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Type 2 diabetes mellitus (T2DM) has been confirmed to be closely associated

with breast cancer (BC). However, the shared mechanisms between these

diseases remain unclear. By comparing different datasets, we identified shared

differentially expressed (DE) RNAs in T2DM and BC, including 427 mRNAs and 6

miRNAs from the GEO(Gene Expression Omnibus) database. We used

databases to predict interactions to construct two critical networks. The

transcription factor (TF)-miRNA‒mRNA network contained 236 TFs, while the

RNA binding protein (RBP)-pseudogene-mRNA network showed that

the pseudogene S-phase kinase associated protein 1 pseudogene 1 (SKP1P1)

might play a key role in regulating gene expression. The shared mRNAs

between T2DM and BC were enriched in cytochrome (CYP) pathways, and

further analysis of CPEB1 and COLEC12 expression in cell lines, single cells and

other cancers showed that they were strongly correlated with the survival

and prognosis of patients with BC. This result suggested that patients with

T2DM presenting the downregulation of CPEB1 and COLEC12 might have a

higher risk of developing BC. Overall, our work revealed that high expression of

CYPs in patients with T2DM might be a susceptibility factor for BC and

identified novel gene candidates and immune features that are promising

targets for immunotherapy in patients with BC.
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Introduction

Type 2 diabetes mellitus (T2DM) is one of the most common

chronic conditions worldwide, affecting males and females from

all walks of life (1). Breast cancer (BC), the most prevalent

malignancy in both women and men, is the 2nd leading cause

of cancer-related death (2). Based on accumulating evidence,

T2DM and BC are interrelated. Both are aging-related illnesses

with a wide range of risk factors, including socioeconomic status,

lifestyle choices, and body fat (3). Even after correcting for

overweight/obesity, which is the main shared risk factor, several

meta-analyses (4, 5) have indicated a pooled 15–20 percent

increase in the incidence of BC among women with preexisting

T2DM. Furthermore, a 10-year follow-up study found that

diabetes/impaired glucose tolerance affects BC prognosis (6) and

is positively correlated with BC-related death (7). In addition, a

tumorigenic effect of hyperinsulinemia, insulin-like growth

factors, and other hormones has been proposed as a causative

link between T2DM and BC (8). However, the chemical

mechanism(s) underlying the relationship between T2DM and

BC remain unknown.

This study focuses on the sharedmechanism of gene regulation

between T2DM and BC. Gene regulation is mediated by a complex

regulatory machinery. Disturbance of this precise machinery

results in aberrant cell behaviors, which may cause cancer (9).

One important step in gene regulation is mRNA expression (10).

The fate of mature mRNA is influenced by noncoding RNAs (e.g.,

miRNAs) and RNA binding proteins (RBPs) as key determinants

of posttranscriptional control (11). RBPs are defined as proteins
Frontiers in Immunology 02
capable of binding double- or single-stranded RNA, including

mRNA and miRNA, and thereby influencing RNA fate (12). This

interaction may, to some extent, explain why patients with T2DM

have a higher risk of developing BC.

MiRNAs, a type of small noncoding RNA, regulate gene

expression by binding to miRNA response elements (MREs) on

target transcripts (13) and hence actively participate in cancer and

diabetes (14). Atypical expression of certain miRNAs has been

identified in the development and progression of several human

malignancies (15). Several case–control studies and meta-analyses

of European (16), Asian (17), Arab (18), and Jewish (19)

communities have analyzed links between miRNA gene

polymorphisms and the BC risk. The expression of miR-27a

was reported to be significantly lower in samples from patients

with BC presenting A/G or G/G genotypes than in samples from

patients with A/A genotypes, implying that the A-to-G transition

reduces mature miR-27a expression (20). Although transcription

factors (TF) play important roles in initiating and regulating the

transcription of mRNAs, miRNA expression is mediated by

transcription TFs, according to previous research (21).

Therefore, we built a TF-miRNA‒mRNA regulatory network in

BC and T2DM to elucidate potential shared mechanisms of gene

expression between the two diseases.

Notably, miRNA biogenesis is regulated by RNA-binding

proteins (RBPs) (12). Pseudogenes preferentially bind RBPs and

miRNAs, thus participating in the competing endogenous RNA

(ceRNA) network for gene regulation (22). In addition,

Pseudogenes might regulate their protein-coding counterparts

via a ceRNA mechanism, participating in the pathological
frontiersin.org
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process of BC (23). In BC, cancer cells generally require

increased levels of transcription and pre-RNA synthesis

controlled by TFs, consequently increasing the cell’s

dependence on RBPs (24). Mutations and epigenetic

modifications may cause aberrant RBP expression in BC cells

(25). Our study constructed a shared mRNA-RBP-pseudogene

network regulating gene expression in T2DM and BC, revealing

the mechanism underlying the higher prevalence of BC among

patients with T2DM.

Importantly, ceRNAs are RNAs that mediate unique RNA–

RNA interactions. Long noncoding RNAs (lncRNAs),

pseudogenes, and mRNAs crosstalk by competitively binding

to shared miRNAs, allowing them to perform their biological

functions. Large-scale investigations have recently revealed that

deregulation of ceRNAs may play a role in the progression of

various malignancies, including BC (26). As a supplement to this

finding, we investigated the ceRNA-related mechanisms of the

mRNA‒RNA binding protein (RBP)-pseudogene network to

reveal the precise process of gene regulation.

In this article, we used multiomics analyses (genomic,

proteomic, transcriptomic, epigenome (methylation), and

immune cell infiltration analyses, Figure 1 showed the flaw chart)

to examine coexpressed hub genes and miRNAs in individuals with

diabetes and BC, as well as key functions and pathways. We then

focused on TF-miRNA‒mRNA networks and mRNA-RBP-

pseudogene networks to determine the shared mechanisms and

gene expression features of T2DM and BC. Surprisingly, our

findings suggest that cytochrome (CYP)-related biological

processes are critical in BC and T2DM. Treating cancer with

specific agents while disregarding metabolic dysregulation may

lead to therapeutic resistance in the tumor. The immunotherapy

that links systemic metabolism to cancer will enable researchers to

tailor agents specific for BC targets with metabolic dysfunction (27).

We provide insights into analyzing immune microenvironments

and gene regulation features, indicating that both CPEB1 and

COLEC12 are promising targets for immunotherapy of patients

with diabetes who are diagnosed with BC.
Results

GEO information and identification of
DE genes

The three GEO datasets, GSE60436, GSE17907, and

GSE101931, were chosen among the 25 datasets based on the

following criteria: 1. include datasets produced within 10 years,

2. only includes datasets of Homo sapiens, 3. include datasets use

similar sequencing methods, 4. exclude datasets of knock-out or

overexpressed genes, and 5. exclude datasets without detailed

descriptions. Table S1 summarizes the information from the

three datasets, such as the GSE number, detection systems,

samples, and RNA sources. These datasets were then used in
Frontiers in Immunology 03
the differentially expressed gene (DEG) analysis. After

identifying 2326 differentially expressed (DE) mRNAs in

patients with BC, 2653 DE mRNAs in patients with T2DM,

and 22 DE miRNAs in patients with T2DM, we extracted 200

verified DE miRNAs in BC from miRCancer and validated them

using data from published articles (Table S3). Table S2 contains

information on these hub genes.
Common gene signatures in BC
and T2DM

Among the evaluated GEO datasets, 427 overlapping DE

mRNAs were detected in GSE60436 and GSE17907, comprising

167 downregulated and 231 upregulated genes, and the

upregulated mRNAs were characterized as Gene Group 1

(GG1), while the downregulated mRNAs were defined as Gene

Group 2 (GG2). The following shared downregulated DE

miRNAs were selected by analyzing the data from HMDD and

the GSE10197 profile (Figure S1): hsa-miR-224-5p, hsa-miR-

452-5p, hsa-miR-892a, hsa-miR-653-5p, hsa-miR-489-3p, and

hsa-miR-142-3p. Using a Venn diagram, the putative DE

miRNAs generated from the two datasets were intersected

(Figure 2A). All intersecting DE miRNAs are shown in Table S1.
Biological analysis and functional
annotation of the DE mRNAs

We investigated the probable functions of GG1 and GG2

using the R package “clusterprofiler” to conduct Gene Ontology

(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)

enrichment analyses. “Cellular metal ion homeostasis”, “calcium

ion homeostasis”, and “divalent inorganic cation homeostasis”

were the top three enriched GO biological process (BP) terms.

“Drug metabolism-cytochrome P450” and “metabolism of

xenobiotics via cytochrome P450” accounted for 17% of the

overall enriched GO terms and were related to 14 genes

(Figures 2B, D, Figure S2), revealing that the P450 pathway is

essential in both T2DM and BC. Figure S3 depicts the GO/

KEGG enrichment analyses of GG2. We explored the

correlations between genes in GG1 and GG2 by generating

protein‒protein interaction (PPI) networks using data from

the STRING database (http://string.embl.de/) and visualized

them using Cytoscape (Figures 3A, B).
Analysis of differentially expressed genes
in a validated cohort of patients with BC
and T2DM

We analyzed DEGs in the GSE156993 and GSE45498

datasets to confirm our findings. Two hundred forty-six
frontiersin.org
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DEGs were identified in GSE45498, comprising 57

upregulated genes and 179 downregulated genes. Overall,

753 DEGs were identified in GSE156993, comprising 426

upregula ted genes and 327 downregula ted genes .

Hierarchical clustering analysis of the DEGs distinguished

between the case and control groups (Figure S4). In

GSE156993, 15 hub genes among the 19 chosen genes were

discovered, and all 19 genes were downregulated in GSE45498.

We further identified the relationship between the 19 selected
Frontiers in Immunology 04
genes and BC and T2DM in DisGeNET and MalaCards, and

we obtained relevant information for each gene, except

ERGIC2 and DDX52. Although ERGIC2 and DDX52 play

important roles in the TF-miRNA‒mRNA network and

mRNA-RBP-pseudogene network, the functions of ERGIC2

and DDX52 in BC and T2DM need further research. The 6

downregulated miRNAs were further validated in GSE160310,

and the data were visualized using the R package eulerr

(Figure S5).
FIGURE 1

The flow chart for multiomics method.
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Identification and analysis of common
miRNA target genes in BC and T2DM

According to 6 databases (miRWalk V2.0, mirDIP,

miRSystem, miRDB, miRCancer and miRTarBase), 1543

mRNAs were associated with 6 shared downregulated miRNAs

in BC and T2DM (Supplementary Data 1). The 1543 mRNAs

were then investigated further. The top three enriched pathways

were “route in cancer”, “MAPK signaling pathway”, and

“proteoglycans in cancer”, as illustrated in the bubble charts

(Figures 3C, D). Regarding enriched BP terms, “small molecule

metabolic process”, “lipid metabolic process” and “cellular lipid

metabolic process” were the three most highly enriched terms.

Detailed information on the enriched pathways is listed

in Table S4.
The common TF-miRNA‒mRNA network
in T2DM and BC

We constructed a network based on the 19 hub mRNAs, the

interactions between DE mRNAs (GEO profile) and the target

genes of the 6 hub DE miRNAs (confirmed in the 6 databases) in

BC and T2DM. According to the relationship between the target
Frontiers in Immunology 05
genes and miRNAs derived from these online datasets, we

constructed a miRNA‒mRNA network including 25 nodes, 6

miRNAs and 19 mRNAs, as shown in Figure 2C. Furthermore,

we collected 236 TFs from TransmiR v2.0, and then a TF-

miRNA‒mRNA network was constructed, including 261

nodes, 6 miRNAs, 19 mRNAs, 236 TFs and 255 edges

(Figure 4A). The details of the nodes and interactions are

listed in Table S4.
Construction and functional annotation
of the crosstalk between the hub
mRNAs, RBPs and pseudogenes in BC
and T2DM

As RBPs (RNA binding proteins) bind to mRNA while

pseudogenes might bind to RBPs (22), we searched and

downloaded the mRNA/RBP pairs and RBP/pseudogene

pa i r s fo r the 19 hub mRNAs se l e c t ed f rom the

bioinformatics analysis of BC and T2DM using StarBase.

According to the relationship between target genes provided

by the online dataset, we constructed an RBP-mRNA-

pseudogene network, including 147 nodes, 127 RBPs, 1

pseudogene, 19 mRNAs, and 1485 edges. The details of the
A B

DC

FIGURE 2

(A) The shared genes of T2DM and BC. (B) KEGG pathway analysis of coupregulated genes in T2DM and BC. (C) The miRNA‒mRNA regulatory network.
Yellow circles represent mRNAs, and purple circles represent miRNAs. (D) Analysis of BP terms for coupregulated genes in T2DM and BC.
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nodes and interactions are listed in Table S5, and the network

is shown in Figure 4B. Only one pseudogene, S-phase kinase

associated protein 1 pseudogene 1 (SKP1P1), was included in

the network, and it exhibited an experimental correlation with

38 important RBPs. Furthermore, we performed BP GO/

KEGG enrichment analyses of the RBPs with the

clusterProfiler R package. The top three significantly

enriched BP GO/KEGG terms were “mRNA metabolic

process”, “RNA processing” and “spliceosome” (Figure S6).
Comprehensive analysis of the 2 shared
hub DE mRNAs in T2DM and BC

We performed a Kaplan–Meier survival analysis of every

mRNA to determine which mRNAs play key roles in RBP-

mRNA-pseudogene and TF-miRNA‒mRNA networks.

According to the results, CPEB1 and COLEC12 were

substantially related to a better prognosis of BC (p<0.05), but the

remaining upregulated mRNAs in both patients with BC and

T2DM had no relationship with the survival of patients with BC
Frontiers in Immunology 06
(Figure 5A and Figure S7). Moreover, the expression of CPEB1 and

COLEC12 was somewhat correlated in BC (Figure 5B). The PPI

network also indicated that proteins encoded by CPEB1 and

COLEC12 interacted with each other (Figure 3B). We further

analyzed CPEB1 and COLEC12, which are downstream target

genes of hsa-miR-452-5p, using the methods described below to

obtain a better understanding of their biological functions. In the

expression analysis, we observed significant CPEB1 upregulation in

6 tumors, including pancreatic adenocarcinoma (PAAD) (tumor:

-0.02 ± 1.29, normal tissue: -0.96 ± 1.27, p=4.1e-14), and significant

downregulation in 26 tumors, including BC (tumor: -0.74 ± 1.47,

normal tissue: 1.37 ± 0.94, p=9.4e-96) (Figure 5C). As shown in

Figure 5D, significant upregulation of COLEC12 was observed in 9

tumors, including liver hepatocellular carcinoma (LIHC) (tumor: -

2.15 ± 2.15 ± 2.14, normal tissue: 4.08 ± 1.08 ± 1.77, p = 7.6e-22)

and PAAD (tumor: 1.95 ± 1.85, normal tissue: - 0.95 ± 1.85,

normal: - 0.84 ± 1.7e-36), and significant downregulation was

detected in 20 tumors, including BC (tumor: 2.59± 1.56, normal

tissue: 3.29 ± 0.90, p=3.0e-14) and colon adenocarcinoma

(COAD)/rectal adenocarcinoma (READ) (tumor: -0.35 ± 1.91,

normal tissue: 2.25 ± 1.74, p=2.4e-70). However, the cBioPortal
A B

DC

FIGURE 3

(A) PPI network of coupregulated genes in T2DM and BC. (B) PPI network of codownregulated genes in T2DM and BC. (C) KEGG pathway enrichment
analysis of common miRNA target genes in BC and T2DM. (D) GO enrichment analysis of common miRNA target genes in BC and T2DM.
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A

B

FIGURE 4

(A) TF-miRNA–mRNA regulatory network. Pink triangles represent mRNAs,purple diamonds represent miRNAs, and green circles represent
shared genes. (B) The RBP–pseudogene-mRNA regulatory network. Blue circles represent pseudogenes, purple circles represent RBPs, and
green circles represent mRNAs.
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algorithm showed that CPEB1 expression was altered in 22 (2.03%)

of 1084 patients, while COLEC12 expression was altered in 14

(1.29%) of 1084 patients with BC.
Analysis of CPEB1 and COLEC12 RNA
methylation and differential expression in
cell lines and single cells

Gene expression is a stochastic process, with random

alterations in transcription and translation leading to variations
Frontiers in Immunology 08
between cells at the mRNA and protein levels, especially in the

immune system (28). Using the Human Protein Atlas (HPA), we

investigated the CPEB1 and COLEC12mRNA and protein levels in

cell lines and single cells from various tissues (Figures 6A–D).

CPEB1 was expressed at high level in mesenchymal cell lines, while

COLEC12 was expressed at high levels in the brain, and its

expression was lower in most single cells, except glial cells. N6-

methyladenosine (m6A) is a reversible mRNA modification that

has been shown to play important roles in breast cancer (29). Thus,

we analyzed the N6-methyladenosine (m6A), N1-methyladenosine

(m1A), and N6-methylcytosine (m6C) methylation of the CPEB1
A B

D

C

FIGURE 5

(A) Survival analysis of CPEB1 expression in patients with BC. (B) Survival analysis of COLEC12 expression in patients with BC. (C) Pancancer
analysis of CPEB1 expression in tumors and normal tissues. (D) Pancancer analysis of COLEC12 expression in tumors and normal tissues. * in the
picture indicates the significance of results, * equals to <0.05; ** equals to <0.01; *** equals to <0.001; **** equals to <0.0001.
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(Figure 7A) and COLEC12mRNAs (Figure 7B) in various cancers,

and we discovered that the m6A modification of CPEB1 displayed

a stronger correlation with BC than the m5A and m1A

modifications of CPEB1, and similar results were obtained for

YTHDF1 and YTHDC2. COLEC12 exhibited a stronger association

with the m1A and m6A modifications than with the m5C

modification in BC. Finally, in each tumor, we utilized R

software (version 4.0.1) to discern the difference in expression

between normal and malignant samples. In 34 malignancies, the

significance of differences in expression was determined using

unpaired Wilcoxon rank sum and signed rank tests. We detected

substantial upregulation in 9 tumors and significant
Frontiers in Immunology 09
downregulation in 20 tumors, including BC (tumor: 2.591.56,

normal tissue: 3.329.90, p=3.0e-14).
Relationship between methylation and
CPEB1/COLEC12 expression in BC

CPEB1 and COLEC12 were substantially methylated in BC

tissue, according to the UALCAN algorithm (Figures 7E, F). Using

the MEXPRESS algorithm, we investigated the link between

CPEB1/COLEC12 methylation and clinical data. We discovered

relationships between substantial CPEB1 and COLEC12
A

B

D

C

FIGURE 6

(A) Single-cell enrichment analysis of CPEB1 expression in breast tissue. (B) Single-cell enrichment analysis of COLEC12 in breast tissue. (C) Cell
line enrichment analysis of CPEB1. (D) Cell line enrichment analysis of COLEC12.
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methylation and a variety of clinical variables, including

lymphocyte infiltration, PAM50 subtype, menopausal status, ER

status, PR status, and HER2 status. Figures 7C, D show that CPEB1

was methylated at various locations, including cg01776825,

cg24689264, cg26565719, and cg07624612 (r = 0.368, 0.326,

0.409, and 0.423, respectively), whereas COLEC12 was

methylated at cg15630598, cg25570929, and cg21067023 (r =

0.169, 0.345, and 0, respectively). We assessed the relationship

between the methylation of COLEC12 sites (cg10737455,

cg24475272, cg14201545 and cg12817260) and the methylation

of CPEB1 sites (cg26728382, cg05329960, cg14090920, cg00254888
Frontiers in Immunology 10
and cg19630242) with clinical characteristics of patients using the

MethSurv algorithm.
Relationship between immune cell
infiltration and CPEB1 and COLEC12
expression in BC and other cancers

We investigated the involvement of CPEB1 and COLEC12 in

immune cell infiltration in BC using the TIMER platform to assess

the link between DEGs and immune cell infiltration (Figures 8C, D).
A B

D

E

F

C

FIGURE 7

(A) Analysis of m1A, m5C and m6A modifications of the CPEB1 mRNA in cancers. (B) Analysis of the m1A, m5C and m6A modifications of the
CPEB1 mRNA in cancers. (C) Analysis of the locations of CpG islands in CPEB1 in BC. (D) Analysis of COLEC12 methylation in breast cancer. (E)
Level of CPEB1 promoter methylation in BC. (F) Level of COLEC12 promoter methylation in BC.
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The strongest correlations with CPEB1 expression were observed

for cancer-associated fibroblasts (Cor = 0.460, p = 3.57E-50),

endothelial cells (Cor = 0.380, p = 3.15E-33), macrophages (Cor

= 0.318, p = 5.72E-23), CD4+ T cells (Cor = -0.460, p =4.55E-50)

and natural killer (NK) T cells (Cor = -0.321, p = 2.20E-). The

strongest positive correlations with COLEC12 expression were
Frontiers in Immunology 11
observed for cancer-associated fibroblasts (Cor = 0.501, p =

4.86E-62) and macrophages (Cor = 0.465, p = 2.28E-52),

whereas the strongest negative correlations with CPEB1

expression were observed for CD4+ T helper 1 (Th1) cells (Cor

= -0.398, p =3.48E-37) and B cells (Cor = -0.343, p = 3.55E-27).

We explored the correlations between CPEB1 and COLEC12
A

B

D

C

FIGURE 8

Analysis of CPEB1 and COLEC12 expression and immune cell infiltration. (A) Analysis of CPEB1 expression and immune cell infiltration in BC,
colon adenocarcinoma, and ovarian serous cystadenocarcinoma. (B) Analysis of COLEC12 expression and immune cell infiltration in BC, colon
adenocarcinoma, and ovarian serous cystadenocarcinoma. (C) Correlation of infiltrating immune cells and CPEB1 expression in BC (D)
Correlation of infiltration of immune cells and COLEC12 expression in BC.
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expression and biomarker genes in immune cells. The findings

showed the strongest associations with cancer-associated

fibroblasts and macrophages (Table S6). We acquired the levels

of infiltrating immune cells in 10,180 tumor samples from 44

different tumor types in a pancancer investigation. We discovered

that CPEB1 gene expression was significantly correlated with

immune cell infiltration in 27 cancer types: 19 of these cancer

types showed significantly positive correlations, including BC

(N=1077, R=0.37, p=7.0e-37), COAD/READ (N=373, R=0.76,

p=1.6e-70), LIHC (N=363, R=0.41, p=4.6e-16), ovarian serous

cystadenocarcinoma (OV) (N=417, R=0.19, p=1.1e-4), and uveal

melanoma (UVM) (Figures 8A, B and 9A, B). COLEC12

expression was significantly correlated with immune cell

infiltration in 39 cancer types; 38 of these cancer types showed

considerable positive correlations, including BC (N=1077, R=0.46,

p=3.1e-57), COAD/READ (N=373, R=0.87, p=2.8e-115), LIHC

(N=363, R=0.23, p=1.4e-5), OV (N=417, R=0.68, p=5.3e-57), and

PAAD (N=177, R= 0.86, p=4.4e-54).
Discussion

The pathophysiology of BC remains unknown, and the co-

occurrence of T2DM and BC has previously been established.
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However, few studies have focused on the genetic aspects of BC

in patients with T2DM. In the present study, we performed

several types of bioinformatics analyses to investigate the shared

processes of T2DM and BC with the aim of identifying novel

therapeutic targets. The discussion will be separated into 3 parts:

1. Correlations between T2DM and BC in drug metabolism; 2.

Correlations between T2DM and BC in the molecular

mechanism; and 3. Guidance for immunotherapy of BC.
Drug metabolism

CYPs play a vital role in the development of BC
and T2DM and are associated with the
relationship between BC and T2DM

Cytochrome P450 (CYP450) is a hemoprotein superfamily

that is critical for drug biotransformation (26). Specific CYP

superfamily isoforms have been discovered in cancers (30), in

which they are presumed to modulate the response to anticancer

treatment (5). CYP450s are highly conserved across species,

suggesting that, in addition to their role in xenobiotic

metabolism, they may have broader physiological activities.

The top three enriched KEGG terms shared between T2DM

and BC DE mRNAs were “drug metabolism-cytochrome P450,”
A B

FIGURE 9

(A) Analysis of CPEB1 expression and immune cell infiltration in cancers. (B) Analysis of COLEC12 expression and immune cell infiltration in
cancers. * in the picture indicates the significance of results, * equals to <0.05; ** equals to <0.01; *** equals to <0.001; **** equals to <0.0001.
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“metabolism of xenobiotics by cytochrome P450,” and “chemical

carcinogenesis.” In addition, CYP4B1, CYP7B1, and CYP26B1

are upregulated in BC, and CYP4X1 and CYP26A1 are

upregulated in both BC and T2DM. The aforementioned

findings show a strong link between CYPs and the common

mechanisms of T2DM and BC. A study designed to examine the

expression profile of CYP450 enzymes in the Caucasian

population with BC (31) discovered that the CYP4X1 gene was

overexpressed. This elevated expression most likely alters the

responsiveness of various pathological diseases to agents that are

CYP2S1 substrates (32). As a result, our findings suggest that

several CYP enzymes, such as CYP7B1 and CYP26B1, may play

comparable pathogenic roles in BC, with variances probably

attributable to the racially diverse populations investigated in

various studies. CYP4V2 and CYP1B1 expression were

substantially increased in GSE60436 in our investigation

(T2DM profile). Several studies have highlighted a role for

CYP1B1 in tumor growth and treatment resistance, suggesting

that CYP1B1 is a potential oncological therapeutic target

(33, 34).

Numerous CYP1B1 inhibitors have been developed to

overcome treatment resistance in several tumor cell lines, and

this strategy is recognized as the main therapeutic paradigm to

treat malignancy (27). In individuals with diabetes, CYP

expression exhibits an isoform-specific pattern. This altered

expression might be partially modified by insulin treatment.

An expression quantitative trait loci (eQTL) laser capture

microdissection (LCM) analysis of iT2DMts from phenotyped

pancreatectomized patients (PPPs) identified that CYP4V2 is

associated with the levels of glycated hemoglobin A1c (HbA1c)

(35), which plays a key role in the management of diabetes. As a

result, we hypothesize that CYP4V2 plays an important role in

the pathogenic phase of T2DM. According to another study,

reduced expression of hsa-miR-27b is one factor contributing to

elevated expression of the CYP1B1 protein in malignant cells

(36). Although the upregulation of CYP1B1, one of the target

genes of the hub DE miRNAs in BC (hsa-miR-27b), in our BC

profile is not unexpected, patients with diabetes presenting high

CYP1B1 expression may be more likely to develop BC, as

CYP1B1 might be downregulated by hsa-miR-27b, which is

expressed during BC development.
Metformin in BC and T2DM

Metformin is often regarded as a “foundation treatment” for

individuals newly diagnosed with T2DM. This reputation stems

from its excellent glucose-lowering abilities, low cost, neutral

effect on weight, generally favorable safety profile (particularly

the absence of hypoglycemia as an adverse effect), and some

evidence for cardioprotection (1). Despite its popularity, debate

still exists about the precise mechanism of action of metformin,

although most data indicate a primary role for a reduction in
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hepatic glucose production (described further by Rena et al. in

an issue of Diabetologia) (30). Intriguingly, metformin was also

shown to enhance the function of the immune system and

increase the potency of cancer treatment, although the

molecular mechanisms underlying these effects are not fully

understood. The study also indicated that metformin might be

utilized to prevent the formation of BC while enhancing the

prognosis of BC immunotherapy (27). In addition, metformin

suppresses MAPK signaling in patients with T2DM (37), while

the MAPK/ERK signaling pathway is also critical for the

proliferation of estrogen-independent BC cells (38). The dose

of metformin used to treat patients with diabetes who are at risk

of developing BC is being investigated, and our findings show

that it has a strong correlation with CYPs.

In conclusion, drug metabolism involving CYPs and

metformin might participate in the same pathological processes

of T2DM and BC. CYPs might contribute to the mechanism by

which metformin improves the prognosis of immunotherapy for

patients with BC, while aberrant expression of CYPs caused by BC

might in turn impair the effect of metformin.
Molecular mechanism

Novel insights into the shared ceRNA network
of BC and T2DM

According to previous studies, several known ceRNA

interactors are involved in a variety of illnesses, including

cancer. Identification of these interactions has altered our

understanding of illnesses and provided new opportunities for

studying disease processes. Previous ceRNA analyses have

focused on the competitive interactions between two molecules

and have disregarded the multiple competitive links in cancer.

Here, we revealed RBP-pseudogene-mRNA interactions, built a

competitive network, and proposed cancer biomarkers based on

the interactions between RBPs, pseudogenes, and mRNAs in BC

and T2DM.

Pseudogenes have been shown to influence regulatory

systems in pancancer investigations (16). One example is the

PTEN-PTENP1 (pseudogene) interaction, which has been

implicated in prostate cancer18. FTH1-FTH1PX (X represents

multiple pseudogenes) in prostate cancer (18), SUMO1-

SUMO1P3 in gastric cancer (19), and ATP8A2-ATP8A2 in

BC (16) are a few additional regulatory pseudogene‒gene

interactions that have been verified. These examples provide

persuasive evidence that pseudogene‒gene interactions may be

employed directly as predictors of human cancer, but candidate

interactions must be identified to properly exploit these

associations. SKP1P1 was the only pseudogene identified in

the mRNA-RBP-pseudogene network revealed in this study

and has known regulatory relationships with several RBPs and

mRNAs, suggesting that it may be a relevant regulatory gene in

the ceRNA network of BC and T2DM. Our study also revealed
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an RBP-pseudogene-mRNA network, which will be beneficial

for practical ceRNA-related research.
Promising therapeutic targets for BC:
CPEB1 and COLEC12

CPEB1 encodes a protein that interacts with a particular

RNA sequence known as the cytoplasmic polyadenylation

element. The encoded protein has cytoplasmic and nucleolar

activities. It regulates mRNA translation and the processing of

the 3’ untranslated region, and it may have a role in modulating

cell proliferation in cancer. In vivo, lower CPEB1 levels enhance

BC cell metastasis to the lung, whereas ectopic expression of

CPEB1 substantially inhibits this process, implying that CPEB1

might be a good prognostic factor for predicting human BC

metastasis. Nonetheless, CPEB1 deficiency has little effect on

polarity in intestinal or kidney epithelial cells20, and as this

process is presumed to be a crucial initial event, CPEB1 unlikely

has much of an effect on metastasis in these cells. Furthermore,

ectopic expression of a dominant-negative form of CPEB1 that

does not induce polyadenylation limits the production of

metadherin (MRDH), a metastasis-promoting factor, and

reduces migration and tumor formation of glioblastoma cells.

Due to inconsistencies in the aforementioned data, CPEB1 likely

exerts diametrically opposing effects on metastasis depending on

cell type. As a result, the overexpression of CPEB1 in immune

cells may be associated with a distinct biological mechanism that

is relevant to patients with T2DM secondary to BC.

Collectin-12 (CL-12), also known as collectin placenta 1

(CL-P1), is a pattern recognition molecule (PRM) of the innate

immune system that is encoded by the COLEC12 gene (39) CL-

12 was originally defined as a scavenger receptor C-type lectin

(40) and is mainly expressed in cells that originate from the

endothelium and macrophages (41). Moreover, CL-12 is

suggested to be involved in leukocyte recruitment and cancer

metastasis. Common polymorphisms in or near COLEC12 have

been linked to diabetic retinopathy in Chinese patients with

T2DM (42). In our work, CPEB1 and COLEC12 were expressed

at high levels in fibroblast-3 cells (Figures 9A, B), contributing to

the construction of the tumor immune microenvironment. They

were shown to be expressed at elevated levels in BC and to be

target genes of hsa-miR-452-5p in both patients with BC

and T2DM.

Many studies have shown that increased immune cell

infiltration is related to better clinical outcomes and treatment

responsiveness in patients with BC 4-11 (43–48). Daniel Winer

and colleagues reported alterations in the intestinal immune

system that may affect systemic immunity and glucose

metabolism, contributing to obesity and diabetes pathogenesis

(16) (49). In our study, CPEB1 and COLEC12 were strongly

correlated with immune cell infiltration. Notably, both CPEB1

and COLEC12 were expressed at significantly higher levels in
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fibroblas ts , an essent ia l component of the tumor

microenvironment. Based on accumulating evidence, aberrant

m6A modifications are linked to the epigenetic control of the

immune response in individuals with BC. Similarly, the m1A

modification has been shown to improve translation efficiency

(50–52). In the present study, CPEB1 expression in BC was

related to the m6A modification, whereas COLEC12 expression

was associated with both m1A and m6A modifications. Three

distinct m6A modification patterns have been reported, and the

infiltrating properties of cells in the tumor microenvironment

correspond to the three immunological phenotypes, which

include immune rejection, immune inflammation, and

immune desert (53). The research findings described above

suggest that the m6A modification of CPEB1/COLEC12 and

the m1Amodification of COLEC12 in BC exert significant effects

on some immune responses.

In conclusion, T2DM and BC share some similar patterns of

gene regulation. Based on the results obtained using multiomics

approaches, including methylation, genomics, proteomics,

immune cell infiltration, prognostic analysis and pancancer

analysis, CPEB1 and COLEC12 are likely to be key drug targets

and immunotherapy targets.
New insights into immunotherapy for
patients with T2DM diagnosed with BC

Immunotherapy acts mainly by harnessing immune cells

within or outside the TME to specifically recognize and attack

cancer cells (3). Immune checkpoint inhibitors (ICIs) are some of

the main drugs used in immunotherapy. The use of ICIs—

monoclonal antibodies targeting programmed death protein 1

(PD-1), programmed death protein 1 ligand (PD-L1) and CTLA-4

—has yielded impressive results in many settings and is currently

a cornerstone in cancer treatment, including BC (54).

Nevertheless, metabolic side effects will likely be an important

consequence of immunotherapy using ICIs for BC treatment (55).

Multiple mechanisms, such as the overexpression of immune

checkpoint molecules, loss of nutrients through vascular

impairment and dysregulation of metabolic pathways, were

recently shown to affect T cell recruitment and metabolic

activities in the tumor microenvironment (TME) (56, 57)

Preclinical models and human studies of immunotherapy

suggested that the general pathology of common forms of

diabetes, namely, insulin resistance (T2DM) and/or impaired

insulin secretion, may be exacerbated by ICIs (58). Therefore,

patients receiving cancer immunotherapy have an increased risk

of diabetes.

The TME is very important in metabolic alterations caused by

immunotherapy. In addition, the TME also determines

tumor immunology, progression, metastasis, and the

response to immunotherapy (59). The TME is profoundly

immunosuppressive, which is a key factor explaining why most
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cancer therapies that operate (or in part operate) by stimulating

immune cell actions against cancer continue to display limited

clinical efficacy. At present, many immunotherapies exist to

remove the obstruction of the TME, including the targeting of

excessive immunoregulatory angiogenesis. Suppression of

fibroblasts is also a novel approach. Outstanding clinical efficacy

of the modulation of the TME to improve the response to

immunotherapy is also being investigated. Fibroblasts, stromal

cells in the TME associated with tumor formation and metastasis

in BCs (60), are the most essential components of the TME.

Through multiple pathways, activated fibroblasts promote tumor

growth, angiogenesis, invasion and metastasis. Fibroblasts interact

with tumor-infiltrating immune cells and other immune

components within the tumor immune microenvironment

(TIME), consequently shaping an immunosuppressive TME that

enables cancer cells to evade surveillance of the immune system

(61). Our research reveals that CPEB1 and COLEC12 are

substantially upregulated in fibroblasts, according to analyses of

cell lines and single cells using BC data. In-depth studies of the

expression of CPEB1 and COLEC12 in fibroblasts and their roles

in immune microenvironment interactions, particularly the

complicated mechanisms connecting fibroblasts with immune

cells, might provide novel strategies for BC immunotherapies in

patients with diabetes. Although the long-term consequences of

developing diabetes secondary to these new anticancer agents are

poorly understood, our study provides solid evidence from

multiomics analyses for these processes by exploring the shared

immunological mechanism between T2DM and BC.

Clearly, our study has significant limitations as well. We

collected information on miRNAs, RBPs, and pseudogene

targets from StarBase; mRNAs were confirmed in online

datasets and GEO datasets rather than experiments; and the

miRNA targets were not exhaustive due to data recording

limitations. Although the study suggests that CPY-related

metabolism is important for shared pathological processes in

T2DM and BC, cancer treatment for patients with BC to prevent

metabolic dysfunction, the time of function, the amount of CYPs

that are required and the complicated mechanisms underlying

these processes still require further research and experiments. In

addition, an immunotherapy is unavailable for patients with

diabetes diagnosed with BC, and the application of potential

targets still lacks clinical trials. Our study remains noteworthy,

however, since the targets provide insights for future studies of

patients with T2DM and BC.

In summary, we revealed a TF-miRNA‒mRNA network and

an RBP-mRNA-pseudogene network from genome-wide

transcriptome data using various bioinformatics analyses to

comprehensively analyze the possible shared mechanisms of

BC and T2DM. We revealed that the participation of some

immune cells and the presence of some hub genes (miRNAs,

mRNAs, pseudogenes, TFs and RBPs) in patients with T2DM

might be essential susceptibility factors for BC and identified
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novel gene candidates that might be used as biomarkers or as

potential therapeutic targets.
Methods

Downloading GEO datasets

We searched the GEO database for gene expression profiles

in patients with BC and T2DM using the key words “breast

cancer” and “breast carcinoma” or “diabetes mellitus” and “type

2 diabetes mellitus.” The retrieved datasets were filtered utilizing

the criteria listed below. First, gene expression profiling studies

had to include both cases and controls. Second, the sequencing

cell source was peripheral blood mononuclear cells (PBMCs).

Third, the proportion of female patients must be greater than

80%, ensuring that the research had practical application.

Fourth, patient age ranged from 30 to 70 years, since T2DM is

more common in elderly patients. Fifth, the studies had to

include processed or raw data that could be reanalyzed. The

author stated in the initial report of GSE60436 that the

admission criteria for patient samples included a diagnosis of

T2DM and HbA1c level ≤13%, which were suitable criteria for

our research. Ultimately, the GEO datasets GSE101931,

GSE60436 and GSE17907 were chosen. Table S1 contains

detailed information about the datasets utilized in this

investigation. We searched for hub miRNAs of BC in articles

published in the last ten years and collected data from

miRCancer. Table S5 contains detailed information on the

identified miRNAs.
Identification of DE miRNAs and
DE mRNAs

Raw GSE101931, GSE17907, and GSE60436 data files were

read using the oligo R package. The data were successively

filtered, adjusted for the background, log base 2 transformed,

and normalized. Gene symbols were acquired by probe

conversion based on platform annotation information. If one

gene symbol matched two or more probes, the mean expression

level of these matching mRNAs or miRNAs was used to calculate

the final expression level. We employed an R program for data

processing and visualization (version 4.0.1). A moderated t test

was used to compare the expression levels of mRNAs or

miRNAs between groups in the datasets. A p value < 0.05 and

| log2FC| > 1.5 were used as limits for determining statistical

significance to evaluate the differential expression of mRNAs or

miRNAs in the datasets. The mRNA expression levels of hub

genes in BC and T2DM samples were statistically analyzed using

a paired Student’s t test, and p values less than 0.05 were

considered significant.
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PPI network generation and GO and
KEGG analyses

We used the clusterProfiler R package (62) to perform GO

and KEGG analyses of the functions of the selected genes. The

GO analysis included BP, cellular component (CC), and

molecular function (MF) terms. A p value of 0.05 was

regarded to indicate considerable enrichment, and the BH

technique was employed to modify the p value. Two PPI

networks were created and analyzed with the STRING

database to elucidate shared molecular processes underpinning

T2DM and BC and obtain insights into the interactions of the

shared 313 upregulated and 187 downregulated genes in

individuals with T2DM and BC. Target genes in the PPI

network served as nodes, the lines between two nodes denoted

associated interactions, and the strength of an interaction was

indicated by the color of the line. The hub genes, which were

defined as genes that played essential roles in the network, were

distinguished according to the following criterion: degree

calculated by CytoHubba in Cytoscape. The corresponding

interactions were visualized using Cytoscape (63).
DEG analysis and validation of shared
and distinct gene signatures

We replicated the DEG analysis with additional T2DM and

BC datasets (GSE156993 and GSE45498) to confirm the shared

and distinct genes involved in T2DM and BC. The R program

limma (64) was used to analyze the DEGs between the case and

control groups. A |log2(fold change)| greater than 0.56 and a p

value of 0.05 were used as cutoff values. The expression patterns

of the DEGs were determined using hierarchical clustering

analysis and heatmaps. The overlapping DEGs in the T2DM

and BC datasets were determined using the R tool eulerr.

Furthermore, we utilized DisGeNET and MalaCards to identify

19 hub genes, which we used to establish a TF-miRNA‒mRNA

network. DisGeNET is a research platform that consists of one of

the largest publicly released libraries of genes and variants

identified in human diseases. DisGeNET incorporates

information from expert-curated repositories, genome-wide

association studies (GWAS) libraries, animal models, and the

scientific literature. Several innovative measures are also

employed to aid in the prioritization of genotype–phenotype

interactions. MalaCards is a combined human disease database

with broad clinical and genetic annotations and a systematic

search ability (65). Using the R package limma, GSE160310 was

utilized to verify the DE miRNAs in T2DM, and the cutoff values

were |log2(fold change)| > 0.6 and p value < 0.05. The findings

from the enrichment analyses of the discovery and validation

cohorts were compared to determine whether our analytical

approach was reliable.
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Construction of the shared miRNA‒
target gene-TF network

Investigating miRNA target genes is critical for

understanding miRNA regulatory mechanisms and functions.

We identified eight upregulated miRNAs and six downregulated

miRNAs and then predicted the targets of the DEGs using six

miRNA‒target tools: miRWalk V2.0 (65), mirDIP (66),

miRSystem (67), miRDB (68), miRCancer (69), and

miRTarBase (70). The overlapping results from the six

databases were used to screen the miRNA targets. We

extracted the shared genes in the target gene group from the

database and the DEGs of these two diseases (BC and T2DM) by

performing bioinformatics analyses. We predicted upstream TFs

of the 6 hub miRNAs with TransmiR v2.0 (71), a public tool that

integrates empirically proven TF-miRNA regulatory

connections from publications. The intersection of comparable

miRNA target genes and shared genes in T2DM and BC (based

on a fold change in expression >2.5 and an FDR 0.05) was

utilized to establish the miRNA–mRNA regulatory network,

which was then visualized using Cytoscape (63).
StarBase analysis and construction of the
RBP–mRNA-pseudogene network

StarBase (72),a widely used open-source platform for

analyzing ncRNA interactions via CLIP-seq, degradome-seq and

RNA–RNA interactome data, was employed to investigate the

associations between mRNA, RBP, and pseudogene expression. R

< -0.1 and a p value < 0.05 were defined as the cutoff criteria for

identifying the key mRNA-RBP pairs and RBP-pseudogene pairs

to assess crosstalk between the shared hub mRNAs of BC and

T2DM pseudogenes and RBPs. Subsequently, the RBP-

pseudogene-mRNA network was built with Cytoscape. We used

the clusterProfiler R package to conduct GO and KEGG analyses

of the potential genes and further investigate their functions. BP,

CC, and MF terms were assessed in the GO analysis. A p value of

0.05 was regarded to indicate considerable enrichment, and the

BH technique was employed to modify the P value.
Analysis of the correlation between
immune cell infiltration and CPEB1 and
COLEC12 expression

We investigated the expression of CPEB1 and COLEC12 in

malignant tumors, as well as the relationship between their

expression patterns and the levels of infiltrating immune cells

with TIMER (73), a resource that enables a systematic analysis of

the quantities of infiltrating immune cells in various cancers. We

obtained a unified and standardized pancancer dataset from
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UCSC (74), TCGA, TARGET, and GTEx (PANCAN, N=19131,

G=60499) and retrieved ENSG00000214575 (CPEB1) and

ENSG00000158270 (COLEC12) gene expression data for each

sample. We next filtered the sample sources: primary blood-

derived cancer - peripheral blood (acute myeloid leukemia

(LAML)); primary tumor – metastasis of skin cutaneous

melanoma (SKCM); primary blood-derived cancer - bone

marrow; primary solid tumor; and recurrent blood-derived

cancer - bone marrow. Data from these samples were further

log2(x+0.001) transformed, and the gene expression profile of

each tumor was extracted and mapped. The R software program

ESTIMATE was then applied to determine the gene symbols and

gene expression in each tumor. Stromal, immune, and

ESTIMATE scores were calculated for each patient. In

addition, we utilized TIMER to analyze B cell, CD4+ T-cell,

CD8+ T-cell, neutrophil, macrophage, and dendritic cell (DC)

infiltration in each tumor sample from each patient based on the

gene expression score.
Methylation analysis of CPEB1 and
COLEC12

We acquired a UCSC unified and standardized pancancer

dataset including TCGA, TARGET, and GTEx data (PANCAN,

N=19131, G=60499), and we further extracted ENSG00000214575

(CPEB1) and ENSG00000158270 (COLEC12) data from it. Data

regarding gene modifications and three types of RNA

modifications (m1A (10), m5C (13), and m6A (21)) in each

sample were extracted, and we subsequently screened the

following sample sources: primary solid tumor; primary tumor;

primary blood-derived cancer - bone marrow; and primary blood-

derived cancer - peripheral blood. In addition to filtering all normal

samples, we log2(x+0.001) transformed each expression value and

calculated the Pearson correlation coefficients between

ENSG00000214575 (CPEB1)/ENSG00000158270 (COLEC12)

expression and the expression of immune pathway signature

genes. The UALCAN algorithm (75) is a data-mining platform

that has been used to assess the methylation of DE mRNAs in

tumors. The UALCAN algorithm was used in this study to

examine CPEB1/COLEC12 methylation in BC and normal

tissues. MEXPRESS is a data visualization application that is

used to depict TCGA expression data and the link between

methylation and clinical data.
Pancancer analysis of CPEB1 and
COLEC12 expression

Using the HPA algorithm, we evaluated the CPEB1 and

COLEC12 mRNA and protein levels in diverse organs (Figures

S4, S5). We employed RNA sequencing data to assess CPEB1
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and COLEC12 expression in cell lines and single cells. Next, in

each tumor, we utilized R software (version 4.0.1) to determine

the difference in expression between normal and malignant

samples. In 34 cancers, the significance of the difference was

determined using unpaired Wilcoxon rank sum and signed

rank tests.
HPA and cBioPortal analyses

HPA was established in 2003 with the goal of mapping all

human proteins in cells, tissues, and organs. Using this resource,

we determined the protein and RNA expression levels of CPEB1

and COLEC12 in multiple cancer tissues (76). cBioPortal is an

online source for visualizing cancer genomics data that provides

information on somatic mutations, changes in copy number,

and mRNA expression (77). We used cBioPortal to assess

alterations in the CPEB1 and COLEC12 genes in BC in

this study.
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