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Aim. Chlorogenic acid (CGA) is a natural polyphenolic compound found in human dietary products. Previous studies have
confirmed that CGA has many biological activities, such as regulating glucose and lipid metabolism and improving insulin
resistance. However, its underlying mechanisms of action remains unclear. Here, we demonstrate the protective effects and
molecular mechanisms of action of CGA in reducing weight gain and hyperlipidemia in mice fed with a high-fat diet (HFD).
Methods and Results. C57BL/6 mice were fed with normal chow or HFD; half of the mice in each group received CGA
treatment by oral gavage for 16 weeks. CGA treatment was found to significantly inhibit HFD-induced weight gain and
hyperlipidemia and increased energy expenditure by promoting the expression of genes involved in thermogenesis and
mitochondrial biogenesis. Furthermore, CGA was shown to inhibit the enterohepatic farnesoid X receptor (FXR) fibroblast
growth factor 15 (FGF15) pathway and changes serum bile acid (BA) pool, thereby contributing to the increased expression of
cholesterol 7 α-hydroxylase (CYP7A1). Conclusions. CGA increases the metabolic elimination of cholesterol by inhibiting the
enterohepatic FXR/FGF15 pathway.

1. Introduction

Changes in dietary habits and lifestyle have resulted in
hyperlipidemia becoming a major public health problem
[1]. Hyperlipidemia is characterized by elevated triglyceride
(TG) and/or total cholesterol (TC) levels and is an important
risk factor for coronary heart disease, bone health, ischemic
stroke, and other cardiovascular and cerebrovascular dis-
eases [2, 3].

Bile acids (BAs) have an important role in eliminating
cholesterol from the body. They are essential for maintain-
ing cholesterol homeostasis and preventing the accumula-
tion of cholesterol, TG, and toxic metabolites, as well as
damage to organs such as the liver [4]. As the body con-
sumes food and drink, BAs are pumped into the small intes-
tine to complete the absorption of lipids. BAs hydrolase
produced by gut microbiota dehydrogenate BAs to form sec-
ondary BAs, which are reabsorbed through the portal vein
system and returned to the liver to complete the hepatoen-

teric circulation of BAs [5]. The hepatointestinal circulation
of BAs is the basis of lipid metabolism in the body. The syn-
thesis of BAs can consume cholesterol in the body and
decrease the level of serum cholesterol.

Many studies have shown that metabolic disorders
involving BA synthesis and secretion of cholesterol are
important factors in the pathogenesis of hypercholesterol-
emia, type II diabetes, and atherosclerosis [6, 7]. Thus, the
identification of novel targets of hyperlipidemia through
BA metabolism is crucial for the prevention and treatment
of clinical hyperlipidemia and cardiovascular diseases. The
farnesoid X receptor (FXR)-fibroblast growth factor 15
(FGF15) pathway is a negative feedback pathway in the
hepatoenteric circulation of BAs, and its main role is to
inhibit BA synthesis [8]. BA regulates FGF15 gene transcrip-
tion and promotes the secretion of FGF15 by activating FXR
expression in the small intestine. FGF15 enters the liver
through the hepatoenteric circulation and suppresses bile
acid synthesis by downregulating the expression of the
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Figure 1: Continued.
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rate-limiting enzyme cholesterol 7α-hydroxylase (CYP7A1)
in the classic pathway of BA synthesis [9].

Chlorogenic acid (CGA) is a natural polyphenolic com-
pound found in many foods and fruits. In particular, high
CGA levels are found in coffee. CGA has a wide range of
biological activities, including antitumor effects, as well as
lowering blood pressure and blood lipids, and scavenging
free radicals [10, 11]. However, it is still unclear whether
CGA can regulate BA metabolism. In this study, the effect
of CGA on the expression of the gut-liver FXR/FGF15 axis
and serum BA profile were investigated to provide further
experimental and theoretical basis for the treatment of
hyperlipidemia with CGA.

2. Methods

2.1. Animals. Animal experiments were approved by the
Ethics Committee of Shengjing Hospital Affiliated to the
China Medical University (approval no. 2020PS034K).
Four-week-old C57BL/6 mice were maintained in the Labo-
ratory Animal Center of Shengjing Hospital Affiliated to the
China Medical University (specific pathogen-free facility)
under a 12 h light/dark cycle. After adaptive feeding for
one week, the mice were randomly divided into a normal

diet group and high-fat diet (HFD, Beijing HFK Bioscience
Co. No. H10060, total energy 21.91 kJ/g, 60% fat, 20%
sucrose, 20% protein) group.

Half of the mice in each group were given an oral gavage
of CGA (150mg/kg). The groups were named as follows:
normal diet (NFD), normal diet with CGA (NCGA), high-
fat diet (HFD), and high-fat diet with CGA (HCGA), n ≥ 6
per group. The HCGA group was administered with the
FXR agonist GW4064 (75mg/kg/d) or FXR antagonist Z-
guggulsterone (Z-Gug) (100mg/kg/d) by oral gavage seven
days before being euthanized. The mice were euthanized at
16 weeks of age. Blood, liver, intestine, and adipose tissue
were collected and stored at -80oC for subsequent
experiments.

2.2. Metabolic Activity Measurement. Metabolic activity was
determined using the Promethion Animal Monitoring Sys-
tem (Sable Systems International, USA) as previously
described [12]. Oxygen consumption (VO2), carbon dioxide
production (VCO2), and heat production were measured on
six consecutive days and nights, with at least 24 h for adap-
tation before data recording.

2.3. Biochemical Analysis. For biochemical analyses, blood
samples were centrifuged at 3000 rpm for 10min at 4°C.
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Figure 1: CGA inhibits diet-induced obesity and improves lipid metabolism. (a) Body weights. (b and c) Representative images of mice
treated for 16 weeks. (d) Liver weight relative to the total body weight. (e) Epididymal fat pad content relative to the total body weight.
(f) Serum TG, HDL, LDL, and TC levels after 6 h fast. (g) Serum ALT levels. (h) Serum TBA levels. (i) Representative images of H&E
staining of the liver. (j) Representative images of oil red O staining of the liver. Data are expressed as Mean ± SD. #P > 0:05,∗P < 0:05,
and ∗∗P < 0:01.
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The supernatant was stored at −80°C. An automatic bio-
chemical analyzer Chemray 800 (Redu Life Sciences Co.,
Ltd., Shenzhen, China) was used to determine the serum
concentrations of TC, TG, total bile acid (TBA), low-
density lipoprotein (LDL), high-density lipoprotein (HDL),
and alanine aminotransferase (ALT).

2.4. Real-Time Quantitative PCR. Total RNA was extracted
using TRIzol lysis buffer (Invitrogen, Carlsbad, United
States), and the concentration of RNA was determined. A
PrimeScript RT reagent kit (TaKaRa, Mountain View, CA,
USA) was used to reverse transcribe the RNA samples. A
SYBR Premix Ex Kit (TaKaRa, Japan) was used with a Bio-
RAD iQ5 real-time PCR detection system to perform PCR
as previously described [13]. The primers used in this study
are listed in Supplemental Table I.

2.5. Western Blot Analysis. RIPA and phenylmethane sulfo-
nyl fluoride lysis buffers were used to extract total protein,
and the protein concentration was determined using a
BCA protein assay kit as described previously [13]. The sam-
ples were separated by SDS-PAGE and transferred onto
PVDF membranes. The membranes were incubated with
primary antibodies (Supplemental Table II) at 4°C
overnight, followed by incubation with secondary
antibodies for 2 h the next day. Protein bands were
visualized using an Enhanced Chemiluminescence
Substrate kit (Thermo Fisher Scientific, Rockford, USA),
and the results were analyzed with the ImageJ software.

2.6. Histological Analysis. Hematoxylin and eosin (H&E)
staining, oil red O staining, and immunohistochemistry were
carried out as described previously [14]. Briefly, for immu-
nohistochemical analysis, the intestinal tissue and brown
adipose tissue (BAT) sections were incubated with anti-
bodies against the mitochondrial uncoupling protein 1
(UCP1) (Wanleibio, China; 1 : 200) at 4°C for 12 h, followed
by incubation with a secondary antibody for 1 h. The images

were captured by a laser scanning fluorescence microscope
(TCS SP5, Leica, Germany) at 200× and 400×magnification.

2.7. Bile Acid Analysis. A stock solution of individual bile
acid was mixed and prepared in a bile acid-free matrix to
obtain a series of bile acid calibrators at concentrations of
30000, 10000, 3000, 1000, 300, 100, 30, or 10 ng/mL. Certain
concentrations of GCA-d4, UDCA-d4, CA-d4, GCDCA-d4,
LCA-d4, and CDCA-d4 were compounded and mixed as the
internal standard (IS). An ultrahigh performance liquid
chromatography coupled to tandem mass spectrometry
(UHPLC-MS/MS) system (ExionLC™ AD UHPLC-QTRAP
6500+, AB SCIEX Corp., Boston, MA, USA) was used to
quantitate bile acids. Separation was performed on an Agela
Venusil MP C18 column (2:1 × 100mm, 2.5μm), which was
maintained at 50°C. The mobile phase, consisting of 0.1%
formic acid in water (solvent A) and acetonitrile (solvent
B), was delivered at a flow rate of 0.50mL/min. The mass
spectrometer was operated in a negative multiple reaction
mode (MRM) as previously reported [15].

2.8. Statistical Analysis. Data were analyzed using SPSS 21.0
statistical software. An independent sample t-test was used
for comparison between the two groups, while three or more
groups were compared by ANOVA and Bonferroni’s post
hoc test. All the bar plots in this study were generated using
GraphPad Prism 8.0 (GraphPad Software, San Diego, USA).
A P value of less than 0.05 indicated that the difference was
statistically significant.

3. Results

3.1. CGA Treatment Inhibits Diet-Induced Obesity and
Improves Lipid Metabolism. Four-week-old male C57BL/6
mice were fed with either normal chow (NFD) or high-fat
diet (HFD). Half of the mice in each group received CGA
(150mg/kg) by oral gavage (NFD+CGA, named as NCGA,
and HFD+CGA, named as HCGA). After 16 weeks, CGA
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Figure 2: CGA enhances the metabolic rate in BAT. (a and d) Carbon dioxide production. (b and e) Oxygen consumption. (c and f) Heat
production. (g) Representative images of H&E staining of epididymal fat. (h) Representative images of H&E staining of BAT. (i)
Representative images of UCP1 staining in BAT. (j) Relative mRNA expression of PPARα, PGC-1α, and UCP1 in BAT. Data are
expressed as mean ± SD. #P > 0:05,∗P < 0:05, and ∗∗P < 0:01.
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treatment significantly inhibited the body weight gain of
mice in both the NFD and HFD groups (Figure 1(a)). Com-
pared to the NFD group, HFD-fed mice appeared signifi-
cantly obese and their body fat content had increased
significantly. In contrast, the body fat content in HCGA-
treated mice was significantly lower than the HFD-fed group
(Figures 1(b) and 1(c)). In HFD-fed mice, CGA treatment
reduced the percentage of liver and epididymal fat pad
weight relative to the total body weight (Figures 1(d) and
1(e)). In addition, CGA intake improved hyperlipidemia as

shown by significantly lower TC, LDL, and TG blood levels
in the CGA treatment groups (Figure 1(f)). In HFD-fed
mice, CGA treatment decreased ALT levels, which is a
marker of liver cell damage (Figure 1(g)). No significant dif-
ferences in TBA levels were observed between the groups
(Figure 1(h)). Liver H&E staining revealed that in the NFD
group, the liver tissue structure was clear with an orderly
arrangement of hepatocytes. Furthermore, no vacuoles were
visible in the hepatocytes, and no inflammatory cell infiltra-
tion was observed near the portal area. Compared with the
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Figure 3: CGA inhibits activation of the gut-liver FXR-FGF15 axis. (a) Relative mRNA expression levels of ileal FXR and FGF15. (b)
Relative protein expression levels of ileal FXR and FGF15. (c) Relative mRNA expression levels of liver CYP7A1. (d) Relative protein
expression levels of ileal CYP7A1. (e) Serum primary BAs levels. (f) Serum secondary BAs levels. Data are expressed as mean ± SD.
#P > 0:05,∗P < 0:05, and ∗∗P < 0:01.
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NFD group, the structure of the hepatic lobules in the HFD
group was disordered, with swollen hepatocytes and seri-
ously damaged cell structure. In addition, an increased
amount of lipid droplets and vacuoles was visible in the
hepatocytes, and increased inflammatory cell infiltration
was observed near the portal area. In contrast, treatment of
the HFD group with CGA ameliorated these effects
(Figure 1(i)). Oil red O staining revealed an increased
amount of lipid droplets in the liver of mice in the HFD
group, while CGA treatment was found to inhibit HFD-
induced hepatic steatosis (Figure 1(j)).

3.2. CGA Enhances Energy Expenditure in BAT. We further
compared the metabolic rates of mice in each group. We
found that in both the HFD- and NFD-fed groups, CGA-
treated mice had a consistently higher oxygen consumption
(VO2) and exhaled more carbon dioxide (VCO2), as well as
increased heat production (Figures 2(a)–2(f)). An increase
in the volume and/or number of adipocytes is a pathological
sign of obesity. Here, we examined the morphology of the
epididymal fat by H&E staining. As shown in Figure 2(g),
the epididymal fat volume of HFD mice was significantly
larger than that of the NFD mice. Treatment with CGA
reduced the volume of adipocytes in the HFD-fed group
but had no significant effect on adipocytes in the NFD
group. In addition, the prominent accumulation of lipid ves-
icles in BAT of HFD mice was significantly reduced in CGA-
treated mice (Figure 2(h)). Since UCP1 is a major factor
involved in the thermogenic process of BAT, we next exam-
ined the UCP1 expression in BAT. We found increased
UCP1 expression in CGA-treated mice compared to their
controls (Figure 2(i)). We also evaluated the effect of
CGA on the mRNA expression of peroxisome
proliferation-activated receptor alpha (PPARα), the α-sub-
unit of peroxisome proliferator-activated receptor-γ
coactivator-1 (PGC-1α) and UCP1, which play an impor-
tant role in the lipid metabolism, in BAT. Our data indi-
cate that CGA prevents the inhibitory effect of HFD on

the expression of adipogenic and thermogenic genes
(Figure 2(j)).

3.3. CGA Inhibits the Enterohepatic FXR-FGF15 Axis and
Changes Serum BA Pool. BAs have been recognized as impor-
tant signaling molecules to modulate energy metabolism. Pre-
vious studies have shown that FXR activation mediates the
inhibition of BAs synthesis and induction of FGF15, resulting
in the inhibition of the rate-limiting enzyme CYP7A1 [16].
CYP7A1 initiates the classic liver BA synthesis pathway in
the liver. Thus, we next sought to determine the role of the
gut-liver FXR signal transduction pathway in CGA-induced
BA synthesis. We found that CGA treatment led to a signifi-
cant decrease in ileal FXR and FGF15 mRNA and protein
levels (Figures 3(a) and 3(b)). In addition, we found that
CGA treatment increased CYP7A1 expression compared with
the controls (Figures 3(c) and 3(d)).

BAs are the final product of cholesterol catabolism. The
conversion of cholesterol to BAs is a major part of the body’s
daily cholesterol metabolism. Primary BAs have been shown
to protect against obesity and insulin resistance [17]. Thus,
we used LC-MS/MS to analyze the composition of the BAs
in peripheral circulation. We found that CGA treatment
changed the relative proportions of the circulating BAs. In
the HFD-fed groups, the primary BAs including THCA,
TCDCA, TCA, T-α-MCA, CDCA, CA, and β-MCA were
significantly higher in the CGA-treated mice, with TCA
showing the largest increase. A slight, nonsignificant
increase in secondary BAs including THDCA, TDCA,
TUDCA, DCA, and LCA was also observed in the CGA-
treated mice. In the NFD-fed mice, the primary BAs includ-
ing T-α-MCA, CDCA, CA, and β-MCA were decreased in
the CGA-treated mice, while the secondary BAs THDCA
and LCA were increased. DCA was decreased in the CGA-
treated mice (Figures 3(e) and 3(f)). These findings indicate
that CGA changes serum BA pool; furthermore, altered BA
profile may affect the BAT activation by regulating energy
homeostasis and thermogenesis.
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Figure 4: The role of the FXR-FGF15 axis in the improvement of obesity by CGA. (a) Body weights. (b) Liver weight relative to total body
weight. (c) Epididymal fat pad content relative to total body weight. (d) Representative images of H&E staining of liver. (e) Representative
images of oil red O staining of liver. (f) Serum TG and TC levels after 6 h fast. (g and h) CYP7A1 mRNA and protein expression in liver
samples. Data are expressed as mean ± SD. #P > 0:05,∗P < 0:05, and ∗∗P < 0:01.
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3.4. CGA Inhibits Obesity through Regulation of the FXR-
FGF15 Axis. To further verify the effect of the enterohepatic
FXR-FGF15 axis on the CGA-induced inhibition of obesity,
C57BL/6 mice were administered the FXR antagonist Z-Gug
and FXR agonist GW4064 to inhibit or increase FXR expres-
sion, respectively [18]. Four-week-old male C57BL/6 mice
were fed HFD with or without CGA for 16 weeks, and then
Z-Gug (100mg/kg body weight) or GW4064 (75mg/kg body
weight) was given seven days prior to surgical procedures.
We found that Z-Gug-treated mice had lower body weights
and adipose content compared with the HCGA group, while
GW4064 treatment almost reversed the protective effects of
CGA against body weight gain (Figures 4(a)–4(c)). Liver
H&E and oil red O staining revealed that treatment with
Z-Gug inhibited HFD-induced hepatic steatosis, while
GW4064 treatment reversed this inhibitory effect of CGA
on hepatic lipid accumulation (Figures 4(d) and 4(e)).
Serum TG and TC levels were decreased in Z-Gug-treated
mice but increased after GW4064 treatment (Figure 4(f)).
Furthermore, treatment with Z-Gug markedly increased
CYP7A1 expression, while GW4064 treatment almost
completely reversed CGA-induced changes in the CYP7A1
expression (Figures 4(g) and 4(h)). In summary, our find-
ings suggest that CGA ameliorates obesity by inhibiting the
FXR-FGF15 axis.

4. Discussion

Here, we show that CGA has significant metabolic benefits
in obese mouse models. CGA protects against diet-induced
hyperlipidemia by promoting the expression of genes
involved in thermogenesis and mitochondrial biogenesis.
Associated with the unexpected browning of white adipose
tissue, these changes seem to be mediated in part by a
change in BA levels and composition, and this relationship
is directly regulated by the gut-liver FXR-FGF15 axis.

Our data demonstrate that CGA treatment markedly
increased adipogenic and thermogenic gene expression in
BAT. UCP1, mainly found in BAT, participates in thermo-
genesis regulation and energy metabolism of BAT and main-
tains the energy metabolism balance of the body [19]. PGC-
1α is a coactivator of nuclear transcription and plays a role
in a series of energy metabolism processes such as adaptive
thermogenesis, mitochondrial biosynthesis, liver gluconeo-
genesis, and fatty acid β oxidation [20]. Our findings are
consistent with a previous study, which showed that CGA
increased PGC-1α expression and stimulated mitochondrial
oxidative phosphorylation [21]. PPARα, a member of the
nuclear receptor superfamily, has an important biological
role in inducing downstream target gene transcription. Acti-
vation of PPARα can decrease TC levels or hepatic fatty
deposition in HFD-fed mice [22]. Huang et al. demonstrated
that CGA inhibited obesity through altering the expression
of PPARα [23], which is consistent with our findings.

Serum ALT levels are an important indicator of liver
injury. Here, we found that CGA significantly reduced
ALT levels, which is consistent with previous studies [21].
Liver lipid deposition is not only the basis of the develop-
ment of nonalcoholic fatty liver disease (NAFLD) but also

closely related to obesity, type II diabetes, coronary athero-
sclerotic heart disease, and other metabolic diseases [24,
25]. Our findings demonstrated that CGA markedly inhib-
ited liver lipid deposition, suggesting that CGA has a protec-
tive effect on the liver.

We also demonstrated that CGA significantly altered the
level of serum BAs, which are involved in the regulation of
glucose and lipid metabolism, energy metabolism, and
inflammation in the enterohepatic circulation [26, 27]. BA
is important for the removal of cholesterol from the body
and is the final product of cholesterol catabolism [28], which
have been shown to induce UCP1-dependent thermogenesis
and stimulate energy expenditure [29]. BAs are synthesized
into primary BAs in the liver through the classic CYP7A1-
mediated pathway and the alternative CYP27A1-mediated
pathway [30]. CYP7A1 is a rate-limiting enzyme in the clas-
sic synthesis pathway, which mediates the synthesis of 75%
of all BAs in humans. CYP7A1 catalyzes cholesterol to pro-
duce CA and CDCA. The alternative pathway is mediated by
CYP27A1 and CYP7B1 and catalyzes the formation of
CDCA from cholesterol. Thus, the ratio of CA to CDCA
can reflect changes in the classic and alternative pathways
of liver BAs synthesis. In this study, CGA markedly
increased the CA content, suggesting that CGA may affect
the synthesis of BAs by acting on the classic synthesis
pathway.

Previous studies have shown that HFD can significantly
increase cholesterol and TG levels in the livers of CYP7A1
gene knockout mice [31]. Here, HFD resulted in the downreg-
ulation of CYP7A1 in the liver of mice and increased TC, TG,
and LDL levels in the serum, similar to the previous reports
[32]. After CGA treatment, we observed a significant increase
in CYP7A1 gene expression in the liver of HFD mice, while
plasma TC, TG, and LDL levels decreased. CYP7A1 can initi-
ate cholesterol catabolism, convert excess cholesterol into BAs,
promote BA synthesis, and reduce cholesterol accumulation
[33]. Therefore, our current study shows that CGA may
increase the rate of BAs synthesis by upregulating the expres-
sion of CYP7A1, thereby stimulating the synthesis of BAs,
leading to a reduction in blood lipid levels.

Recent studies have shown that the passive intestinal
absorption of BAs was increased in HFD-fed mice and led
to the activation of the ileal FXR/FGF15 pathway, inhibition
of liver CYP7A1 transcription, and reduction in the elimina-
tion of cholesterol, finally resulting in liver cholesterol accu-
mulation [34]. The physiological role of FXR as a BA
receptor has been demonstrated in FXR knockout mice, with
increased BA synthesis being reported in FXR knockout
mice [35]. FGF15 is a member of the fibroblast growth factor
(FGF) family, and its human homologous gene is FGF19.
FGF15 circulates through the liver and inhibits the tran-
scription of CYP7A1 in the classic BAs synthesis pathway
[36]. Both CYP7A1 expression and activity and BA synthesis
have been shown to be increased in FGF15 knockout mice
[37]. In this study, FXR and FGF15 expression levels were
upregulated in the ileum of hyperlipidemic HFD-induced
mice, while CGA treatment inhibited the activation of the
FXR/FGF15 pathway, resulting in increased CYP7A1
expression and BAs synthesis. Many studies have also
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demonstrated the important role of the FXR/FGF15 axis in
the regulation of BAs. For example, the probiotic VSL#3
was found to decrease expression of the FXR/FGF15 axis
proteins in the ileum and induce BA synthesis [38]. Simi-
larly, resveratrol significantly reduced FXR mRNA and pro-
tein levels, inhibited activation of the FXR/FGF15 axis,
increased CYP7A1 mRNA and protein levels, and improved
hyperlipidemia [18]. Pu-erh tea also increased the level of
ileal conjugated BAs and inhibited the intestinal FXR/
FGF15 signaling pathway, resulting in increased production
of liver BAs and fecal excretion, decreased liver cholesterol
levels, and reduced fat production [39].

5. Conclusion

This study provides evidence for the positive effect of CGA on
inhibiting HFD-induced weight gain and hyperlipidemia. The
current report suggests that daily intake of CGA can upregu-
late CYP7A1 expression, promote BAs synthesis, and affect
BAs metabolism by inhibiting the FXR/FGF15 pathway.
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