the gait data by dividing it into one hundred points for
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each gait cycle; this was done because each subject had a different walking speed and the
data length for each gait cycle was not the same.
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By contrast, we illustrate the angular velocities ωy of the healthy subject H7 in Figure 3,
where the healthy subject’s gaits tend to be smoother than the stroke patient’s gaits shown
in Figure 2. We further compare the gait cycles of other stroke patients and healthy subjects,
as shown in Appendix B, and find that the stroke subjects’ gaits have significantly more
trembles and vibration, especially on the paretic side. Hence, it is not difficult to distinguish
the stroke gaits from the healthy gaits [10,13,14]. Nevertheless, the classification of abnor-
mal stroke gaits is challenging because each patient might develop various combination of
gait abnormalities which simultaneously affect the gait patterns. Therefore, we propose a
DNN model structure for detecting and classifying the stroke gaits.

We labelled the gait data from the stroke patients and the healthy subjects as the stroke
gait (SG) and the normal gait (NG), respectively. The stroke gaits were further classified
as the stroke gait with a drop foot (SGwDF), the stroke gait with circumduction (SGwC),
the stroke gait with hip hiking (SGwHH), and the stroke gait with back knee (SGwBK),
according to the therapists’ diagnoses. Because the patients might or might not have had
these abnormal gaits, we set four labels to build a multi-label classification model, as shown
in Table 3. For example, patient P5 had all four gait abnormalities on the right leg, while
patient P6 had both the drop foot gait and the back knee gait on the left leg. Conversely,
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Patient P7 had only the hip hiking gait on the left leg. We applied the gait data from Table 3
to establish a gait dataset with 4037 gaits, including 2037 stroke gaits and 2000 normal gaits,
as illustrated in Appendix C.
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Table 3. The labelled data.

Subject Number of Gaits NG SG SGwDF SGwC SGwHH SGwBK

P1 left 50 0 1 0 0 0 0
right 39 0 1 0 0 1 1

P2 left 68 0 1 0 0 0 0
right 52 0 1 1 0 1 0

P3 left 92 0 1 0 0 0 0
right 76 0 1 0 1 0 0

P4 left 187 0 1 0 1 1 1
right 190 0 1 0 0 0 0

P5 left 169 0 1 0 0 0 0
right 158 0 1 1 1 1 1

P6 left 158 0 1 1 0 0 1
right 171 0 1 0 0 0 0

P7 left 139 0 1 0 0 1 0
right 158 0 1 0 0 0 0

P8 left 155 0 1 0 0 0 0
right 175 0 1 1 0 1 0

Healthy Subjects left 1000 1 0 0 0 0 0
right 1000 1 0 0 0 0 0
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3. Deep Neural Network Model

This section develops a DNN model to recognize stroke gaits. We applied the mea-
sured gait data to develop a DNN model that can identify and classify the stroke gaits.

We applied the normalized gait data to build a multi-output gait recognition model.
The model architecture is shown in Figure 4 and includes the detection part and the
classification part. The detection part first judges whether the input gait is a normal gait
or a stroke gait. It contains the input layer, six hidden layers, and the detection output.
Each fully connected layer has 100 neurons. The numbers of hidden layers and neurons
were chosen by iterative tests. Because the DNN model is highly nonlinear, using more
layers and neurons might result in similar accuracy but greatly increase the computing
loads. For example, the computing time was increased by about 75% when using ten layers.
The detection output has two neurons to label the gait as NG or SG, marked as [1, 0] or
[0, 1], respectively. The classification part then analyzes the stroke gait if the detection
output indicates SG. It contains ten hidden layers and the classification output, where each
hidden layer has 100 neurons. The classification output has five neurons to classify stroke
gaits as SG, SGwDF, SGwC, SGwHH, and SGwBK. For example, the stroke gaits with drop
foot and hip hiking are labelled as [1, 1, 0, 1, 0], while the stroke gaits with all four gait
abnormalities are labelled as [1, 1, 1, 1, 1].
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We applied the following functions to develop the DNN model:

(1) The Activation Function: The neural network applied nonlinear activation functions
in neurons. We selected the rectified linear unit (ReLU) [39], as shown in Figure 5a,
as the activation function for the hidden layers:

ReLU(z) = max(0, z) (1)

where z is the neuron input and ReLU(z) is the neuron output. This function can
effectively overcome the vanishing gradient problem when updating the model
parameters by back propagation [40]. The neural network would not continue training
when the learning gradient is small. Moreover, the computing load is reduced because
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the function judges whether the input is greater than 0. That is, the ReLU function is
a complete transfer for positive gradients with a derivative of 1. If the input z < 0,
then ReLU(z) = 0 and this neuron is directly deleted, thereby achieving a reduction in
neurons and allowing rapid convergence.
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Conversely, we selected the following sigmoid function [41] as the activation function
of the output layers:

σ(z) =
1

1 + e−z (2)

where z is the neuron input and σ(z) is the neuron output. The sigmoid function
converts a scalar number to [0, 1], as shown in Figure 5b. If σ(z) is greater than
a threshold of 0.5, it is considered to belong to the labelled category. The sigmoid
function is the optimized fitting function of the binary classification problem, where
its output corresponds to the loss function mentioned in the next section. Because the
probability of each label is independent, the sigmoid function is usually used as the
activation function of the output layer for multi-label classification.

(2) The Loss Function: The loss function is applied to evaluate how well the algorithms
interpret the given data. This function evaluates the loss of the model and updates
the weights to reduce the loss on the next evaluation. We applied the following
cross-entropy [42] as the loss function:

C(y, ŷ) = − 1
n

n

∑
i=1

ŷi · log(yi) + (1 − ŷi)·log(1 − yi) (3)

where yi is the distribution of the true output and ŷi is the distribution of the predicted
output. Cross entropy can measure and quantify the similarity between yi and ŷi.
In addition, it can help to avoid learning rate decreases in the gradient descent [43]
by simultaneously applying the cross-entropy as the loss function and the sigmoid
function as the activation function to the output layer.

(3) The Optimizer: We selected Adam [44] as the optimizer of the DNN model. Adam is
an adaptive learning rate optimization algorithm designed specifically for training
DNNs, because it combines the advantages of Adagrad [45] and RMSprop [46] by
calculating the gradients and updating the weights [43].

4. Model Training and Validation

This section introduces the model training process and model validation. We applied
the k-fold cross-validation test [47] to evaluate the performance of the model. In this
paper, we set k = 4 by dividing all classes of gait data into four parts (Fold 1, Fold 2,
Fold 3, and Fold 4), and we then arranged them randomly for training and validating.
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Each training took three of the four folds as a training dataset and used the remaining
fold as validation. Figure 6 shows the training and validating flow chart, where the 4-fold
cross-validation was repeated four times.
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In the training process, 500 samples were selected for each model training (batch
size = 500) to update the weights. The training data passed through the layers of the model
with present parameters and the ReLU function. Then, the obtained evaluation output was
compared with the ground truth label by clinical experts to calculate the corresponding
model loss by the loss function and to update model parameters by back propagation.
This training process was repeated sixty times (Epochs = 60), where the model parameters
were optimized and the model loss was minimized by repeated training. The phenomena of
overfitting and excessive time in the training process were avoided by adding Dropout [48],
with a dropout rate of 0.2, to each fully connected layer in the classification part of the
model. This gave each neuron a probability of 20% of being deleted. Finally, the remaining
fold was inputted to the trained models to verify the correction of these models in the
validation process.

The correction of a model is frequently quantitatively indicated by the confusion
matrix, as illustrated in Table 4. Based on Table 4, the following indicators are frequently
applied to evaluate the quality of model training [49]:

Accuracy =
TP + TN

TP + FP + FN + TN
(4)

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

F1 − score =
2 × Precision × Recall

Precision + Recall
(7)

where Accuracy is the most intuitive indicator, although it might be invalid in some
cases [49]. In this paper, we apply Accuracy and F1-score to demonstrate the quality of the
developed DNN model.
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Table 4. The confusion matrix.

Actual
Positive Negative

Predicted
Positive TP FP

Negative FN TN
TP: True Positive; FP: False Positive; FN: False Negative; TN: True Negative.

The confusion matrix of the detection layer is shown in Table 5, where model i applied
all gait data except Fold i for training and used the gait data of Fold i for validation.
The results show that the model can successfully identify the stroke gaits with only few
errors on the FP and FN terms. The confusion matrix of the classification layer is shown in
Table 6, where P and N represent positive and negative, respectively. We independently
list the output neurons and observe that some errors occur in classifying the four gait
abnormalities: drop foot, circumduction, hip hiking, and back knee gaits. The overall test
results are shown in Table 7. The detection layer achieves an average accuracy of 99.35%
and an average F1-score of 0.9935 in detecting the stroke gaits, while the classification layer
achieves an average accuracy of 97.31% and an average F1-score of 0.9662 in classifying the
abnormal stroke gaits.

Table 5. Confusion matrix of the DNN models for stroke detection.

Predicted

Actual Normal Gait Stroke Gait

Positive Negative Positive Negative

Model 1 validation by Fold 1 Positive 496 3 497 5
Negative 4 497 3 495

Model 2 validation by Fold 2 Positive 495 2 500 8
Negative 5 498 0 492

Model 3 validation by Fold 3 Positive 498 2 497 2
Negative 2 498 3 498

Model 4 validation by Fold 4 Positive 496 3 497 3
Negative 4 497 3 497

Table 6. Confusion matrix of the DNN models for the classification of stroke gaits.

Predicted

Actual Stroke Gait Drop Foot Circumduction Hip Hiking Back Knee

P N P N P N P N P N

Model 1 P 497 5 77 5 77 0 154 10 105 8
N 0 0 2 418 20 405 17 321 21 368

Model 2 P 500 8 96 7 98 11 178 14 112 5
N 0 0 4 401 0 399 4 312 20 371

Model 3 P 497 2 101 4 113 2 197 5 131 8
N 0 0 6 388 4 380 10 287 1 359

Model 4 P 497 3 89 7 98 9 168 13 123 4
N 0 0 4 400 4 489 5 314 19 354

Table 7. Validation results of the DNN models.

Detection Classification

Accuracy F1-Score Accuracy F1-Score

Model 1 0.9925 0.9925 0.9649 0.9539
Model 2 0.9925 0.9925 0.9717 0.9642
Model 3 0.9955 0.9955 0.9831 0.9802
Model 4 0.9935 0.9935 0.9728 0.9663

Average 0.9935 0.9935 0.9731 0.9662

Gait is a symmetrical and rhythmic periodic motion that can be disrupted by stroke.
Abnormal stroke gaits can decrease the efficiency of walking; therefore, the identification of
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gait abnormalities and the development of appropriate training strategies for rehabilitation
are very important. From Table 7, the developed DNN models are deemed effective in
detecting and classifying stroke gaits. However, the classification model is not as good as
the detection model. One possible reason is that the number of stroke gaits in the dataset
is insufficient; hence, the number of samples for SGwDF, SGwC, SGwHH, and SGwBK is
not representative. That is, the accuracy of the classification can be further improved by
adding additional abnormal gaits. In the future, we can collect more abnormal gait data to
further improve the efficiency of the model.

We also applied the public dataset Physical Activity Monitoring Data Set (PAMAP2) [50],
available in the UCI machine learning repository [51], to evaluate the developed model.
This dataset consists of nine healthy subjects (one female and eight males) who wore IMU
devices and conducted 12 different activity tests, including standing, sitting, and walking.
We applied the angular velocity of the shank in the walking activities as the input data
to the four DNN models. Because there is no public dataset for stroke gaits, we invited
two stroke patients to conduct experiments and measured their gaits to test the developed
models. The data of these two stroke subjects are illustrated in Appendix D and their
gait data is illustrated in Appendix C. The testing results are shown in Table 8, where the
average accuracy is 99.34% and the average F1-score is 0.9939. That is, the developed DNN
model is effective in detecting gaits from data in public domains.

Table 8. Gait detection using the data set Physical Activity Monitoring Data Set (PAMAP2) and two
extra stroke patients.

Predicted

Actual PAMAP2 Test Sv1 and Sv2

P N Accuracy F1-Score P N Accuracy F1-Score

Model 1 P 1005 0 1 1 219 0 0.9909 0.9909N 0 0 2 0

Model 2 P 1004 0 0.9990 0.9995 219 0 0.9909 0.9909N 1 0 2 0

Model 3 P 1005 0 1 1 217 0 0.9819 0.9841N 0 0 4 0

Model 4 P 1003 0 0.9980 0.9990 218 0 0.9864 0.9864N 2 0 3 0

5. Discussion

This study develops DNN models to recognize four common stroke gaits, including
those with a drop foot, circumduction gait, those with hip hiking, and the stroke gait with
back knee. Stroke patients usually suffer from partial disability and develop abnormal gaits
that can vary significantly and need targeted rehabilitation strategies. Therefore, evaluation
of gait patterns is crucial for clinical experts to make decisions on the medication and reha-
bilitation methods for the stroke patients. In current clinical practice, gait pattern diagnosis
mainly relies on the experience of clinicians or physical therapists to make judgments,
and there is no objective diagnostic standard. Different clinicians or therapists might have
different diagnosis of stroke gait patterns. In addition, some patients may present with
mixed neurological gaits. Therefore, many researchers have attempted to develop objective
means for identifying gait events and gait abnormalities [7–10]. Some studies applied
machine learning techniques to improve the identification performance [11–14]. However,
no research has yet been conducted on the classification of stroke gaits. Hence, in this
paper, we applied deep learning technologies to detect and classify stroke gaits as an aid to
diagnosis and for application of appropriate rehabilitation methods for stroke patients.

In this study, we collected clinical gait data from eight stroke patients and seven
healthy subjects. Their gait patterns were diagnosed by two physical therapists who
were more than 15 years qualified, with at least 10 years of daily experience working
with patients with stroke. Then, we apply the clinical data to develop DNN models to
detect stroke gaits and to classify four common gait abnormalities seen in stroke patients.
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The developed models were shown to achieve high accuracies in detecting the stroke gaits
and classifying the gait abnormality. Therefore, our DNN model could assist physical
therapists or physicians for more optimizing the diagnosis of different stroke gaits and
making decisions about the medication and rehabilitation strategies for the stroke patients.
The limitation of this study is the number of enrolled patients is relatively small. A future
large-scale study enrolling more patients with stroke is needed to validate the effectiveness
of our established DNN structure.

6. Conclusions

This paper has developed DNN models that can detect stroke gaits and classify gait
abnormalities. First, we collected clinical gait data from eight stroke patients and seven
healthy subjects. The stroke gaits were further analyzed to indicate four common abnormal
gaits in the stroke patients: the drop foot gait, the circumduction gait, the hip hiking gait,
and the back knee gait. We applied IMUs to collect gait information from the stroke patients
and healthy subjects. The obtained gait data were then analyzed to establish an expert
dataset and to develop DNN models for recognizing the stroke gaits. The results showed
that the developed DNN models achieved an average accuracy of 99.35% for detecting the
stroke gaits and an average accuracy of 97.31% for classifying the gait abnormality. We also
applied the PAMAP2 public dataset to the DNN models and achieved an average accuracy
of 99.92% and an average F1-score of 0.9996. The effectiveness of the DNN structure
could be further verified by recruiting more subjects. In the future, the proposed DNN
model could help therapists to identify abnormal gaits and to apply suitable rehabilitation
methods. The model can be further expanded in the future to identify more types of
abnormal gaits, such as the Trendelenburg gait and the scissor gait, associated with other
neurologic or musculoskeletal disorders.

Author Contributions: Conceptualization, F.-C.W., S.-F.C., C.-H.L.; methodology, F.-C.W., S.-F.C.,
C.-H.L. and A.-C.L.; software, C.-J.S., W.Y., Y.-C.L. and T.-Y.K.; validation, F.-C.W.; formal analysis,
F.-C.W., C.-J.S., W.Y., Y.-C.L. and T.-Y.K.; investigation, F.-C.W., C.-J.S., W.Y., Y.-C.L. and T.-Y.K.;
resources, F.-C.W., S.-F.C., C.-H.L. and A.-C.L.; data curation, S.-F.C., C.-H.L., A.-C.L., C.-J.S. and
T.-Y.K.; writing—original draft preparation, F.-C.W., S.-F.C., C.-H.L.; C.-J.S., W.Y., Y.-C.L. and T.-Y.K.;
writing—review and editing, F.-C.W., S.-F.C. and C.-H.L.; visualization, F.-C.W., C.-J.S., W.Y., Y.-
C.L. and T.-Y.K.; supervision, F.-C.W.; project administration, F.-C.W.; funding acquisition, F.-C.W.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Joint Project between Industrial Technology Research
Institute of Taiwan and National Taiwan University under Grands 104-MSL01 and 105-MSL01.
This research was also financially supported in part by the Ministry of Science and Technology of
Taiwan (Grands MOST 107-2634-F-002-018, MOST 108-2634-F-002-016-, MOST 109-2634-F-002-027-)
and National Taiwan University, Center for Artificial Intelligence & Advanced Robotics.

Institutional Review Board Statement: The studies were approved by the Human Subject Research
Ethics Committee of Institutional Review Board with the number of 201510EM011.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The dataset of gaits applied in this paper is available at http://140.11
2.14.7/~sic/PaperMaterial/Dataset.zip. (accessed on 1 March 2021) The public dataset PAMAP2
is available at: http://archive.ics.uci.edu/ml/datasets/PAMAP2+Physical+Activity+Monitoring.
(accessed on 1 March 2021).

Acknowledgments: This work was financially supported in part by the Joint Project between In-
dustrial Technology Research Institute of Taiwan and National Taiwan University under Grands
104-MSL01 and 105-MSL01. This research was also financially supported in part by the Ministry of
Science and Technology of Taiwan (Grands MOST 107-2634-F-002-018, MOST 108-2634-F-002-016-,
MOST 109-2634-F-002-027-) and National Taiwan University, Center for Artificial Intelligence &
Advanced Robotics.

http://140.112.14.7/~sic/PaperMaterial/Dataset.zip
http://140.112.14.7/~sic/PaperMaterial/Dataset.zip
http://archive.ics.uci.edu/ml/datasets/PAMAP2+Physical+Activity+Monitoring


Sensors 2021, 21, 1864 13 of 18

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

Appendix A

The studies were approved by the Human Subject Research Ethics Committee of the
Institutional Review Board (IRB), available at: http://140.112.14.7/~sic/PaperMaterial/
IRB_renew.pdf. (accessed on 1 March 2021).

Appendix B

The gait cycles of the stroke patients P1~P7 and the healthy subjects H1~H6.
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Table A1. Basic data of the two stroke subjects for model verification.

Stroke Subject

Subject Gender Age Height
(cm)

Weight
(kg)

Paretic
Side

MMSE
(Score)

BS
(Stage)

FAC
(Stage)

Sv1 Male 41 171 70 left 30 4 6
Sv2 Female 50 155 52 left 30 3 6
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