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Abstract: The extraction of relevant wavelengths from a large dataset of Near Infrared Spectroscopy
(NIRS) is a significant challenge in vibrational spectroscopy research. Nonetheless, this process allows
the improvement in the chemical interpretability by emphasizing the chemical entities related to
the chemical parameters of samples. With the complexity in the dataset, it may be possible that
irrelevant wavelengths are still included in the multivariate calibration. This yields the computational
process to become unnecessary complex and decreases the accuracy and robustness of the model.
In multivariate analysis, Partial Least Square Regression (PLSR) is a method commonly used to build
a predictive model from NIR spectral data. However, in the PLSR method and common commercial
chemometrics software, there is no standard wavelength selection procedure applied to screen
the irrelevant wavelengths. In this study, a new robust wavelength selection procedure called the
modified VIP-MCUVE (mod-VIP-MCUVE) using Filter-Wrapper method and input scaling strategy
is introduced. The proposed method combines the modified Variable Importance in Projection (VIP)
and modified Monte Carlo Uninformative Variable Elimination (MCUVE) to calculate the scale matrix
of the input variable. The modified VIP uses the orthogonal components of Partial Least Square (PLS)
in investigating the informative variable in the model by applying the amount of variation both in
X and y{SSX,SSY}, simultaneously. The modified MCUVE uses a robust reliability coefficient and
a robust tolerance interval in the selection procedure. To evaluate the superiority of the proposed
method, the classical VIP, MCUVE, and autoscaling procedure in classical PLSR were also included
in the evaluation. Using artificial data with Monte Carlo simulation and NIR spectral data of oil
palm (Elaeis guineensis Jacq.) fruit mesocarp, the study shows that the proposed method offers
advantages to improve model interpretability, to be computationally extensive, and to produce better
model accuracy.
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1. Introduction

The selection of relevant wavelengths in chemometrics analysis in Near Infrared (NIR) spectral
data is crucial to prevent the number of relevant variables to be removed in the analysis. Partial Least
Square Regression (PLSR), a conventional method used in chemometrics, has no standard procedure.
There are related studies of its application in oil and fat assessment in oil palm (Elaeis guineensis Jacq.).
However, many researchers are still using the band partition experiments (see [1–3]) by manually
segmenting the wavelengths into several bands: visible (400–700 nm), NIR (701–1100 nm), Shortwave
Infrared 1 (SWIR1: 1101–1351 nm), SWIR2 (1400–1800 nm), and SWIR3 (2000–2500 nm). The selection
procedure is commonly done based on trial and error [1] through the improvement in model accuracy
attained. This observation is inefficient and requires advanced experience. Moreover, an in-depth
analysis needs to be carried out to understand the NIR spectra signature based on its chemical
information. A wavelength selection method is therefore required to assess the contribution of each
wavelength. This selection will reduce the number of variables used in the model. In the interpretation,
the selection method may give a better understanding of the underlying process of the sample studied.

In the review papers (see [4–7]), several recommended wavelength selection methods have
been discussed. The researchers have highlighted the limitations and properties of each method
presented. No one has suggested which method is better than the other. A convenient approach is
to make a comparison between the methods and examine their superiority using the experimental
simulation and real given problems. There are three main categories of variable selection methods:
filter, wrapper, and embedded. The main differences between these categories are based on their
processing steps. In the filter methods, relevant variables are ranked and selected according to
the threshold on the relevancy index calculated from the fitted model [8,9]. The filter methods are
considered fast and straightforward because no learning algorithm is required in the computational
process. However, the filter methods do not take into account biasness in the learning model and
neglect any conditional dependence (or independence) that might probably exist [10]. In the wrapper
methods, the supervised learning approach adopts the search algorithm iteratively with either the
deterministic or randomization [5]. The wrapper methods are known to be costly because in the
evaluation criterion, a predefined learning algorithm and cross-validation procedure is performed [5].
In the embedded methods, the advantages of both the filter and wrapper methods are seized [7].
The embedded methods evaluate the quality of selected relevant variables during the model building
without performing an evaluation process on the learning model [11]. This embedded strategy has
motivated the current study to integrate the combination steps in the filter and wrapper methods with
the objective to improve the performance of the PLSR model.

There are several methods associated with both the filter and the wrapper methods. In the
filter methods, some selection procedures have been reported, such as the Stepwise Regression
Coefficients [12], Loading Weights [13], Correlation Coefficient [14], and Variable Importance in
Projection (VIP) [15]. Among these procedures, the VIP has earned considerable attention because of
its stability and consistency to select the relevant wavelengths and its relatively low computational
cost. Using different dataset matrix as simulation, the VIP outperforms the other selection methods
(see [6,16]). In the classical VIP [17], the score is calculated by using the weight combination of the
overall component variables of the squared PLSR weight. However, the score highlights the variation
only in the predictive components without including the orthogonal components. An upgrade of the
VIP score based on the Orthogonal Projections to Latent Structures (OPLS) [18] was then introduced.
The OLPS-VIP score systematically includes and differentiates the variation both in the predictive
and orthogonal components. In some studies (see [18,19]), the OPLS-VIP has shown its superiority to
the classical VIP. In the wrapper methods, some selection methods have also been discussed, such as
the Genetic Algorithm (GA) [20], Uninformative Variable Elimination (UVE) [21], Iterative Predictor
Weighting [22], and Backward Variable Elimination [23]. Among these methods, the UVE method is
the most consistent method to improve the PLSR performance [21,24].
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Nonetheless, the leave-one-out validation procedure is still applied in the classical UVE.
This procedure leads to overfitting and is time-consuming while acquiring the stability values
for a large dataset. As an improvement, the Monte Carlo Uninformative Variable Elimination (MCUVE)
method was proposed by Cai [25]. The MCUVE adopts the principle of Monte Carlo to evaluate the
stability of the corresponding coefficients. However, the reliability coefficient and the cut-off criterion
performed in the method to date is not robust enough. Therefore, this has motivated the current study
to propose a slight improvement to make the MCUVE procedure more robust.

In practice, it is difficult to eliminate all the irrelevant wavelengths in spectra processing. A smaller
number of wavelengths (as predictor variables) used in the model calibration will result in overfitting
or underfitting. To overcome this, a new robust procedure to highlight the relevant wavelengths and
to downgrade the influence of the irrelevant wavelengths in the PLSR model is needed. It has been
investigated that the scaling method in the PLS model is also essential to improve the convergence speed
of the algorithm [26,27]. In addition, the auto-scaling method using the mean centering and standard
deviation, is a common scaling procedure in the data pre-processing step. Hence, another scaling
strategy should be considered in the improvement.

The main objectives of this study are (1) to establish a new procedure for wavelengths selection
called the modified VIP-MCUVE (mod-VIP-MCUVE) with input scaling strategy in the PLSR model;
(2) to evaluate the performance of the proposed method with the standard auto-scaling procedure in
the PLSR and the input scaling strategy using the classical VIP and MCUVE methods; (3) to apply
the proposed method on the artificial data and NIR spectra of oil palm fruit mesocarp (fresh and
dried ground).

2. Materials and Methods

2.1. Partial Least Square Regression

Partial Least Square Regression (PLSR) was firstly initiated by Wold [28] as the generalized
statistical method and standard method used in the spectroscopy analysis. Let us define a multiple
regression model that relates several m predictors X to a response variable y. In matrix form this can be
written as

y = X b + e (1)

where y is an n× 1 vector of the response variable, X is n×m matrix of predictors, b is a m× 1 vector of
unknown parameters, and e is a n× 1 vector of random errors. The solution for the estimator b using
the least-squares method is given as

b̂ =
(
XTX

)−1
XTy (2)

Here the data set problem is in condition with a large number of m predictors. Hence, there will
be an infinite number of solutions for estimating b as XTX is singular, which does not meet the usual
trivial theorem on rank in the regression. In this case, it is necessary to extract the new latent variables
by maximizing a covariance criterion between predictor X and response y that link the central values
of these two sets [29].

Initialize a starting n × 1 score vector of u from any single y as in Equation (1), there exists an
outer relation for predictor X as

X = VPT + E (3)

where P
{
pg =

(
XT vg

)
/
(
vg

Tvg
)}l

g=1
is the matrix m × l consists of loading vector m× 1,

vg
{
vg =

(
Xw j

)
/
(
w j

Tw j
)}l

g=1
is the n × 1 column vector of scores x j in X involves

w j
{
w j =

(
XTu

)
/
(
uTu

)}m

j=1
as m × 1 vector of weight for X, V is a n × l matrix of n × 1 vector vg,

and E is a n×m matrix of residual in outer relation for predictor X. Following these, the outer relation
for the response y also can be defined as



Sensors 2020, 20, 5001 4 of 22

y = u qT + f (4)

where q is the loading l × 1 vector
{
qg =

(
yT vg

)
/
(
vg

Tvg
)}l

g=1
and f is a n × 1 vector of residual in y.

u
{
u = bg vg

}l

g=1
is also called as linear inner relation between X and y block score, which simply can

be written as
u = V binner + g (5)

where binner
{
bg = uT vg/

(
vT

g vg

)}l

g=1
is a l× 1 vector of regression coefficient as Least Square solution

on the decomposition of vector u, and g is a n× 1 vector of residual in the inner relation. Applying the
normalization in P, W, and q as the process to improve the inner relation, the mixed relation of PLSR
model by integrating Equations (4) and (5) results as

y = u qT + f
y = V binner qT + g qT + f

y = V binner qT +
^
f

y = V aT +
^
f

(6)

where a
{
aT = binner qT

}
is the l × 1 vector coefficient and

^
f
{^

f = g qT + f
}

denotes n × 1 vector of

residual in the mixed relation. Equation (6) holds a = VTy, and without loss of generality X = VPT as
in Equation (3), the formulation in Equation (6) can be reconstructed by multiplying the two sides with
weight matrix of W which is

y = X W∗ a +
^
f

y = X W (PTW)
−1 a +

^
f

(7)

with V = X W∗ and W∗ = W(PTW)−1.
Let us define bPLSR = W (PTW)

−1a as m × 1 vector coefficient of mixed relation in the PLSR,
then Equation (7) is equivalent to

y = X bPLSR +
^
f (8)

where
^
f has to be minimized. Applying the relation in Equations (3) and (4), so that W = XTu,

P = XTV
(
VTV

)−1
. Therefore, the estimator for the parameter bPLSR can be calculated as

b̂PLSR = XTu(VTX XTu)
−1

VTy, b̂PLSR ∈ <
m×1 (9)

b̂PLSR denotes the m dimensional vector of regression coefficient in the PLSR model.

2.2. Variable Selection Methods

2.2.1. Variable Importance in Projection

In the classical VIP [17], the VIP score measures the contribution of each j th wavelength in the
multivariate models based on the projection to the PLS components. The method becomes popular
because of its simple procedure and less computational complexity [16]. The VIP score is formulized
through the normalized loading weights vg

{
vg = wg/‖wg‖

}
and the explained sum of squares for the

predictive component y. Mathematically, the VIP score for each j th wavelength in the PLS model with
l components can be calculated as
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VIP2
j =

m
l∑

g=1

(
v2

g SSYcomp; g
)

l∑
g=1

SSYcomp; g

where m is the number of predictors, SSYcomp; g is the variance of y explained by the gth PLS component,

and
l∑

g=1
SSYcomp; g is the total variance summarized by the PLS model over l components. The criteria

are the j th wavelength with VIP score > 1 is considered as the most relevant, while the VIP score < 0.5
is considered as irrelevant wavelength.

2.2.2. Uninformative Variable Elimination

The classical UVE method [21] uses the leave-one-out jackknife method and artificial random
noise variables denoted as n ×m matrix N to compute the statistic parameters. The reliability of
each wavelength through variable selection criterion then is calculated based on the PLSR coefficient
bPLSR = [b1, b2, . . . , bm]. However, when handling a large dataset, this procedure becomes costly [25,30].
As a solution, the Monte Carlo method, which is based on random selection and probability statistics,
is applied in the UVE and so-called as MCUVE [25]. In the MCUVE, some specific number of a
subsample Nt from the training set are randomly selected to build the r PLS sub-model. Then,
it produces the number of set of PLSR coefficient b̂PLSR as r×m matrix. The reliability c j is computed
based on the fraction between the mean and standard deviation of m × 1 column vector of PLSR
coefficient bi∗ j in each jth wavelength from the i∗ vectors of coefficients. The highest c j represents the
most reliable wavelengths; otherwise, the class is as a less reliable wavelength.

c j =
b j

s(b j)

b j =

r∑
i∗=1

bi∗ j

r

s
(
b j
)
=

(
r∑

i∗=1

(bi∗ j−b j)
2

r−1

)1/2

(10)

The cut-off threshold criterion in MCUVE is defined through the maximum absolute value of the
reliability carti f of the artificial random noise variables matrix N. The wavelength with c j less than the
artificial random noise carti f is removed from the PLSR model.∣∣∣(c j)

∣∣∣ < ∣∣∣max (carti f )
∣∣∣ (11)

3. Input Scaling of Filter-Wrapper Method

Auto-scaling is a common input scale method used to standardize a dataset in the modeling process
of PLSR. This auto-scaling transforms each numeric in the input variable into the same variance through
its mean and standard deviation [31,32]. However, this method is observed disadvantageous when
the original input variables are measured on the same scale. Moreover, it removes the interpretability
related to the loadings [33]. Taking a particular concern in the intensity power of Near Infrared region,
auto-scaling fails to keep useful interpretive information about the wavelength contribution since the
low-intensity regions are enhanced to the same magnitude as like in the high intensity [34]. The scaling
method is very crucial to correct for wavelengths-dependent scattering effects in the NIR spectra
dataset [35,36]. To overcome this, a new alternative input scaling method based on the Filter and
Wrapper methods is proposed. This method is then simply denoted as mod-VIP-MCUVE. Besides
correcting the wavelengths-dependent scattering effects and preserving the chemical interpretive
information in each wavelength, the proposed method will eliminate the influence of irrelevant
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wavelengths during the modeling process. In general, the three main computational steps of the
mod-VIP-MCUVE method are the following.

• Step 1: Calculate the OPLS-VIP [19] score as initial input variable scaling matrix.
• Step 2: Run the modified MCUVE procedure using the scaled input matrix of OPLS-VIP to get the

reliability scores.
• Step 3: Re-scale the input matrix using the reliability scores as final scaled input matrix in the

PLSR model.

In the OPLS-VIP [19], the VIP score is measured not only based on the projections to the PLS
components but also included the orthogonal components. This score considers variations both in the
predictor variable X(SSX) and the response variable y(SSY). Here, the fourth variant of four versions
of OPLS-VIP is preferred due to its interpretative information ability. The OPLS-VIP score uses the
combinations {SSX,SSY} in the weighting parameters and normalized loadings vg. The total OPLS-VIP
score then is used as the final VIP score as it is calculated based on the VIPpred (predictive components)
and VIPortho (orthogonal components).

Let us redefine g as the predictive component and go as the orthogonal component, then l stands
for the total number of predictive components, and lo stands for the total number of orthogonal
components with m and mo are the total number of variables used in the predictive and orthogonal
components, respectively. The formulation for OPLS-VIP score both in predictive and orthogonal can
be written as

VIPpred =

√√√√√√√√√√√√√√√m
2


l∑

g=1

(
v2

g SSXcomp; g
)

SSXcum
+

l∑
g=1

(
v2

g SSYcomp; g
)

SSYcum

 (12)

VIPortho =

√√√√√√√√√√√√√√√mo

2


lo∑

go=1

(
vo2

go
SSXcomp; go

)
SSXcum

+

lo∑
go=1

(
vo2

go
SSYcomp; go

)
SSYcum

 (13)

where, as in Equations (12) and (13), the sum of square (SS) both in variable y and variable X has
subscript comp; g and comp; g0. The subscript comp; g refers to the explained SS of gth component
in the predictive, while the subscript comp; g0 refers to the explained SS of goth component in the
orthogonal. The SS with subscript cum refers to the cumulative explained SS overall components in
the model. The total of OPLS-VIP score (denotes as VIP-total) is then formulized as

VIPtotal =

√√√√√√√√√√√√√√√√M
2


lo∑

go=1

(
vo

2
go SSXcomp; go

)
SSXcum

+

l∑
g=1

(
v2

g SSXcomp; g

)
SSXcum

+
lo∑

go=1

(
vo

2
go SSYcomp; go

)
SSYcum

+

l∑
g=1

(
v2

g SSYcomp; g

)
SSYcum

 (14)

where M is the sum of variables used both in the predictive and orthogonal components{
m = M/

(
SSXcum; g

SSXcum
+

SSYcum; g

SSYcum

)}
;
{

m0 = M/
(

SSXcum; go

SSXcum
+

SSYcum; go

SSYcum

)}
The above total OPLS-VIP score is used to scale the original wavelength variables as the new

input matrix. Let us define
~
X as the scaled input variable that is calculated by using the OPLS-VIP

score on predictor variable X which are initially not scaled. Mathematically it can be written as
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~
X = X Ω

Ω = diag(λ1,λ2, . . . ,λm)
(15)

where Ω ∈ < is said to be a diagonal weight matrix with size m×m. The element λ j in the diagonal

matrix Ω is a non-negative variable scaling factor for the jth input wavelength. The new scaled
~
X is

used as a new input matrix in the modified MCUVE.
In the modified MCUVE, the drawback of the classical cut-off threshold criterion in Equation (11)

has been discussed by Centner (see [21]). As an alternative, a new modified robust cut-off criterion
based on a one-sided tolerance interval from Natrella [37] is proposed with a better stable elimination
on the irrelevant wavelengths. The cut-off value is calculated using the robust location and scale of the
reliability coefficients obtained from the added artificial uninformative random variable. In addition,
it includes the value of k factor as a function of the γ desired proportions, α as a level of error, and r
number of repetition used in MC random subsample selection. Using the carti f in Equation (11), then the
new proposed cut-off criterion can be defined as

cut-off value = median ((c j)arti f ) + k
(
MAD

(
c j
)
arti f

)
(16)

where k can be calculated as

k =
zγ +

√
z2
γ − a b

a

With constant parameters
{
a = 1− z2

α
2(r−1)

}
and

{
b = z2

γ −
z2
α
r

}
. This new cut-off criterion benefits

from classifying the most (c j > cut − off value) and less relevant variable for further interpretation.
Applying the reliability c j of modified MCUVE as the element λ j in Ω, the new scaled input variable
~
X
∗

for the PLSR model is then updated.

4. Monte Carlo Simulation Study

A simulation study was carried out to evaluate the performance of our proposed method and to
compare its performance with some existing methods discussed in this study. Following the simulation
study of Kim [26], the artificial dataset was generated randomly using the Uniform distribution (0,1)
and included the added noise that follows the normal distribution. This dataset was applied in the
linear combination equation with different scenarios. Five sample sizes (n = 40, 60, 150, 400, and 600),
three levels of number of predictor variables (m =41, 101, and 201), and five levels of number of
important variables (IV = 0.10, 0.20, 0.40, 0.60, and 0.80) were considered. The 100 (IV)% of predictor
variables were selected as important variables, and the remaining 100 (1− IV)% were considered as
less important. The formulation of this simulation can be defined as follows

m = mo + me
c jo ∼ U (1, 10) ( jo = 1, 2, . . . , mo)
ce je ∼ U (5, 20) ( je = 1, 2, . . . , me)
e j ∼ N (0, 1) ( j = 0, 1, 2, . . . , m)

b ∼ U(0, 7)
X =

{
c jo , ce je

}
+ e j ( j = 1, 2, . . . , m; jo = 1, 2, . . . , mo; je = 1, 2, . . . , me)

iv =
{

iv1, iv2, . . . , iv100(IV)%∗m

}
y = Xb + e0

(
i = 1, 2, . . . , n; j = iv1, iv2, . . . , iv100(IV)%∗m

)
(17)

where m is the total number of predictors, mo is the number of observable variables and the
me

{
me = (m− 100 (IV)% ∗m)/2

}
is the number of artificial noise variable. These artificial variables

are classified as less important variables in the dataset. In Equation (17), the c jo , ce je , and e j are
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independent of each other while X and y are illustrated as observable variable. The c jo follows the
Uniform distribution (1,10) with size n. The artificial noise variables ce je are added to the predictor and
follow the Uniform distribution (5,20) with size n. This ce je is classified as a less important variable.
The e j follows the standard normal distribution with size n and b represents a vector coefficient for
selected important variables which follows the Uniform distribution (0,7) with size m. The iv as the
set of selected important variables in mo and e0 is added error in the linear combination of y. In the
PLSR model, the number of PLS components is a principal indicator in the modeling since it is always
viewed to be subjective.

In Figure 1, a re-sampling procedure called cross-validation, showing the lowest Root Mean Square
Error of Prediction (RMSEP) is used to select the optimum number of PLS components. ‘Selection’
means the selected optimum number of PLS components suggested by cross-validation techniques
(highlighted with the blue dashed line). While, the ‘Abs.minimum’ refers to the lowest RMSEP
(highlighted with the gray dashed line). As the number of PLS components used in the PLSR model
increases, the mean of RMSEP also decreases. The optimum number of PLS components depends on
how well the specific number of original variables have contribution to the model. In the experiment
using different levels of n, m, and IV, the proposed mod-VIP-MCUVE requires a smaller amount of
PLS components to fit minimum RMSEP than the other methods (classical PLSR method with no
input scaling applied, VIP and MCUVE). The results are consistent and satisfying. The MCUVE input
scaling method is comparable to the proposed method, but it still produces higher RMSEP values.
When accommodating fewer variables used as predictor, a faster computational speed will be attained.
Based on the global minimum cross-validation, the proposed mod-VIP-MCUVE has succeeded in
reducing the RMSEP and improving the accuracy of the PLSR model.

Several statistical measures as evaluation indices are used to assess the goodness of the methods:
Root Mean Square Error (RMSE), Coefficient of Determination (R2), Ratio of Performance to Deviation
(RPD), and Standard Error (SE). The RMSE indicates the absolute measure of fit, R2 measures the
proportion of variation in the data explained by the model, RPD assess the reliability of the goodness
of fit for model, and SE measures of the uncertainty in the NIRS prediction. In this section, the Monte
Carlo simulation was run 10,000 repeated times, and the results are based on the average of statistical
measures (see Table 1). Some scenarios using different treatments are applied to evaluate the PLSR
model. According to the results, comparing the RMSE, R2, and SE values in all scenarios, the proposed
mod-VIP-MCUVE produced better accuracy than the other methods. The reliability of proposed
method based on its RPD is still outperformed. Downgrading the irrelevant variables in the fitting
process, the performance of the proposed method is comparable to the classical PLSR method with full
variables involved. This shows that the proposed mod-VIP-MCUVE with fewer numbers of variables
is more efficient than the traditional PLSR model since it could obtain a similar accuracy.

The most relevant variables selected by the methods are classified based on their cut-off threshold
criterion on the score values. To evaluate the interpretability, the calculations are plotted in Figure 2.

In Figure 2, the selection of variables in each method uses different cut-off criteria. The selection
includes the use of the VIP total score because this procedure is also included in the proposed
mod-VIP-MCUVE method. For selection, the classical VIP and the VIP total method use VIP score >1,
while the MCUVE and the mod-VIP-MCUVE use cut-off threshold criterion. The VIP-total suggests a
greater number of relevant variables than the classical VIP. The MCUVE uses standard cut-off threshold
criterion then classifies a greater number of relevant variables than the classical VIP and the VIP-total.
The proposed mod-VIP-MCUVE uses robust cut-off threshold (red line threshold) then collects a
higher number of relevant variables than the MCUVE (green line threshold). The mod-VIP-MCUVE
succeeds to downgrade (close to 0) the irrelevant variables and highlight the pertinent variables of the
computational process. Using the proposed mod-VIP-MCUVE, the final subset of selected relevant
variables guarantees the best prediction capabilities with better accuracy than the other methods.

The computing time performance during the fitting process was recorded to evaluate the efficiency
of the proposed mod-VIP-MCUVE method. In Figure 3, the proposed mod-VIP-MCUVE method
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outperformed the others. Using different sample sizes and numbers of predictor use, the proposed
method is still consistent in expediting the convergence speed. The PLSR has the worst performance
due to its inefficient computing time even the auto-scaling is naturally applied using its mean and
standard deviation in the procedure.Sensors 2020, 20, x FOR PEER REVIEW 9 of 24 
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Table 1. The RMSE, R2, RPD, and SE in variable selection methods using Monte Carlo Simulation with
different dataset scenarios.

n m IV Method nPLS RMSE R2 RPD SE

40 41 10% PLSR 5 2.130 0.994 12.824 2.164
VIP 4 2.524 0.991 10.488 2.567

MCUVE 2 2.016 0.994 13.133 2.050
mod-VIP-MCUVE 2 2.025 0.994 13.072 2.060

40 101 10% PLSR 4 9.715 0.940 4.130 9.839
VIP 5 9.368 0.944 4.283 9.487

MCUVE 4 10.705 0.927 3.748 10.841
mod-VIP-MCUVE 4 4.302 0.988 9.327 4.356

40 201 10% PLSR N/A N/A N/A N/A N/A
VIP N/A N/A N/A N/A N/A

MCUVE 2 15.843 0.834 2.797 16.044
mod-VIP-MCUVE 2 6.363 0.970 8.353 6.444

60 41 20% PLSR 8 4.448 0.974 7.005 4.486
VIP 6 4.848 0.973 6.322 4.889

MCUVE 5 5.266 0.967 5.812 5.311
mod-VIP-MCUVE 5 4.443 0.976 7.873 4.447

60 101 20% PLSR 5 10.248 0.968 5.601 10.335
VIP 4 16.726 0.914 3.432 16.867

MCUVE 7 13.579 0.943 4.227 13.693
mod-VIP-MCUVE 4 5.143 0.992 11.160 5.187

60 201 20% PLSR N/A N/A N/A N/A N/A
VIP N/A N/A N/A N/A N/A

MCUVE 2 33.192 0.735 2.544 33.472
mod-VIP-MCUVE 3 10.678 0.962 11.028 10.768

150 41 40% PLSR 6 6.359 0.971 5.931 6.381
VIP 7 7.183 0.963 5.242 7.207

MCUVE 5 7.097 0.964 5.306 7.121
mod-VIP-MCUVE 4 6.291 0.971 5.933 6.297

150 101 40% PLSR 9 8.949 0.979 7.379 8.979
VIP 8 12.947 0.958 5.047 12.991

MCUVE 6 11.023 0.970 5.850 11.060
mod-VIP-MCUVE 5 8.858 0.987 7.761 8.861

150 201 40% PLSR 5 14.798 0.975 6.406 14.847
VIP 5 27.199 0.917 3.485 27.290

MCUVE 5 23.706 0.937 3.999 23.785
mod-VIP-MCUVE 2 14.809 0.975 5.347 14.852

400 41 60% PLSR 5 9.424 0.967 5.515 9.436
VIP 9 10.057 0.962 5.157 10.070

MCUVE 7 9.991 0.963 5.200 10.003
mod-VIP-MCUVE 7 9.423 0.969 5.549 9.435

400 101 60% PLSR 6 14.258 0.972 6.025 14.275
VIP 9 16.240 0.964 5.290 16.260

MCUVE 7 15.424 0.968 5.571 15.443
mod-VIP-MCUVE 7 14.310 0.968 5.611 14.329

400 201 60% PLSR 10 14.258 0.972 6.025 14.275
VIP 14 16.240 0.964 5.290 16.260

MCUVE 10 15.424 0.968 5.571 15.443
mod-VIP-MCUVE 7 14.310 0.968 5.611 15.319

600 41 80% PLSR 10 10.789 0.966 5.469 10.798
VIP 8 11.072 0.965 5.328 11.081

MCUVE 8 11.139 0.964 5.297 11.147
mod-VIP-MCUVE 8 10.985 0.967 5.471 10.994

600 101 80% PLSR 12 16.264 0.969 5.737 16.278
VIP 10 16.998 0.967 5.495 17.012

MCUVE 9 17.019 0.967 5.483 17.033
mod-VIP-MCUVE 9 16.210 0.970 5.781 16.223

600 201 80% PLSR 12 20.988 0.975 6.305 21.005
VIP 12 22.276 0.971 5.942 22.295

MCUVE 8 22.588 0.971 5.855 22.607
mod-VIP-MCUVE 8 20.295 0.976 5.940 20.314

Note: nPLS is a number of optimum PLS components used in the PLSR model.
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5. NIR Spectral Dataset

A total of 80 fruit bunches were collected from the site of breeding trial in Palapa Estate, PT.
Ivomas Tunggal, Riau Province, Indonesia. The source of variability such as planting material
(Dami Mas, Clone, Benin, Cameroon, Angola, Colombia), planting year (2010–2012) and ripeness level
(unripe, under ripe, ripe, over ripe) were considered for covering as much as possible of the whole
range of potential variation in the palm population. Right after harvest, the bunch samples were
sent immediately to the laboratory for spectral measurement and wet chemistry analysis. The fruit
mesocarp samples were collected from 12 sampling positions by considering the vertical and horizontal
lines in a bunch (see Figure 4): bottom-front, bottom-left, bottom-back, bottom-right, equator-front,
equator-left, equator-back, equator-right, top-front, top-left, top-back, and top-right. The spectral
measurement was done by scanning (in contact) the oil palm fruit mesocarp using a Portable Handheld
NIR spectrometer, QualitySpec Trek, from Analytical Spectral Devices (ASD Inc., Boulder, CO, USA).
A dataset of NIR spectral data is shown in Figure 5 then was used in evaluating the proposed method.
The spectral data as a result of the light absorbance in each j wavelength bands were adopted from
Beer–Lambert Law [38] and presented in m× 1 column vector x j using the log base 10.
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Figure 5. NIR spectra on oil palm fruit mesocarp: (a) fresh mesocarp, (b) dried ground mesocarp.

The spectra collection was measured three times in each fruit mesocarp sample. The averaged
spectra were used in the computation (see Figure 5). There are two sample conditions with different
parameters observed in this study: fresh fruit mesocarp and dried ground mesocarp. The fresh fruit
mesocarp is used to estimate the percentage of Oil to Dry Mesocarp (%ODM) and Oil to Wet Mesocarp
(%OWM), while the dried ground mesocarp is used to estimate the percentage of Fat Fatty Acids
(%FFA). These parameters were analyzed through wet chemistry analysis using the standard test
methods from the Palm Oil Research Institute of Malaysia (PORIM) [39,40]. The %ODM is calculated
in dry matter basis, which removes the weight of water content, while the %OWM uses wet matter
basis. As seen in Figure 6, the distribution of the %ODM is 56.38–86.9%, the %OWM is 19.75–64.81%,
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and the %FFA is 0.17–6.3%. These wide ranges of the distribution showed the possible actual range
variation covered in the analysis.
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5.1. Oil to Dry Mesocarp

In the spectral measurement on fresh fruit mesocarp sample (Figure 5a), each spectrum is composed
of 489 wavelengths as data points (range 550–2500 nm: 4 nm interval) with a total spectrum collecting
about 960 observations. Here, the importance of the wavelengths is generally unknown, and it needs
to be investigated. The selection of the most informative wavelengths in the NIR spectral related to
the %ODM in the fresh fruit mesocarp is crucial for further data interpretation. The summary of the
fitting performance on the dataset using the calibration model with wavelength selection methods is
presented in Table 2.

Table 2. The RMSE, R2, RPD, and SE in variable selection methods using %ODM data.

Dataset Methods nPLS RMSE R2 RPD SE

%ODM

PLSR 29 3.267 0.652 1.607 3.269
VIP 29 3.011 0.657 1.702 3.013

MCUVE 26 3.107 0.633 1.650 3.108
mod-VIP-MCUVE 26 3.009 0.659 1.725 3.011

Note: nPLS is a number of optimum PLS components used in the PLSR model.

As seen in Table 2, the proposed mod-VIP-MCUVE is superior to the other methods. Using the
auto-scaling method, the classical PLSR shows the worst performance compared to the other methods
with wavelength selection and input scaling applied. The proposed mod-VIP-MCUVE and MCUVE
use fewer PLS components than the classical PLSR and VIP method in the fitting process. The classical
PLSR suffers overfitting due to the higher number of PLS components used in the model. The VIP
method has low accuracy since there are many variables removed in the computation (see Figure 7).
Unlike in the MCUVE method, the proposed mod-VIP-MCUVE has better performance and more
efficient computationally because of a lower number of PLS components (26 PLS) in the model.
The proposed method succeeds in highlighting the most relevant wavelengths and downgrades the
influence of irrelevant wavelengths. This result confirms the usefulness of the wavelengths selection
and input scaling applied in the input variables which leads to faster convergence speed.
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Figure 7. Comparison of selected wavelengths from different wavelength selection methods using
spectral data of fresh fruit mesocarp on the %ODM.

In Figure 7, information regarding the relevant wavelengths related to the %ODM is presented.
All the variable selection methods selected the same spectral region, which has the most relevant
contribution to the response variable. The methods show a different cut-off threshold to remove the
irrelevant wavelengths in the regions. It can be observed that the VIP, MCUVE, and VIP-total removed
many irrelevant wavelengths in the model. As assumed earlier, the more wavelengths are excluded
in the model the lower the accuracy in the prediction result. In the fourth plot of mod-VIP-MCUVE,
the green line shows the old cut-off threshold using previous MCUVE (threshold = 5.486), while the red
line is the new proposed robust cut-off threshold (threshold = 2.916). The proposed mod-VIP-MCUVE
method shows better cut-off threshold since there is only a smaller number of wavelengths indicated
as the most irrelevant wavelengths.

The diffuse selected reflectance [38] is important to identify the relevant wavelengths related to
the %ODM. This exhibits their fundamental attribute to the overtone or combination bands involving
the molecular stretching and bending absorption over a wide spectral range. The main absorption in
the NIR spectral range is produced by the combination and overtone of C-H, O-H, N-H, and C=O
groups. The relevant wavelength ranges are indicated through lowercase alphabet notation in the
graphic. Based on Figure 7, it is feasible to observe that the well-defined absorption bands are from
visible red color (a: 668–684 nm), CH2 of oil and O-H of water (b: 936–961 nm), C-H absorption
by stretching-bending (c: 1232–1344 nm), first overtone (d: 1404–1444) of C-H stretch O-H of water
and C-H of oil and its combinations (e: 1700–1776) of C-O oil and C-H stretching by first overtone,
C=O absorption by stretching-bending (f: 1888–2008 nm), C-H second overtone of protein and oil
(g: 2296–2360 nm), and corresponding to absorption which associated with the second overtone in C-H
of oil (h: 2364–2496 nm).
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5.2. Oil to Wet Mesocarp

Using a similar set of NIR spectral data from fresh mesocarp as in Section 5.1, the %OWM is used
as a response variable. As indicated in Figure 6, the variability of the water content has impacted
the shifting of distribution in the response variable. The summary of the fitting performance on the
prediction results using different variable selection treatment is presented in Table 3. The comparison
shows that the proposed mod-VIP-MCUVE could achieve superior performance than the other
methods. It offers the accuracy improvement of RMSE and R2 to the VIP, MCUVE, and PLSR methods.
Moreover, the number of selected optimal PLS components used in the calibrated model of the
proposed mod-VIP-MCUVE is the smallest (17 PLS) which indicates that important information could
still be attained even by using fewer variables. This also has proven the necessity to accomplish the
wavelength selection before fitting the calibration model.

Table 3. The RMSE, R2, RPD, and SE in variable selection methods using %OWM data.

Dataset Methods nPLS RMSE R2 RPD SE

%OWM

PLSR 20 4.558 0.651 1.693 −0.067
VIP 20 4.506 0.659 1.713 0.062

MCUVE 18 4.461 0.666 1.730 −0.016
mod-VIP-MCUVE 17 4.400 0.675 1.754 0.060

Note: nPLS is a number of optimum PLS components used in the PLSR model.

In Figure 8, the cut-off threshold in VIP and MCUVE has minimized many wavelengths which
forces much important information to become lost. The proposed mod-VIP-MCUVE and new proposed
cut-off (red line) succeeds to minimize only the most irrelevant variable and to retain rich information in
the spectra. Using old cut-off (green line = 2.881), it has minimized a greater number of wavelengths than
the new cut-off (red line = 4.270). From the highlighted wavelength information (mod-VIP-MCUVE)
in Figure 8, it is possible to identify the essential molecules in raw NIR spectral and its chemical
association to the parameter %OWM. The most relevant wavelengths are O-H of water and CH2 of oil
(a: 890–950 nm), C-H second overtone and C=O stretch fourth overtone (b: 1140–1166 nm), first and
second overtone of the C-H stretching mode (c: 1326–1370 nm), N-H stretch/C-H stretch first overtone
(d: 1558–1650 nm), C-H stretch O-H of water and CH of oil and its combinations (e: 1782–1802 nm),
O-H stretch/C-O stretch second overtone combination (f: 1830–1854 nm), and C-H stretch/C=O stretch
combination of protein and oil (g: 2126–2184 nm).

5.3. Fat Fatty Acids

Another NIR spectral dataset (Figure 5b) using a total of 839 observations and 500 wavelengths
(in the range 500–2500 nm: 4 nm interval) were collected from dried ground mesocarp sample.
The importance of the wavelengths related to the %FFA is unknown. The summary of the fitting
performance on the dataset using the calibration model with wavelength selection methods is presented
in Table 4.

Table 4. The RMSE, R2, RPD, and SE in variable selection methods using %FFA data.

Dataset Methods nPLS RMSE R2 RPD SE

%FFA

PLSR 28 0.270 0.730 1.924 0.271
VIP 28 0.266 0.734 1.932 0.267

MCUVE 26 0.264 0.736 1.946 0.265
mod-VIP-MCUVE 25 0.265 0.735 1.940 0.266

Note: nPLS is a number of optimum PLS components used in the PLSR model.

Similar to previous results, the proposed mod-VIP-MCUVE is superior to the classical VIP and
the classical PLSR. The performance of the MCUVE is comparable to the mod-VIP-MCUVE. However,
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the proposed mod-VIP-MCUVE uses less PLS components (25 PLS) than MCUVE, the classical PLSR,
and the VIP method in the fitting process. These have proven its efficiency in the computation.
The classical PLSR is still suffering overfitting due to a higher number of PLS components used in
the model. The VIP method also has low accuracy since there are many variables removed in the
computation (see Figure 9). The MCUVE shows its performance is better than the classical PLSR
and VIP; however, it is a non-robust method. Again, the proposed mod-VIP-MCUVE method has
succeeded in highlighting the most relevant wavelengths and downgraded the influence of irrelevant
wavelengths. These results confirmed the usefulness of the wavelengths selection method in the input
scaling strategy to improve the classical PLSR model.
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spectral data of fresh fruit mesocarp on the %OWM.

As shown in Figure 9, the cut-off threshold in the mod-VIP-MCUVE and MCUVE has succeeded
in removing only the most irrelevant wavelengths and keeping the remaining of the relevant variables
in the model. The VIP and the VIP-total has removed many variables in the model, and this yields
the less relevant variables also included in the removal process. Hence, the less important variables
were reduced in the fitting process. As shown in the fourth plot of the mod-VIP-MCUVE method,
the old cut-off threshold using previous MCUVE represented as the green line is 8.071, while the new
proposed cut-off threshold represented as the red line is 3.039. Based on these thresholds, the number
of the irrelevant variables indicated in the mod-VIP-MCUVE is still less than the MCUVE.

The fundamental attribute of diffuse selected reflectance related to the %FFA is crucial to be
investigated. The mod-VIP-MCUVE method is used to interpret the selected wavelength, which has
well-defined absorption both in the visible and NIR regions. In Figure 9, the most relevant wavelengths
are C=O stretch fourth overtone and C-H second overtone (a: 1176–1220 nm), O-H first overtone
and C-H of oil (b: 1408–1436 nm), absorption by stretching and bending of C-H stretch first overtone
(c: 1652–1688 nm), O-H stretch/C-O second overtone and C=O stretch second overtone (d: 1820–1896
nm), N-H second overtone of protein, absorption by stretching-bending N-H/Amide and C=O
stretch second overtone (e: 1996–2040 nm), O-H bend/C-O stretch and C-O-O stretch third overtone,
C-H stretch/C=O oil (f: 2116–2288 nm),C-H stretch and C-O of oil (g: 2324–2344 nm), and corresponding
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to absorption which associated with the second overtone in C-H and C-N-C stretch first overtone of
protein (h: 2456–2500 nm).Sensors 2020, 20, x FOR PEER REVIEW 21 of 24 
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1820–1896nm), N-H second overtone of protein, absorption by stretching-bending N-H/Amide and 
C=O stretch second overtone (e: 1996–2040 nm), O-H bend/C-O stretch and C-O-O stretch third 
overtone, C-H stretch/C=O oil (f: 2116–2288 nm),C-H stretch and C-O of oil (g: 2324–2344 nm), and 
corresponding to absorption which associated with the second overtone in C-H and C-N-C stretch 
first overtone of protein (h: 2456–2500 nm). 

6. Conclusions 

In summary, the NIR spectral region contains rich and abundant information that warrants 
further interpretation using advanced chemometric techniques. The study has shown that the 
wavelength selection using input scaling method strategy to be promising, particularly with the 
application on a high dimension dataset such as the NIRS spectral data. The proposed method is 
robust since it uses robust reliability weight procedure to rescale the original input matrix. According 
to the evaluation indices, the proposed mod-VIP-MCUVE method confirmed its superiority to the 
classical PLSR, the VIP method, and the MCUVE method. Using the modified robust cut-off 

Figure 9. Comparison of selected wavelengths from different wavelength selection methods using
spectral data of ground dried mesocarp on the %FFA.

6. Conclusions

In summary, the NIR spectral region contains rich and abundant information that warrants further
interpretation using advanced chemometric techniques. The study has shown that the wavelength
selection using input scaling method strategy to be promising, particularly with the application on a
high dimension dataset such as the NIRS spectral data. The proposed method is robust since it uses
robust reliability weight procedure to rescale the original input matrix. According to the evaluation
indices, the proposed mod-VIP-MCUVE method confirmed its superiority to the classical PLSR,
the VIP method, and the MCUVE method. Using the modified robust cut-off threshold, the proposed
method succeeds to highlight the irrelevant wavelengths in the model. Moreover, the proposed
method also has the benefit to reduce the data dimension and to improve the model accuracy and
computational complexity. The proposed method has even investigated successfully the fundamental
attribute of diffuse selected reflectance of the NIRS spectral absorption. This is essential in the
improvement of the chemical interpretability. Further, the input scaling procedure using robust
selection procedure on optimum number of PLS component is expected to get better improvement in
the computational complexity.
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