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The prenatal period, during which a fully formed newborn capable of surviving outside its
mother’s body is built from a single cell, is critical for human development. It is also the
time when the foetus is particularly vulnerable to environmental factors, which may
modulate the course of its development. Both epidemiological and animal studies have
shown that foetal programming of physiological systems may alter the growth and
function of organs and lead to pathology in adulthood. Nutrition is a particularly
important environmental factor for the pregnant mother as it affects the condition of
offspring. Numerous studies have shown that an unbalanced maternal metabolic status
(under- or overnutrition) may cause long-lasting physiological and behavioural alterations,
resulting in metabolic disorders, such as obesity and type 2 diabetes (T2DM). Various
diets are used in laboratory settings in order to induce maternal obesity and metabolic
disorders, and to alter the offspring development. The most popular models are: high-fat,
high-sugar, high-fat-high-sugar, and cafeteria diets. Maternal undernutrition models are
also used, which results in metabolic problems in offspring. Similarly to animal data,
human studies have shown the influence of mothers’ diets on the development of children.
There is a strong link between the maternal diet and the birth weight, metabolic state,
changes in the cardiovascular and central nervous system of the offspring. The
mechanisms linking impaired foetal development and adult diseases remain under
discussion. Epigenetic mechanisms are believed to play a major role in prenatal
programming. Additionally, sexually dimorphic effects on offspring are observed.
Therefore, further research on both sexes is necessary.

Keywords: obesity, diabetes, brain, sex differences, behaviour, cardiovascular system, prenatal programming
INTRODUCTION: WE ARE WHAT OUR MOTHERS EAT

Over the years numerous epidemiological findings and data from animal studies revealed the effects
of mother’s nutrition on the development of offspring. Researchers proposed the concept of foetal/
early programming, according to which early environmental factors can permanently organise or
imprint physiological and behavioural systems. Programming is defined as the process in which
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environmental factor(s), acting during the sensitive period, affect
the structure and functions of tissues and organs, leading to
lifelong effects (1, 2). Accordingly, researchers suggested
redirecting investigations towards the intrauterine environment
rather than the environment in later childhood and indicated
that the womb may be more important than home (1).

Although hunger is still common nowadays, especially in
Africa, paradoxically, all over the world more people are dying of
the health problems caused by overeating rather than
malnutrition. This subject is particularly interesting at the time
when obesity is a worldwide problem, and it is even greater due
to the COVID-19 pandemic. As pandemic-related lockdowns
reduced people’s physical activity and increased overeating (the
factors contributing to the development of obesity), the rates of
these metabolic problems are expected to increase rapidly in our
society in the future, also among mothers-to-be and their
offspring. It is a well-known fact that the Western pattern diet
(WPD), which is common in the US and other developed
countries, may chronically activate the innate immune system
and inhibit the adaptive immune system. Thus, theWPD impairs
adaptive immunity while ramping up innate immunity. This
leads to chronic inflammation and severely impairs the host’s
defence against viral pathogens, including COVID-19 (3). A
report on 4,103 patients with COVID-19 disease in New York
City showed that the most important clinical features leading to
hospital admission were age >65 years and obesity (4). The
author of another study on critically ill adults with COVID-19
admitted to two hospitals in New York City reported that the
majority were men aged over 60 years and nearly half of them
were obese (5). These findings were also confirmed by the
authors of European studies on 165 adult patients with a mean
BMI 26, who found that severe forms of COVID-19 were
associated with high visceral adiposity (6).

According to the findings of studies on animals and humans,
both maternal under and overnutrition/obesity affects the
cognitive function and the development of neurological and
psychiatric disorders in offspring.

The foetal programming concept suggests that maternal
nutritional imbalance (both under- and overnutrition) have a
long-term effect on the health of offspring and on the risk of
diseases such as diabetes (7). The mechanisms responsible for the
effects of maternal undernutrition and obesity on the increased
risk of future metabolic disease have not been thoroughly
investigated. They include changes in the foetal supply of
nutrients, genetic and epigenetic factors. Moreover, as results
from animal studies on perinatal high-fat diet (HFD)
programming, the potential mechanisms of neural pathways
include circulating factors, such as hormones (leptin, insulin),
nutrients (fatty acids, triglycerides (TG) and glucose), and
inflammatory cytokines.

The aim of this paper was to review the data on maternal
undernutrition, obesity, and diabetes provided by the authors of
research on humans and animals, and to discuss the potential
mechanisms underlying the foetal metabolic programming. The
main focus of this review is the foetal metabolic system and
central nervous system (CNS), because they seem to be the most
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vulnerable to the harmful effects of programming (8). The
mechanism(s) contributing to the sexual dimorphism of
metabolic diseases were also investigated. The detailed analysis
of data concerning sexual differences observed in the offspring of
malnourished and overnourished mothers is shown in the
Table 1. The understanding of these mechanisms could
provide useful tools for the prevention and treatment of these
diseases in offspring.
ANIMAL MODELS OF OBESITY WITH
SPECIAL EMPHASIS ON DIET-INDUCED
OBESITY

Studies on different animal species, mostly mice, rats, and sheep,
allow us to understand the mechanisms responsible for the
development of obesity and diabetes, and search for
intervention strategies. Obesity can be induced in animals
chemically (with drugs), surgically, genetically, or through diet
(57–61). Obesity has multifactorial aetiology and in the light of
the increasing occurrence of unhealthy nutrition (e.g. the
consumption of fast food), the rising prevalence of obesity
suggests that it is caused by environmental factors. The
authors of this review focused mostly on diet-induced obesity
in rodents and made references to numerous excellent
comprehensive reviews of other models of animal obesity
(59, 60).

The most popular models of diet-induced obesity are: high-fat
(HFD), high-sugar (HSD), high-fat-high-sugar (HFHSD), and
cafeteria (CAF) diets. High-fat diets caused metabolic imbalance,
decreased energy expenditure and, as a result, increased the body
weight of laboratory animals (62, 63). However, there are
differences between species and even strains of rodents. Both
Wistar and Sprague-Dawley rats can be used as models of HFD-
induced obesity (64), although the metabolic effects caused by
this type of dietary regimen are more pronounced in Wistar rats.
In recent decades the HFD has been most widely applied in
experiments on rodents, but there were significant differences in
the composition and fat content of the diets provided to animals
to induce obesity. The fat in these diets came from multiple
sources, including animals (lard, tallow), plants (olive oil,
sunflower, corn, coconut), and fish. The fat composition seems
to have a major role in obesity because saturated fats cause more
deleterious effects than unsaturated fats (63, 65). Another
important factor is the concentration of fat in the diet, which
usually ranges from 30% to 60%. The diet-feeding period also
differed between studies – it usually ranged from 4 to 16 weeks
(62, 63).

Similarly to the situation observed in highly developed
countries, a high-sugar diet also contributed to the
development of obesity in laboratory animals. In experimental
models, sucrose was fed separately from the standard feed, as a
superadditive or mixed with drinking water (61). The HSD
negatively influenced the glycaemic control in rodents. These
effects were similar to those observed after feeding an HFD.
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TABLE 1 | Maternal under- and overnutrition induce sex-specific differences in body weight, fat content, metabolic and hormonal status, cardiovascular system and
brain and behavioural outcomes in offspring; ↑ - increase; ↓ decrease; - no change.

Outcomes Species Maternal undernutrition effects on offspring outcomes Maternal overnutrition effects on offspring outcomes

BODY WEIGHT Mice Food restricted diet (FR/50%)
↓males and females birth weight (9)
FR/70%
↓males and females birth weight (10)

High fat diet (HFD)
− males birth weight
↓females birth weight (11)
High fat high sugar diet (HFHSD)
↑adult males body weight > ↑ adult females body weight (12)

Rats FR/70%
↓males and females birth weight (13)
Protein restricted diet (PR/9%)
↓adult males body weight (14)
PR/9%
↓females birth weight
− males birth weight (15)
PR/5% ↓adult males and females body weight (16)

HFHSD
↓males and females birth weight
↑adult males body weight > ↑ adult females body weight (17)
Cafeteria diet (CAF)
− males and females birth weight
↓adult males body weight < ↓ adult females body weight (18)
CAF
↑ body weight (adult females) (19)

Human Maternal undernutrition
↓ females birth weight > ↓males birth weight (20)
↓ females birth weight < ↓ males birth weight (21)
↓ females birth weight <↓ males birth weight (22)

Maternal gestational diabetes mellitus (GDM) and/or obesity
↑males BMI
↑males - risk of the obesity development in adulthood (23)

FAT CONTENT Mice PR/6%
↑ adiposity in males and females which fed HFD (24)

HFD
↑ adult males body fat content
↓ adult females body fat content (25)
HFD
↑adult males body fat content > adult females body fat content
(26)
HFHSD ↑ adult males and females - inguinal fat pad mass (12)

Rats PR/10%
↑ adult males deposits of abdominal fat
− adult females deposits of abdominal fat
↓ adult males deposits of gonadal fat
− adult females deposits of gonadal fat (14)
PR/10%
↑ young females body fat content
− young males body fat content (27)

CAF
↑adult males perirenal fat mass > ↑ female perirenal fat mass
↑adult males gonadal fat content < ↑ females gonadal fat
content (28)
CAF
↓adult males fat content < ↓ adult females fat content (18)
CAF
↑ abdominal fat in adult males and females (19)

Sheep FR
↑ fat mass in adult males
− fat mass in adult females (29)

Human Maternal uandernutrition
↓ lean and fat mass in females and males at birth
↑ fat mass in girls > ↑ fat mass in boys (30)

Maternal pre-pregnancy BMI
↑ adult females fat mass (31)
↑ young females fat mass (32)

METABOLIC AND
HORMONAL STATUS

Rats PR/10%
↑ insulin and leptin levels in young males and females
↑ TG levels in young males
− TG levels in young females (27)

CAF
↑glucose levels in young females
↑insulin levels in young males < ↑ insulin levels in young
females (18)
CAF
↑glucose levels in adult females
↑leptin levels in adult females (33)
HSD
↑ insulin resistance and oxidative stress in adult males
− insulin resistance and oxidative stress in adult females (34)
HFD
↑glucose levels in adult females
− glucose levels in adult males
↑TG levels in adult females
− TG levels in adult males (35)
CAF
↑ plasma leptin, insulin and TG levels in adult males and
females (19)

Sheep FR
↓ POMC expression in adult males
− POMC expression in adult females (29)

Humans Maternal undernutrition
↑ LDL level in adults males and females

Maternal obesity
↑ blood insulin concentration at birth in boys < ↑ blood insulin
concentration at birth in girls

(Continued)
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TABLE 1 | Continued

Outcomes Species Maternal undernutrition effects on offspring outcomes Maternal overnutrition effects on offspring outcomes

↓ glucose tolerance in adult males and females
↑ insulin resistance in adult males and females (36)

↑insulin resistance in girls adult life (37)
Maternal diabetes
↑insulin resistance in girls adult life (38)

CARDIOVASCULAR
SYSTEM

Mice FR
↑ mean arterial pressure (MAP) in adult males
- MAP in adult females (39)

HFHSD
↑ diastolic blood pressure (DBP) in adult males
↑ systolic blood pressure (SBP) in adult males
↑ DBP, SBP in adult females > ↑ DBP, SBP in adult males
↑ Heart rate (HR) in adult males and females (12)

Rats PR
↑ risk of hypertension in young males > ↑ risk of hypertension
in young females (40)
PR
↑ risk of hypertension develops in young males and females
(41)

HFD
↑ DBP, SBP in adult females
− DBP, SBP in adult males (35)

Humans Maternal undernutrition
↑ risk of coronary heart disease in adult females
↑ risk of coronary heart disease in adult males (42)
↑ risk of hypertension in adult females
↑ risk of hypertension in adult males (36)

Maternal obesity
↑ risk of stroke in adult females
− risk of stroke in adult males (43)
Maternal diabetes
↑ blood pressure during childhood in the males
− blood pressure during childhood in the females (44)

BRAIN AND BEHAVIOURAL
OUTCOMES

Baboons FR
↓ working memory in adolescent females
− working memory in adolescent males
↑impulsivity in adolescent males
− impulsivity in adolescent females (45)

Mice FR/70%
↓ locomotor activity in males and females
↓ recognition memory (NOR) in males and females
↓ synaptophysin level in the female hippocampus (10)
PR/8%
↑ anxiety- and depression-like behaviours in males
− anxiety- and depression-like behaviours in females
(46)

HFD
↓ myelination in the medial cortex in young males
− myelination in the medial cortex in young females
↓ memory parameters assessed in the NOR in young males
− memory parameters assessed in the NOR in young females
(47)
HFD
↑ anxiety-like behaviours in adult males
− anxiety-like behaviours in adult females (48)

Rats LP/9%
↓ locomotor activity in males
− locomotor activity in females
↓ feeding behaviour in females
− feeding behaviour in males (14)

HFD
↓ memory parameters assessed in the MWM in adolescent
males
− memory parameters assessed in the MWM in adolescent
females (49)
HFD
↑ depression-like symptoms in adult males
− depression-like symptoms in adult females (50)
HFD
↑ anxiety in adult males < ↑anxiety in adult females (51)
HFD
↑ anxiety in young females
− anxiety in young males
↓ sociability in young females
− sociability in young males (52)
HFD
↑ anxiety in male and female neonates (53)

Humans Maternal undernutrition
↓ total brain volume in boys/men
− total brain volume in girls/women
↓ volumes of grey and white matter in boys/men
− volumes of grey and white matter in girls/women (54)
↑ ASD, ADHD and schizophrenia in boys > ↑ ASD, ADHD
and schizophrenia in girls (55)

Maternal obesity
↓ hippocampal development/volume in boys
− hippocampal development/volume in girls (56)
Frontiers in Endocrinology | w
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ASD, autism spectrum disorder; ADHD, attention deficit hyperactivity disorder; CAF, cafeteria diet; DBP, diastolic blood pressure; FR, food restricted diet; GDM, gestational diabetes
mellitus; HFD, high-fat diet; HR, heart rate; HSHFD, high-fat high sugar diet; LDL, low-density lipoprotein; MAP, mean arterial pressure; MWM, Morris water maze; NOR, novel object
recognition; POMC, pro-opiomelanocortin; PR, protein restricted diet; SBP, systolic blood pressure; TG, triglycerides.
February 2022 | Volume 13 | Article 785674

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles
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However, the body weight gain and adiposity in HSD-fed
animals were lesser than after feeding an HFD (59).

A combination of HFD and HSD better imitates human
characteristics. The HFHSD has widely been used in studies on
rodents as a Western pattern diet. However, Omar et al. showed
that the HFHSD was not as effective as the HFD in C57BL/6J
mice (66).

The CAF diet is employed in laboratory settings, where
animals receive a mix of high-fat and high-sugar food
products, which are commonly consumed by people (e.g. cake,
biscuits, crisps, processed meat, peanut butter, chocolate, cheese,
dried fruit) (60, 61, 65). The components of the CAF diet have a
high energy value and are highly palatable, which increases
animals’ tendency to overconsumption (60, 61, 65). This model
mimics the occurrence of obesity in humans as a consequence of
a tasty but unbalanced diet. However, this diet varies in the
number and type of products used and its energy value [for more
details see (67)].

Experimental paradigms may also vary in terms of exposure to
these diets, i.e. the length of food consumption before and/or
during pregnancy and/or lactation, which may also influence the
results. Among the environmental factors influencing the
programming of the foetal phenotype, particular attention is paid
to disturbed maternal nutrition. Animal and epidemiological
studies have indicated that foetal nutritional deprivation is a
strong programming stimulus. On the other hand experimental
evidence suggests that maternal overnutrition can result in a
phenotype of the offspring characteristic of metabolic syndrome.
Moreover, both in humans and animal studies, it has been
confirmed that prenatal, perinatal and postnatal factors that are
associated with disturbed maternal and offspring nutrition are
additive (28, 68–71). In consequence, they lead to unfavourable
changes in metabolism in adulthood, and induce diabetes. In utero,
epigenetic changes exacerbate the negative effects associated with
the influence of environmental factors throughout life (68–71).
ANIMAL MODELS OF DIABETES

There are two major types of diabetes, i.e. type 1 (T1DM) and
type 2 (T2DM). The latter is the most common, as it represents
more than 90% of all cases. T1DM is caused by an autoimmune
destruction of the insulin-producing b-cells in the pancreas (72).
Due to the pathophysiology of T1DM, insulin therapy is
implemented at the onset of this disease. On the other hand,
T2DM can be associated with elevated, normal, or low insulin
levels, depending on the stage at which the levels of this hormone
are measured. This is a progressive disorder, which is manifested
by diminishing pancreatic function over time. The authors of this
review mostly focused on T2DM occurring during gestation, as it
is often associated with obesity and more prevalent than T1DM.
Gestational diabetes mellitus (GDM) is an issue of particular
interest in this review. This is a heterogeneous entity and affects
mostly insulin-resistant overweight and obese women. It is also a
strong female risk factor for the progression of T2DM (73).
Frontiers in Endocrinology | www.frontiersin.org 5
There are multiple animal models used for the induction of
diabetes – mostly rodents (mice and rats) as well as sheep, dogs,
cats, and other animals. Diabetes can be induced surgically,
chemically or genetically. The surgical method requires
pancreatectomy, i.e. removal of most of the pancreatic tissue.
Diabetes can be induced non-surgically through damage to the
pancreatic cells. This effect can be obtained through the
administration of drugs such as alloxan and streptozotocin
(STZ, toxins destroying b-cells of the pancreas), which cause
insulin deficiency and hyperglycaemia in animals. Alloxan
diabetogenicity occurs through the rapid uptake of the drug by
insulin-secreting cells, the formation of reactive oxygen species,
and disturbances in intracellular calcium homeostasis. It is also
necessary to remember that the range of the diabetogenic dose of
alloxan is quite narrow and even a small overdose may be
generally toxic and kill animals due to kidney failure (74).

Like alloxan, the dose range of STZ is narrow. To date
researchers have applied single or multiple injections in
experimental paradigms with different animal species and
strains (75–78). STZ is taken up by pancreatic b-cells via the
glucose transporter GLUT2, which changes the DNA in these
cells and provokes its fragmentation. For more detailed
information on the mechanisms of alloxan and STZ action see
Szkudelski (74).

A combination of HFD and STZ is often employed in
laboratory settings. These two stressors mimic the pathology of
T2DM, though on a shorter timescale than the one observed in
humans. The use of HFD causes insulin resistance and/or glucose
intolerance, while the administration of STZ reduces functional
b‐cell mass (79). Another advantage of this model is that it
mimics the slow pathogenesis of T2DM occurring in most
humans, which progresses from the slow development of an
adult-onset diet-induced obesity to glucose intolerance, insulin
resistance (and the resulting compensatory insulin release) and,
finally, STZ-induced partial b-cell death. Despite its limitations,
e.g. the use of two stressors – HFD and STZ, the HFD/STZ is a
reasonable animal model of T2DM and represents the late stage
of the disease (80).

Sex-dependent differences in the induction of T2DM by STZ
are also of particular interest in this review because, according to
scientific reports, males are more prone to develop diabetes (81,
82). There are also sex-specific differences in the development
and complications of diabetes in humans. For example, diabetes
is considered a stronger risk factor for cardiovascular diseases in
women than men (81). Women tend to store the fat tissue,
whereas men tend to mobilise adipose tissue burning (83).
Women exhibit greater insulin sensitivity than men. There are
sex-specific differences in body fat distribution, which point to
the crucial role of sex hormones (84).

There are also various genetic models of diabetes, but they will
not be discussed here because they do not fall within the scope of
this review [e.g. see (85)].

Animal models of T2DM provide not only an opportunity to
investigate the pathophysiology underlying this disorder, but also
enable the assessment of potential strategies for the treatment
and prevention of the disease and related complications.
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ANIMAL MODELS OF UNDERNUTRITION

To date research on undernutrition has been successfully
conducted on various species of animals, such as laboratory
rodents (rats, mice), sheep, pigs, and primates. Due to the fact
that rodents and sheep are the most commonly used species in
this research area, they will be henceforth discussed in this
review. For more information on the advantages and
disadvantages of other species see the review by Swanson (86).

Perinatal undernutrition can be induced in rodents through
either maternal underfeeding (general food restriction or protein
content restriction) during gestation or the modification of the
offspring’s energy intake during the suckling period. Rodents have
been used in numerous studies to examine different degrees of
dietary restriction during gestation – from mild (30%), through
moderate (50%), up to severe (70%) protein restriction (PR) or
food restriction (FR) [for reviews see (87, 88)]. Postnatal
manipulations usually include various forms of maternal milk
restriction, e.g. maternal deprivation (which promotes perinatal
stress) (89–91), early weaning induced with pharmacological
compounds such as bromocriptine a drug inhibiting lactation
(92)], non-pharmacological early weaning (in the last three days of
the suckling period, when nipple suction can be interrupted with a
physical barrier, e.g. by wrapping the breast area with a bandage
(93–95) or rearing pups in large litters (96, 97). Maternal
undernutrition in sheep is usually induced through FR [30-50%
of the control feed allowance (98)]. However, there are some
changes in the time of nutritional insult.

In conclusion, researchers interested in studying the effects of
the maternal diet on offspring in laboratory settings have a variety
of options, but due caution is necessary to ensure proper dietary
controls and provide a detailed description of the diets used during
the experiment, including the time of exposure and considering
possible sex differences. The choice of a suitable animal model is a
key point affecting the translational potential of the results.
EFFECTS OF MATERNAL
OVERNUTRITION ON BODY WEIGHT AND
FAT CONTENT: ANIMAL STUDIES

Maternal overnutrition and/or obesity affect the weight of rodent
offspring in a time-dependent manner (Figure 1). White et al.
conducted a study on rats in which they investigated the
relationship between the effects of maternal obesity and an HFD
of the offspring on their body weight. They observed that these
effects were independent and additive (99). Maternal obesity
induced by an HFD caused a significantly lower birth weight of
rats (17, 100, 101) and mice (102, 103). Similarly, the offspring of
the female rats receiving a CAF diet before and during pregnancy
were lighter (28, 104–106). However, other studies showed that the
birth weights of the mice delivered by dams exposed to an HFD
were significantly greater than those of the control offspring (25,
107). Similarly, the maternal consumption of a CAF diet resulted
in a greater body weight of neonatal rats (19). Additionally, several
experiments showed that the administration of a CAF diet (70)
Frontiers in Endocrinology | www.frontiersin.org 6
and an HFD (108, 109) before and during pregnancy did not
influence the birth weight of rat and mice pups (110). The
differences in the results of various studies may have been
caused by the use of different sources of fat and the duration of
feeding the diets to the dams and/or offspring (before pregnancy,
and/or during pregnancy, and/or lactation), as well as the different
effect of obese pregnancies on placental functions. Obesity may
increase the placental growth and cause foetal overgrowth or
reduce the placental blood flow and limit the foetal growth (111).

Thus, pre-gestational and/or gestational overnutrition of
female rodents resulted in a heavier weight of adult offspring,
which led to obesity. This effect was observed when: i) the birth
weight was significantly lower [rats/HFHSD (17)], ii) the birth
weight was not affected (mice/male/HFHCD) (11), and iii) the
birth weight was significantly greater [mice/HFD (25, 107)].
Sasson et al. observed that pre-gestational exposure of mice to
an HFD restricted the growth of newborn pups, but there was no
effect on the weight of adult animals (103). Importantly, studies
also revealed a catch-up in the body weight of offspring. The
birth weight of the offspring of the female rats fed a CAF diet was
either smaller or greater than the weight of the animals in the
control group. However, the differences in the body weight
disappeared during further development (19, 106).

There is not much data on the sex-specific differences in the
effects of maternal diet on the weight of offspring. King et al.
found that the maternal HFD did not affect the birth weight of
male mice offspring, but reduced the birth weight of females (11).
Nivoit et al. found that the offspring of obese rat dams had lower
birth weights than the offspring of the animals in the control
group. However, when the rats matured, the adult offspring of
the HFHSD females became heavier than those in the control
group, and these differences were less pronounced in the females
(17). Similarly, Samuelsson et al. have found that in the offspring
of HFHSD mothers, adult male mice were heavier than females
(12). Matuszewska et al. (18) observed that on postnatal day
(PND) 25 both male and female offspring of the dams fed a CAF
diet had lower body weights than the animals in the control
group. However, there was no difference in this parameter on
PND 3. Moreover, on PND 25 the CAF females were lighter than
the CAF males. On the contrary, in a study conducted by Jacobs
et al., feeding mothers the CAF diet resulted in an increase in
body weight of adult female rat offspring (19).

As numerous studies on rodents showed, changes in the body
weight of the offspring of obese dams seem to be caused by an
increase in the body fat content. Increased proportions of the body
fat content (112) were described in the rat offspring of females fed
HFD (99, 112), HFHSD (17), and CAF diets (18, 28, 70). The
authors of the aforementioned studies with the CAF diet observed
an increase in the fat content, but there was no change (70) or a
decrease in the body weight of the offspring receiving the other two
protocols of dietary regime (18, 28). The authors of studies on
mice also observed that the fat content in the offspring was
influenced by the HFD provided to their mothers (25, 103, 113).

Researchers also observed sex-specific changes in the fat content
in offspring. Dahlhoff et al. found that the male offspring of HFD
mice had more fat than the animals in the control group, but the
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female offspring had a lower body fat content than the animals in
the control group (25). Masuyama and Hiramatsu (26) observed
that maternal obesity induced by an HFD caused an increased fat
mass gain in the male and female offspring at 14 weeks of age, but
this effect was less pronounced in the females. However, in a mouse
model of HFHSD, both adult male and female offspring had
increased inguinal fat pad mass (12). Similarly, male and female
offspring of rats exposed to CAF diet had higher abdominal fat
content (19). Moreover, among the four-week offspring of CAF
mothers the males had a higher perirenal fat mass than the females,
whereas the females had a greater gonadal fat content than the
males (28). Matuszewska et al. (18) observed that both the male
and female offspring of mothers receiving a CAF diet for four
weeks before pregnancy, and then during pregnancy and lactation,
had a lower fat content on PND 25, but these changes were more
pronounced in the female CAF offspring.
EFFECTS OF MATERNAL
OVERNUTRITION ON BODY WEIGHT AND
FAT CONTENT: HUMAN STUDIES

Maternal overweight is a risk factor for foetal macrosomia and it
increases the risk of development of obesity throughout
childhood and adolescence (114–117). High maternal weight
Frontiers in Endocrinology | www.frontiersin.org 7
during all three trimesters of pregnancy increases the risk of
elevated birth weight of offspring (118, 119). The meta-analysis
of clinical studies showed that excessive gestational weight gain
increased the risk of childhood obesity by 33% (120). The
proposed mechanisms underlying these associations include
abnormal placental transfer, epigenetic mechanisms, and
altered peripheral and central metabolic profile in offspring
(114, 115).

A higher pre-pregnancy BMI also increases the total body fat
mass during childhood, and abdominal subcutaneous and
preperitoneal fat mass (121, 122). Eshrigui et al. (31) indicated
a direct linkage between the maternal pre-pregnancy BMI and
the fat mass index, the percentage of body fat, the visceral
adipose tissue, and the android-to-gynoid fat ratio of offspring.

Cohort clinical studies showed that metabolic disorders
resulting from the obesity of offspring were sex-specific (23).
The male but not female offspring exposed to gestational diabetes
mellitus (GDM) and/or obesity had a higher BMI and were more
likely to develop obesity from late childhood to early adulthood
(123). Maternal glycaemia appears to be a major factor initiating
adiposity in male infants, whereas the maternal BMI is the main
predictor in female infants (23). Moreover, Chaparo et al. and
Eshriqui et al. found that the maternal pre-pregnancy BMI was
directly associated with a greater fat mass in daughters, but not
sons (31, 32).
FIGURE 1 | The effects of maternal nutritional imbalance (under- and overnutrition) on offspring during foetal development. Short and long-term negative outcomes
(observed both in humans and laboratory animals) include the adverse effects of unbalanced diet on offspring’s metabolism, hormonal state, changes in the body
weight and fat content, and abnormal function of the nervous and cardiovascular systems. These effects appear to be sex-specific. ASD, autism spectrum disorder;
ADHD, attention deficit hyperactivity disorder; RAS, the renin-angiotensin system.
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Grzęda et al. Animal Models: Obesity and Diabetes
EFFECTS OF MATERNAL
UNDERNUTRITION ON BODY WEIGHT
AND FAT CONTENT: ANIMAL STUDIES

Numerous studies assessing the effects of malnutrition on a
number of animal models have shown that either food
restriction (FR) or protein restriction (PR) can programme
offspring to altered adiposity and body weight at different
stages of gestation and postnatal life.

In rats both paradigms of maternal malnutrition (regardless
of the timeframe of undernutrition, whether energy restriction
lasted throughout gestation or only part of this period) often
resulted in a lower birth weight (up to ~40%) (124–127).
However, most of these studies showed that despite the lower
birth weight observed in the offspring, these animals were often
characterised by increased adiposity, gain of the adipose tissue or
adipocyte size at later stages of life (124, 128, 129). Few studies
showed that a lower body weight could persist for several days,
weeks (126, 127, 130) or even for up to ten months, especially
when the dam’s age was taken into consideration, as Ware et al.
(131) observed. In their experiment dams were mated at different
ages, i.e. at 2 and 4 months of age (the young maternal group),
and at 6 and 9 months of age (the old maternal group). The
animals in both age groups were fed a low protein (LP) diet (50%
restriction) or a control diet throughout gestation. After weaning
both the male and female offspring of these dams were fed a
control diet until 9 months of age. After this period the offspring
were fed either the control diet or an HFD (40% of fat) for 9
weeks. In general, at 10 months of age the male offspring of the
animals fed the LP diet were smaller than the control
counterparts. However, the male offspring of the older LP
dams had over a 50% lower weight gain than the male
offspring of the young LP mothers. The male offspring of the
LP females also had less fat and a smaller adipocyte diameter
than the animals in the control group, regardless of the dams’
age. On the other hand, although the female offspring exhibited
similar changes in adiposity, the maternal diet had no effect on
their body weight or weight gain at 10 months of age (131). The
offspring of PR mothers also seemed to be more sensitive to the
deleterious effects of the HFD as they exhibited apparent catch-
up growth to match the body weight of the control counterparts
fed the hypercaloric diet (125).

Available data also suggest that the detrimental in utero effects of
maternal malnutrition can be transmitted transgenerationally, with
altered glucose homeostasis (132), number of larger adipocytes
(subcutaneous white adipose tissue on the abdomen) in generation
F2 (males), as well as an increased area of GFAP-immunoreactive
astrocytes, which is a marker of neuroinflammation (124).
Importantly, these effects seem to be transmitted mainly through
the maternal rather than paternal line (132).

It is also noteworthy that the majority of experiments on
maternal malnutrition focused on male offspring. There is also
some evidence [e.g. (14, 15, 131, 133)] that exposure to maternal
undernutrition programmes the adipose tissue in a sex-dependent
manner, as it seems to be the case in humans. Recently Christians
et al. published a systematic review and meta-analysis, in which
Frontiers in Endocrinology | www.frontiersin.org 8
they analysed the effects of PR and FR on the physiological traits of
offspring (e.g. body weight, body fat percentage, fat pad weight,
concentration of blood lipids), and checked if any of these traits
were more severely affected in either sex. In general, the meta-
analysis showed that the birth weight of offspring was consistently
reduced in both sexes, regardless of the stage of gestation when the
PR or FR occurred. The authors also concluded that less than a half
of the studies they analysed tested the interaction between the sex
of the offspring and the maternal diet, which may have resulted in a
higher incidence of false-positive sex-specific effects (87). However,
a maternal FR diet in murine (9, 10): and rat (13) models resulted
in a decrease in birth weight in both male and female offspring.
Zambardo et al. have found that in the rat offspring of PR mothers,
females after birth were lighter than males (15). Weight loss has
also been reported in the adult rat offspring of PR mothers of both
sexes (16), or in males only (14). Bellinger et al. have described that
abdominal fat deposits increased only in rat males, but when it
comes to gonadal fat – fat content increased only in females (14).
Furthermore, Vega et al. have found that body fat content increased
in juvenile rat females only (27), while Begum et al. showed that fat
content increased in adult sheep males (29).
EFFECTS OF MATERNAL
UNDERNUTRITION ON BODY WEIGHT
AND FAT CONTENT: HUMAN STUDIES

World human conflicts and socio-geographical conditions
resulted in times of famine and provided unique opportunities
to study the influence of undernourishment during pregnancy on
the health of offspring in childhood and adulthood (134, 135).
Maternal malnutrition during pregnancy results in a small size of
offspring at birth, and the low birth weight is interpreted as an
indicator of foetal malnutrition (134–136). However, Roseboom
et al., who analysed the children of the mothers who were
pregnant during the Dutch famine, observed that the babies
whose mothers were caught by famine in the first trimester of
gestation, were heavier at birth than the population average before
and after the period of starvation. On the other hand, the birth
weights of the babies affected by the famine in late gestation were
usually lower than the birth weights of the babies who were born
before or conceived after the famine (137). Additionally, the
exposure to the Dutch famine during gestation affected the sex
ratio of liveborn babies. The percentage of boys born alive was
lower, especially after the exposure to famine during late gestation
(137). Interestingly, the offspring of prenatally undernourished
fathers, but not mothers during the Dutch famine were heavier
and more obese than the offspring of the fathers and mothers who
had not been undernourished prenatally (138).

Researchers also observed that malnutrition during the first
and second trimesters of pregnancy was associated with an
increased prevalence of obesity (regardless of the birth weight)
(137), whereas malnutrition in the third trimester correlated with
a lower to normal weight in adult life (139, 140). Hence, exposure
to famine in early gestation was associated with greater
prevalence of obesity in adult life.
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The aforementioned human studies showed that maternal
overnutrition was associated with macrosomia and increased fat
content in progeny, which predisposed them to metabolic
imbalance later in life. There were sex-specific differences in
these results. On the other hand, studies on humans showed that
although the children of malnourished mothers had lower birth
weights, they tended to be overweight and obese later in life. This
relationship could be explained by the so-called ‘thrifty phenotype’
hypothesis, which proposes epidemiological associations between
poor foetal and infant growth, and the subsequent development of
T2DM and the metabolic syndrome. This stems from the effects of
poor nutrition in early life, which leads to permanent changes in
glucose-insulin metabolism (2, 141–143).

The sex-specific birth weight changes in human offspring of
children of malnourished mothers have been also reported.
Ntenda et al. (21) and Thurstans et al. (22) have found that
boys developed greater decrease in body weight than girls after
birth, while Sakisaka et al. (20) described the opposite effect
where the lower birth weight was more pronounced in girls than
in boys compared to the control groups. Andersen et al. have
described that along with the decrease in weight in newborns, fat
mass decreased in both sexes, however, later in life, fat mass
increased and this effect was more pronounced in girls (30).
EFFECTS OF MATERNAL
OVERNUTRITION ON METABOLIC AND
HORMONAL STATUS OF OFFSPRING:
ANIMAL STUDIES

Maternal overnutrition also affects the metabolic status of
animals. The murine and rat offspring of HFD dams had
higher blood glucose, TG and/or cholesterol levels (33, 144–
147). Moreover, the offspring of obese rat dams fed an HFD, CAF
or HSD had higher insulin, leptin, and adiposity levels (145, 146,
148, 149). Research showed that a CAF diet induced obesity
more effectively and resulted in a more pronounced increase in
the plasma leptin, TG, and cholesterol levels than the HFD
protocol (150, 151). Moreover, the maternal HFD, HSD, and
CAF diets resulted in a low-grade inflammatory phenotype in the
rat offspring. They had higher levels of pro-inflammatory
cytokines such as interleukins: IL-1b, IL-6, and tumour
necrosis factor a (TNF-a), which mimics the situation
observed in obese patients (152–154).

Overnutrition and/or obesity lead to a combination of
peripheral and central nervous system alterations and affect the
brain circuitry controlling energy homeostasis and adverse
programming of central appetite regulators (149). Central leptin
and insulin resistance is commonly observed in the offspring of
obese HFD-fed rat females (149). Researchers observed changes in
the brain appetite regulators, such as downregulated hypothalamic
neuropeptide Y (NPY) and upregulated hypothalamic
proopiomelanocortin POMC receptor expression in the
offspring of HFD-fed rat females (149). Moreover, epigenetic
markers at POMC are influenced by both maternal food excess
and restriction [for a review see (155)].
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Recently researchers have paid more attention to sex-specific
differences in the offspring’s response to mother’s overnutrition.
For example, there were sex-specific differences in the blood
glucose levels of 25-day-old female offspring of dams fed a CAF
diet. These animals had higher glucose levels than those in the
control group (18). The concentration of insulin was elevated
both in the male and female CAF offspring on postnatal day 25
(PND 25), but this rise in insulin levels was more pronounced in
the females (18). Similarly, Bayol et al. observed that feeding rats
a CAF diet during pregnancy, lactation, and post-weaning period
resulted in sex-specific differences in the glucose and insulin
levels in the offspring (33). The concentration of glucose in the
ten-week-old female offspring of the rats fed a CAF diet was
higher than in the control animals. However, in the studies
conducted by Bayol and Matuszewska there was no difference in
the glucose levels between the male offspring of the CAF rats and
the animals in the control group. Khan et al. have shown that
glucose and TG levels were raised only in female rat offspring of
HFD mothers (35). Another study revealed sex-specific
differences in insulin secretion and leptin transcription – the
males had a higher circulating insulin level, whereas the females
had an elevated leptin transcript level (33). Rodriguez et al. also
observed maternal HSD-induced insulin resistance and oxidative
stress in the male but not in the female rat offspring (34).
Chowen et al. (156) also noted differences between the males
and females in their response to obesogenic diets/environments
and the possible implication of hypothalamic astrocytes.

Sanchez-Garrido et al. observed that obesity was transmitted
to offspring in a sex-specific manner by the paternal line. The
male, but not female offspring of rat fathers with HFD-induced
obesity had higher body weights and leptin levels. However, these
animals did not exhibit glucose intolerance. Moreover, the
authors noted a decrease in the luteinising hormone (LH)
levels and an exacerbated drop in the testosterone levels in the
male offspring. On the other hand, the female offspring exhibited
reduced LH response to kisspeptin-10 (157).
EFFECTS OF MATERNAL
OVERNUTRITION ON METABOLIC AND
HORMONAL STATUS OF OFFSPRING:
HUMAN STUDIES

The children of obese mothers (BMI > 30 kg/m2) had higher
percentage of body fat, systolic blood pressure, TG, and leptin
levels, and developed insulin resistance at the age of 8 (121). An
interim analysis of 898 obese and normal weight mothers and their
offspring from the Programming of Enhanced Adiposity Risk in
Childhood-Early Screening (PEACHES) (158) cohort study
showed that the children of obese, GDM-negative mothers with
late-pregnancy dysglycaemia had a worse outcome with higher
weight gain (150–154) and a higher BMI in early childhood than
the children of obese mothers treated for GDM (158).
Furthermore, the Helsinki birth cohort study showed not only a
positive correlation between the BMI of the mothers and offspring,
but also a higher body fat percentage in the children of the
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mothers with a higher BMI (159). The study also showed that the
higher maternal BMI increased the risk of the offspring’s death,
cancer, stroke, coronary heart disease, and T2DM, with the latter
two being the most strongly correlated. Apart from that, the risk of
developing TDM2 was higher in women than men, while the
incidence of coronary heart disease was greater in men (43).

Moreover, exposure to endocrine disruptors (EDs), which
becomes increasingly widespread in the environment, influences
weight regulation and has obesogenic effects on humans (160–
163). EDs act as hormones at low but persistent doses and mostly
mimic oestrogen properties. They activate or inactivate cellular
receptors, cell responses, and other targets, and lead to higher
insulin resistance and hyperinsulinaemia. EDs also change the
adipokine level in a sex-specific way. For example, in the Canadian
Maternal-Infant Research on Environmental Chemicals Study,
newborns exhibited sex-specific differences in the leptin and
adiponectin levels, caused by the maternal exposure to bisphenol
A (BPA) in utero. The female offspring had higher leptin levels
than males. By contrast, adiponectin did not differ between the
sexes, but was inversely related to the BPA level in the males (164).
The topic of environmental chemicals in the context of parental/
early exposure to them and programming of obesity and diabetes
type 2 is of great importance, but beyond the scope of this review.
For reviews on this subject, see e.g. (165–167). Moreover, the
concept of transgenerational inheritance – an endocrine of an
adverse outcome after a chemical exposure was proposed in 2005
and discussed later by other researchers [e.g. (165, 168, 169)].

The risk factors leading to the development of T2DM also
include sugar-sweetened beverages (SSBs). The meta-analysis of
prospective cohort studies showed that the men and women
drinking SSBs in the highest quantile had a 26% excess risk of
developing T2DM than those in the lowest quantile (170).

Male and female offspring seem to adapt differently to the milieu
created by maternal obesity and diabetes during pregnancy (171),
which may be connected to the sex hormone regulation of several
genes involved in both the physiological control of metabolism and
the pathophysiological background of cardiometabolic diseases
(172, 173). Shields et al. (37) and Krishnaveni et al. (38, 174)
noted that girls not only had a higher cord blood insulin
concentration at birth than their male peers, but when exposed to
GDM in utero, they were more likely to develop insulin resistance
later in life. Studies also suggest that androgen excess during
pregnancy may play a crucial role in insulin resistance
programming in female offspring (175). The teenage daughters of
mothers with polycystic ovarian syndrome (PCOS) or congenital
adrenal hyperplasia (CAH) had hyperinsulinaemia (176, 177).
EFFECTS OF MATERNAL
UNDERNUTRITION ON METABOLIC AND
HORMONAL STATUS OF OFFSPRING:
ANIMAL STUDIES

The offspring of undernourished rat dams tend to exhibit
numerous metabolic and hormonal changes in the postnatal
Frontiers in Endocrinology | www.frontiersin.org 10
period. There are relatively frequent alterations in insulin
signalling and glucose tolerance, transcriptional and protein
changes in the adipose tissue, liver, and pancreas, as well as
inflammatory markers. Changes in insulin signalling and glucose
tolerance involve hyperglycaemia (either after fasting or in non-
fasted animals), lower insulin sensitivity, as well as higher insulin
increment during glucose tolerance test (GTT) (126, 128, 178).
This metabolic imbalance can be accompanied by increased
blood concentrations of TG and low-density lipoproteins
(LDL), as well as decreased concentration of high-density
lipoproteins (HDL) (128, 130). Moreover, there was a strong
positive correlation between the plasma TG concentration and
the body weight of the offspring of the dams fed a diet with 70%
FR throughout the gestation (130).

According to data, the livers of the offspring of malnourished
mothers are also highly affected, but the results vary across
studies. On the one hand, the male offspring of rat dams
subjected to severe PR in a diet (80% restriction in the diet
protein content) during the second half of gestation exhibited
hepatic steatosis at the age of 90 days (128), whereas Lecoutre
et al. observed that 70% FR during gestation and lactation did not
affect the liver mass or the content of liver lipids (also in male
offspring, aged 4 months) (179). This observation is consistent
with the results of the study conducted by Morris et al. on the
male offspring (aged 110 days) of FR dams (70% FR throughout
gestation), whose liver weight did not change, either.
Interestingly, a lower liver weight was observed in a group of
younger rats (aged 55 days). Transcriptional liver profiling in the
group of younger animals revealed that although these
individuals did not yet exhibit the characteristics of the
metabolic syndrome phenotype that was observed in older rats,
the results suggest that these animals might exhibit metabolic
abnormalities in advance of the full metabolic syndrome
phenotype observed later in life (i.e. at 110 days of age) (180).
The effects of maternal malnutrition during pregnancy on the
liver may also be transgenerational and transmitted mainly
through the maternal line, as described by Hanafi et al. The F2
foetuses of F1 females fed an LP diet for 2 months after weaning
(60% PR) exhibited an overexpression of GLUT2 and
glucokinase (GK) in the liver. Moreover, these genes as well as
UCP2 were also overexpressed in the pancreas, which suggests
that these F2 offspring might be predisposed to diabetes later in
life. Indeed, higher postnatal levels of fasting blood glucose,
insulin, and HOMA-IR later in life (at the age of 20 and 30
weeks) indicated that maternal undernutrition significantly
altered glucose tolerance in generation F2 (132).

Research has shown that maternal malnutrition highly affects
the adipose tissue function. Guan et al. observed changes in 650
genes in the visceral adipose tissue in the male offspring of dams
subjected to 60% PR throughout pregnancy and lactation. The
analysis of the results revealed a global upregulation of the genes
involved in carbohydrate, lipid, and protein metabolism, as well as
adipocyte differentiation and angiogenesis. This suggests that
maternal PR during gestation and lactation programmes the
susceptibility to visceral adiposity later in life (181). Importantly,
research findings also indicate that the restriction of the mother’s
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Grzęda et al. Animal Models: Obesity and Diabetes
calorie intake (20% restriction, gestational days 1-12) significantly
affects the function of the brown adipose tissue (BAT) in the
offspring of both sexes (aged 25 days) (182). Maternal
malnutrition may also induce epigenetic changes in the adipose
tissue of the offspring, e.g. in the means of programming changes
in the miRNA or CpG site methylation [for a review see (179)].
Sex-specific alterations (e.g. in the POMC expression) were
observed in the offspring of food-restricted sheep. Begum et al.
noted a lower POMC expression (accompanied by increased fat
mass in adulthood) in the male adult sheep which had been
undernourished during early pregnancy, but there was no
difference in the females (29). In rats, offspring of PR mothers
(both juvenile males and females) had elevated insulin and leptin
levels, but TG levels were elevated only in males.
EFFECTS OF MATERNAL
UNDERNUTRITION ON METABOLIC AND
HORMONAL STATUS OF OFFSPRING:
HUMAN STUDIES

The spectrum of maternal malnutrition spans undernutrition
with caloric and/or macro- and micronutrient restrictions during
pregnancy. Research has shown that the timing of nutritional
restriction seems to play an important role on the health of
offspring later in life. Studies on the offspring of the mothers who
were pregnant during the Dutch famine (183), Biafran (184), and
Chinese (185) provided data on the consequences of maternal
caloric restriction in offspring, who developed glucose
intolerance, microalbuminuria, an atherogenic lipid profile
with a higher LDL/HDL ratio, and hypercholesterolaemia
(186). Roseboom et al. indicated that the exposure to the
famine at an early gestational age was correlated with an
increased risk of coronary heart disease, atherogenic lipid
profiles, and higher adiposity (187). Painter et al. (188)
observed that the exposure to the famine in the middle of
gestation was related to microalbuminuria and impaired renal
function. The children whose mothers were malnourished
during pregnancy had lower insulin levels and insulin-like
growth factor 1 (IGF-1) concentrations, but higher proteolytic
activity of the insulin-like growth factor binding protein (the
protein binding and regulating the IGF activity) immediately
after birth. This may have affected the growth of the foetus (189–
191). The proper nutrition of children after birth causes a rapid
increase in the insulin and IGF-1 levels, which may result in a
rapid weight gain, insulin resistance, and T2DM in adulthood
(referred to a as the catch-up growth hypothesis) (189, 191).

Researchers found a correlation between the low birth weight
and increased risk of developing overweight and obesity, altered
body composition, T2DM, hypertension, and cardiovascular
disease (24). This evidence is in line with the data from the
aforementioned epidemiological studies on individuals exposed
to the Dutch famine in utero. There was a correlation between
the exposure to famine in utero and the development of diabetes
(192), high blood pressure (193), and impaired body
composition of the offspring later in life (24, 139).
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Similar data were presented by Finer et al., who researched
the metabolic outcomes of exposure to famine during
developmental life in rural Bangladesh. Their research
additionally showed that gestational and postnatal windows of
exposure had variable effects on the offspring’s phenotype (194).

These data could be explained by the thrifty phenotype
hypothesis, first described by Hales and Baker. According to
the hypothesis, suboptimal nutrition in uteromay result not only
in impaired growth of the foetus and children being born small
for gestational age/with intrauterine growth retardation (SGA/
IUGR), but also in the reprogramming of metabolic pathways to
ensure foetal survival in the challenging in utero milieu.
However, when these individuals experience the postnatal
environment with excessive or normal nutrition, they are more
prone to develop impaired glucose tolerance (2, 141–143).

In summary, similarly to the animal data, the studies on
humans showed marked alterations in the metabolic and
hormonal profiles of the offspring of obese, diabetic, and
undernourished mothers. There are emerging reports suggesting
that female offspring (animal studies on overnutrition) and girls
(human studies; exposure to GDM in utero) may be more
vulnerable to insulin resistance later in life (36). However, further
research on sex-specific differences needs to be conducted,
especially to reveal the underlying mechanisms. Studies also have
shown that the timing of nutritional restriction seems to play an
important role on the health of offspring later in life.
EFFECTS OF MATERNAL
OVERNUTRITION ON OFFSPRING
CARDIOVASCULAR SYSTEM: ANIMAL
STUDIES

Animal studies, mainly on rodents (rats and mice) (12, 195), but
also on sheep (196–198) and non-human primates showed that
maternal overnutrition affects the cardiovascular system (199)
(Figure 1). The maternal HFD caused cardiac hypertrophy and
reduced the vascular density of the cardiac muscle in rodents
(200, 201) and primates (199). Moreover, lactational
overnutrition (resulting from the reduced litter size) altered the
cardiac gene expression in rodents. This may impair cardiac
anatomy/metabolism and increase the susceptibility to
myocardial injury after an ischaemic insult (202). The potential
mechanisms related to myocardial dysfunction include impaired
cardiac insulin signalling, metabolic status, increased oxidative
stress, inflammation, and mitochondrial dysfunction (200, 201).
In the sheep model of maternal obesity, in which the offspring’s
entire heart function was evaluated in the Langendorff model (an
in vitro system), the contractile function of the heart was
impaired (198). Moreover, the phosphorylation of AMP-
activated protein kinase (a cardioprotective signalling pathway)
was reduced in the hearts of the foetuses of obese mothers, but
the stress-signalling pathway p38 MAPK was upregulated. This
indicated impaired cardiac insulin signalling, as compared with
the animals in the control group (198). In animal models
(especially mice and rats) maternal obesity altered DNA
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methylation, which was responsible for the abnormal fat
metabolism (203, 204), and histone acetylation in the promoter
regions of adiponectin and leptin (107). These changes had the
atherogenic effect because they increased the adhesion of
particles circulating in the blood vessels. In consequence of
these epigenetic changes the levels of LDL and free fatty acids
increased and altered the nitric oxide synthase (NOS) function,
which is a well-known factor in the development of hypertension
(205). Maternal overnutrition may also alter specific gene
expression and result in cardiomyocyte hypertrophy and
abnormal heart development (206, 207).

The exposure of developing mouse and rat offspring to
maternal obesity led to their hypertension in adulthood, which
deteriorated with age (12, 208, 209). Maternal obesity also
programmes the vascular system in offspring. Endothelial
dysfunction was observed in the small mesenteric arteries of all
offspring whose mothers consumed a fat-rich diet. This showed
that this disorder commonly occurs with elevated blood pressure.
Endothelial dysfunction may be a consequence of insulin
resistance and could reflect the activation of inflammatory
pathways as a result of increased adiposity (210).

Sex-specific differences were observed in the offspring of obese
mice and rats. Both male and female offspring had elevated blood
pressure, but it was more pronounced in the females (12, 35).
These studies suggested that female offspring exhibited greater
sensitivity to overnutritional insults during foetal life and the
cardiovascular development. The following factors influence the
development of hypertension in offspring: increased sympathetic
activity, increased renal norepinephrine concentration and renin
expression, as well as vascular conditions (12, 209, 211).
EFFECTS OF MATERNAL
OVERNUTRITION ON OFFSPRING
CARDIOVASCULAR SYSTEM: HUMAN
STUDIES

Multiple observational studies on humans revealed a correlation
between maternal obesity before and during pregnancy and an
increased risk of cardiovascular anomalies (114, 115, 212, 213).
The exposure of the foetus to maternal obesity increased its
blood pressure, altered the vascular system (endothelial
function), and myocardial function (199, 214). Researchers
observed a positive correlation between maternal obesity and/
or gestational weight gain and higher systolic blood pressure in
the offspring (114, 215–217). Moreover, a cohort study showed
that a higher maternal BMI increased the risk of hospital
admissions of adult offspring due to cardiovascular events (43,
213). Additionally, the vascular markers of endothelial
dysfunction were increased in the children exposed to maternal
diabetes and obesity during foetal life (218). Atherosclerosis may
also be influenced by the maternal diet and/or maternal
hypercholesterolaemia, which may cause the development of
this disease in offspring (219). The inherent risk of hypertension
and vascular dysfunction resulting from maternal obesity,
cardiac hypertrophy, and contractile dysfunction is also
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observed in the offspring (200). Epidemiological studies on
humans showed that epigenetic mechanisms were involved in
the cardiological consequences of maternal obesity and/or
diabetes (206). Moreover, the epigenetic mechanisms of altered
metabolic control in the offspring of obese mothers may cause
abnormal placental function, altered cholesterol circulation, and
higher blood pressure in humans (206, 220, 221).

Only a few studies described the influence of sex on the
programming of cardiovascular risk, following a pregnancy
complicated by obesity and/or diabetes. Ericsson et al. noted a
correlation between maternal obesity and stroke only in the female
offspring (43). Aceti et al. conducted a systematic review and
observed a strong correlation between maternal diabetes and
increased blood pressure in the offspring during childhood, with
a stronger correlation in the male rather than female offspring (44).
EFFECTS OF MATERNAL
UNDERNUTRITION ON OFFSPRING
CARDIOVASCULAR SYSTEM: ANIMAL
STUDIES

Hypertension (40, 196, 222, 223), coronary heart disease/heart
hypertrophy (40, 224), and vascular dysfunction (225) are among
the disorders observed in the offspring of undernourished females in
experimental animal models. A global restriction of maternal food
intake (30-70% food restriction) during pregnancy resulted in
arterial hypertension both in murine (222) and rat offspring (40,
226). There were similar observationsmade on sheep (196) and cows
(223). Studies on pregnant rats (227, 228), mice (229), and sheep
(230) showed that a reduced maternal dietary protein intake
programmed hypertension in offspring. The elevated arterial blood
pressure observed in these animals may have been caused by the
increased cardiovascular sympathetic tone (227), suppressed activity
of the hypothalamic-pituitary adrenal (HPA) axis, impaired function
of the renin-angiotensin system (RAS) (231), and/or altered structure
and function of the vessels and the cardiac muscle (40, 224). Torrens
et al. and Ozaki et al. observed that the dietary protein restriction or
global undernutrition in rats compromised the maternal
cardiovascular adaptations to pregnancy and led to the endothelial
and peripheral artery dysfunction in the offspring (40, 224). The
sheep offspring exposed to a maternal LP diet throughout the foetal
period developed right and left ventricular hypertrophy (232).
Cardiac enlargement was also observed in the offspring of the rats
fed an LP diet (233). In addition, they had a lower heart weight,
which was associated with an increased rate of cardiomyocyte
apoptosis and a lower total number of cardiomyocytes per heart at
birth (234). Maternal undernutrition also affects the epigenetic
mechanisms that control and change the transcription of genes
involved in the cardiovascular homeostasis. A study on rats showed
that the offspring of the females which received a LP diet had
incorrect histone modifications of a specific enzyme, and these
changes were associated with an increase in the blood cholesterol
level (235). A study on mice showed that the offspring of the females
which received a restricted diet had cardiovascular diseases in
adulthood (236). Studies on animals showed that a restrictive diet
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of rat mothers during pregnancy resulted in significant miRNA
dysregulation in the offspring’s heart (237). Specific miRNA
molecules responsible for maintaining the elasticity of blood
vessels were inhibited (238), which reduced vascular contractility.
Altered global DNA methylation was observed in the offspring of
rodent females receiving a restrictive diet. It caused the dysregulation
of the renin-angiotensin system in rats (239) and endothelium-
dependent artery vasodilation in mice (225). Few of these epigenetic-
dependent changes can induce the development of arterial
hypertension in offspring. Barros et al. hypothesised that epigenetic
mechanisms were involved in the overactivation of the sympathetic
nervous system in the offspring of mothers fed an LP diet (227).

The authors of studies on the functioning of the circulatory
system in the offspring of malnourished mothers did not usually
describe sex-specific differences. However, Ozaki et al. found that
hypertension developed more rapidly and severely in the male
rather than female rat offspring exposed to a maternal LP diet
during pregnancy (40). Additionally, male, but not the female
mice offspring of malnourished mothers had elevated mean
arterial pressure (MAP) (39). Elmes et al. observed that the
effects of the mother’s LP diet on the increased blood pressure of
rat offspring were not sex-specific (41).
EFFECTS OF MATERNAL
UNDERNUTRITION ON OFFSPRING
CARDIOVASCULAR SYSTEM: HUMAN
STUDIES

For ethical reasons there is not much data on the influence of
maternal malnutrition on cardiac disorders in their children.
However, scientists try to analyse the effects of famine in different
areas of the world. The analysis of data coming from the
offspring of the mothers who starved during pregnancy (e.g.
during the Dutch Hunger Winter and during the Second World
War) indicate that exposure to famine during foetal life increases
the risk of cardiovascular diseases (219, 240). Research has also
shown that the people who were exposed to malnutrition in utero
more often develop coronary heart disease and hypertension
(241–243). According to the results of Le Clair et al. (42) and
Barker (36), the risk of developing hypertension and coronary
heart disease increases in both sexes. Maternal FR causes changes
in miRNA, which alters the level of vascular endothelium-
derived growth factor involved in the proper maturation and
differentiation of the endothelium and its receptors (244).

To sum up, the data presented in the aforementioned animal
studies on rodents, sheep, and non-human primates as well as
the observations conducted on humans showing the effects of
diet on the cardiovascular system clearly indicate that the
maternal diet has influence on the cardiovascular system of
offspring. Various mechanism responsible for these alterations
have been proposed, with a special focus on epigenetic
mechanisms. So far the sparse data from animal studies have
suggested that female offspring exhibit greater sensitivity to
overnutritional insults affecting the development of the
cardiovascular system during foetal life. However, it is
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necessary to conduct further research, especially on animal
models of undernutrition as well as the children of
undernourished mothers, to analyse sex-specific differences.
EFFECTS OF MATERNAL
OVERNUTRITION ON BRAIN AND
BEHAVIOURAL OUTCOMES IN
OFFSPRING: ANIMAL STUDIES

Animal models of maternal overnutrition have provided
evidence of persistent changes in offspring’s cognition and
behaviour, and complemented human epidemiological data
with potential insights into the mechanism linking maternal
excessive food intake to adverse neurodevelopmental and
psychiatric outcomes in offspring (Figure 1). Studies across
different animal species indicated effects of maternal
overnutrition on memory impairment e.g. working and spatial
memory (mice 240, and rats 91, 241, 242).

The study by Robb et al. (49) confirmed a sexually dimorphic
effect in the Morris water maze performance, where males
performed worse than females. Graf et al. observed that the mice
pups whose mothers consumed an HFD exhibited altered
myelination and neurobehavioural deficits, and these effects were
sex-dependent (47). The disturbed myelination in the medial cortex
was observed in themale but not female offspring of HFD-fed dams.
These structural changes were correlated with changes in the males’
behaviour only (assigned in the novel object recognition test).

Research has also shown the relationship between maternal
obesity and depression. Young adult male rodents exposed to an
HFD either in utero (48) or during lactation (50) exhibited
higher rates of depression-like symptoms than the offspring of
control group. The rodent offspring of the dams fed an HFD
before mating and during gestation and lactation exhibited more
anxiolytic behaviours than the control offspring (245, 246). The
authors of some studies on animals also suggested that maternal
obesity may increase the risk of neurodegenerative diseases such
as Alzheimer’s disease in offspring (246, 247).

The following mechanisms might be responsible for
behavioural alterations in the offspring of dams fed a CAF diet
and HFD: reduced expression of neurotrophins, lower
concentrations of synaptophysin and BDNF, which are
involved in the development of memory (248, 249). Studies on
rodents showed that maternal overnutrition hindered the
neuronal growth and maturation by altering differentiation,
neurogenesis, and disruption in apoptotic processes in such
areas of the brain as the hippocampus, hypothalamus, and the
cerebral cortex (102, 250, 251). Apart from the impaired
neuronal anatomy and function, the offspring of HFD-fed
dams exhibit altered neurotransmission (252). Research on
rodents showed that the serotonin axon density and embryonic
neuronal survival in the brain regions critical for behavioural
regulation were reduced (250, 253). The offspring of female mice
and rats fed an HFD had impaired mesolimbic dopaminergic
signalling, which was associated with impaired reward response
to food (254, 255). The levels of expression of the N-methyl-D-
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aspartate receptor (NMDA) receptor subunit NR2B in the
hippocampus of rat offspring were significantly reduced in
response to maternal overnutrition (249). The adult offspring
of mice exposed to maternal obesity and an HFD during
gestation and lactation were also characterised by increased
hippocampal expression of GABAA receptor (256). Increased
anxiety in the rat offspring resulted in higher glutamatergic
activity in the prefrontal cortex. It was associated with reduced
inhibitory input into the glutamate synapses through the
cannabinoid/GABA receptors, whose expression decreased.
These changes were sex-dependent, and they were more
intense in the males than females (51). On the other hand,
Kang et al. found that maternal HFD increased anxiety and
decreased the sociability of the female offspring only (52). The
study on non-human primates (Japanese macaques) showed that
the maternal HFD caused behavioural changes in the female
offspring, which exhibited higher anxiety. Instead, male exhibited
increased aggression (257). On the other hand, the observed
increase in the anxiety-like behaviour was not sex-specific in the
murine (256) and rat (53) offspring of mothers fed an HFD.

Researchers have suggested multiple mechanisms underlying
the effects of maternal HFD on the offspring’s brain, e.g.
increased hippocampal lipid peroxidation, microglial activation
in pups, and increased peripheral and central proinflammatory
cytokine expression in the post-weaning and adult life (245).
Other suggested mechanisms include: dysregulation of insulin,
glucose, and leptin signalling in the developing brain (notably in
the regions involved in behavioural regulation such as cortex,
amygdala, thalamus, hippocampus and hypothalamus) (250,
258). Animal studies have also corroborated associations
between maternal obesity, placental inflammation, foetal brain
inflammation, and abnormal neurodevelopment in offspring
(259). Moreover, these multidirectional changes associated
with long-term effects of poor maternal diet are often
accompanied by epigenetic changes [for details see the review
by Moody et al. (252)]. It is important to note that there have
been few studies on sex-specific differences in early
programming of behaviour and brain function (as compared
with data on males alone) and further research is necessary.
EFFECTS OF MATERNAL
OVERNUTRITION ON BRAIN AND
BEHAVIOURAL OUTCOMES IN
OFFSPRING: HUMAN STUDIES

According to the findings of recent studies on humans, maternal
overnutrition/obesity affects the cognitive function and the
development of neurological and psychiatric disorders in
offspring (55). Research has provided evidence that there is a
correlation between maternal overnutrition and/or obesity and
the poorer cognitive performance of offspring, including lower
IQ, poorer motor, spatial, and verbal skills (246, 260, 261).
Maternal overweight is a predictor of children’s poorer
psychosocial development, as evidenced by lower social
competence and increased risk of depression and anxiety (262–
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264). Brain imaging techniques are very valuable in this respect,
but they are still relatively underrepresented. An MRI study
revealed a significant correlation between prenatal exposure to
maternal obesity and a smaller hippocampal volume in boys but
not girls (56). Moreover, sex-dependent differences were
observed across hippocampal subfields (CA1, CA2/3, CA4,
dentate gyrus, and subiculum) (56). Thus, the study suggested
that boys may be more vulnerable than girls to the negative
consequences of exposure to maternal obesity, as manifested by
hippocampal development. There are also sex-dependent
differences in susceptibility to neurodevelopmental disorders.

Exposure to maternal obesity also induces alterations in the
HPA axis of offspring. Prenatal maternal overnutrition exposes
offspring to maternal metabolism abnormalities (e.g. high levels
of glucose, TG, and total cholesterol), which are associated with
increased activity of the HPA axis, for example, in the means of
changes in the children’s cortisol reactivity (262, 263). This is
another possible mechanism through which maternal
overnutrition may increase the risk of cognitive decline and
anxiety-related disorders in offspring (265).

The authors of studies also suggest that there might be a
correlation between maternal obesity and increased symptoms of
ADHD (266) and autism spectrum disorder in children (267). The
analysis of long-term human studies also showed a correlation
between maternal obesity and the increased risk of offspring
developing anorexia and/or bulimia later in life (268, 269).
EFFECTS OF MATERNAL
UNDERNUTRITION ON BRAIN AND
BEHAVIOURAL OUTCOMES IN
OFFSPRING: ANIMAL STUDIES

Global caloric and/or protein restriction during gestation is
correlated with deficits in exploration, social behaviour,
emotionality, avoidance conditioning, learning, and memory in
adult life (270–275). Batista et al. observed that maternal protein
malnutrition caused autism spectrum disorder in rat offspring
(276). Changes in the behaviour of the offspring of malnourished
mothers were accompanied by neurochemical and
neuroanatomical abnormalities such as: abnormal proliferation,
apoptosis, astrogenesis, neuronal differentiation, dendritic
arborisation and cerebral astrogliosis in the cortex and
hippocampus (277, 278), and lower thickness of the visual
cortex, parietal neocortex, dentate gyrus, CA3 region of the
hippocampus and cerebellum (276, 279, 280). Experiments on
rats also showed that FR during gestation reduced the essential
factors enhancing neuronal proliferation, growth, and
maintenance, e.g. BDNF and insulin-like growth factor (IGF)
(252, 275). Additionally, the offspring of malnourished rats
exhibited changes in their central neurochemical profiles, such
as altered NMDA transmission and receptor composition, a
decrease in the synaptic NO in the hippocampus (252, 281),
enhanced GABA-ergic inputs to the hippocampus, and
unfavourable changes in the noradrenergic, serotonergic, and
dopaminergic transmission (252, 271, 282, 283). Consequently,
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nutrition-induced deficits in the synaptic transmission impaired
memory formation and the LTP (long-term potentiation) (252).
Barra et al. suggested that prenatal malnutrition-induced brain
disturbances depend on two mechanisms: i) the direct effect of
foetal programming on the brain, including negative epigenetic
changes in foetal progenitor cells and developing neurons, which
will form the cerebral cortex, hippocampus, and other brain
regions involved in neuroplasticity, and ii) the indirect effect on
the brain mediated by the postnatal development of obesity/
metabolic syndrome (271).

Rodriguez et al. conducted research on baboons, which have a
similar genetic constitution and developmental trajectory to
humans. The researchers observed that moderate global
nutrient restriction during pregnancy and lactation affected the
development of the offspring brain in a sex-specific manner (45).
The baboon offspring exposed to moderate maternal nutrient
restriction were less motivated and their working memory was
impaired. The female offspring learnt better than the males,
whose learning was impaired and they were more impulsive (45).

Natt et al. have described the enhancement of anxiety and
depressive behaviour in male, but not female mice offspring from
PR mothers (46). However, Akitake et al. have described a
decrease in motor activity and recognition memory in male
and female mice, while hippocampal synaptophysin level was
decreased only in females (10). Additionally, Bellinger et al. in
their study on rat offspring of LP mothers, have found that
locomotor activity was impaired in males but feeding behaviour
was impaired in females (14).
EFFECTS OF MATERNAL
UNDERNUTRITION ON BRAIN AND
BEHAVIOURAL OUTCOMES IN
OFFSPRING: HUMAN STUDIES

Two meta-analyses described the effects of maternal
malnutrition on the learning, memory, and behaviour of the
schoolchildren who were small for their gestational age. These
children exhibited cognitive impairments, lower verbal and
performance IQ, and more behavioural disorders than the
children in the control group (271, 284, 285).

Researchers also observed that prenatal exposure to famine
(during the Dutch famine) permanently affected the size of the
brain, and these changes were sex-dependent. A structural
magnetic resonance imaging was conducted on the Dutch
famine birth cohort members when they were about 67 years
old (54). The MRI showed that the total brain volume as well as
the volumes of grey and white matter were smaller only in the
early exposed males. The intracranial and total brain volumes of
the prenatally exposed males were smaller than the volumes of
the control subjects. Such changes were not observed in the
females (54). Smith and Reyes described that sons of
malnourished mothers are more likely to develop ASD and
ADHD than daughters (55).

To sum up, the results discussed above showed that multiple
animal models of over- and undernutrition as well as the data
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obtained in human studies provide convincing insight
supporting the influence of an unhealthy maternal diet on the
development of the brain and behavioural outcomes in offspring.
The authors of these studies also suggested sex-specific responses
to maternal diets and proposed various mechanisms underlying
such divergences, among which the epigenetic ones have been
the most explored recently. Imaging techniques, such as MRI, are
invaluable for further analysis of subtle differences in the brain
structures of the offspring to obese mothers, with emphasis on
possible sex-specific differences.
CONCLUSIONS AND FUTURE
DIRECTIONS – FROM LABORATORY TO
CLINICAL SETTINGS

This review provided the evidence based on epidemiological data
and animal models that both maternal over- and undernutrition
changes the metabolic profiles, alters the body weight and fat
content, and influences the offspring’s brain development and
behaviour. Moreover, the effects observed in offspring are long-
lasting. There is a relatively wide range of scientific publications
discussing changes in the peripheral nervous system (i.e.
hormones and metabolites), but there is not much data on
changes in the central nervous system (i.e. in the brain). Non-
invasive imaging techniques such as MRI could help to further
and more precisely investigate these changes not only within
different brain structures but also in the peripheral organs (e.g.
changes in the fat distribution). These techniques could be used
to monitor the development of diseases and during treatments.

As results from the studies conducted on animals and
humans, there are sex-specific differences in the effects of the
maternal diet on numerous physiological and anatomical traits.
Therefore, further research should be conducted, especially on
the epigenetic mechanisms through which both maternal over-
and undernutrition affects offspring. These epigenetic processes,
including DNA methylation, histone modification, chromatin
remodelling, and RNA-based mechanisms may affect gene
expression and change the foetal neuroendocrine system
through modification of the brain circuitry (286). Epigenetic
testing could be used in clinical settings as a biomarker for early
diagnosis of the risk of obesity and as a predictor of response to
obesity interventions. However, in epigenetic studies on humans
it is a challenge to select relevant tissues accessible to
examination such as peripheral blood cells (PBC), buccal
epithelial cells (BEC), or hair follicles. As both maternal and
paternal history and experiences exert influence through the
epigenomic information which is not contained in the DNA
sequence, including variations in sperm and oocyte cytosine
methylation and chromatin patterning, the influence of non-
coding RNAs and mitochondria of both maternal and paternal
lines should be considered (287, 288). Currently, very little is
known about the effects of the paternal metabolic status on the
outcomes of offspring. Moreover, the mechanisms involved in
the intergenerational transmission of undernutrition, obesity,
and diabetes are difficult to study in humans because of the
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complex relationships between the maternal and foetal
conditions, and the postnatal environmental factors.

Therefore, it is also necessary to continue using relevant animal
models of metabolic diseases. As the consumption of SSBs is a high
risk factor for the development of T2DM, and due to the fact that
endocrine disruptors lead to the development of metabolic
diseases, animal models with these variables should be
developed and employed. Although animal models will never be
able to fully mimic the human situation, they make it possible to
study the mechanisms through which the mother’s diet
programmes the organs and systems of the offspring. Moreover,
thanks to animal models of obesity, diabetes, and undernutrition it
is possible to search for prevention and treatment strategies, and to
increase the awareness of sex-specific risk factors. It is necessary to
conduct further research on the sex-dependent pathophysiological
mechanisms of undernutrition, obesity, and T2DM, because it
could contribute to more personalised care in the future.

The subject of this review seems to be particularly relevant at
the time of the pandemic and the post-COVID period, when
lockdowns reduce people’s physical activity and increase the
consumption of unhealthy food products, which results in higher
incidence of obesity. Therefore, it is necessary to develop and
implement local, national, and international prevention and
treatment strategies to slow down the rate of incidence of
obesity. These insights compel us to revise generally held
notions to accommodate the prospect that biological parenting,
including proper diet, commences well before birth, even prior to
conception. As the womb may be more important than home, it
is also necessary to urgently implement these strategies long
before conception as well as during the crucial and vulnerable
times of pregnancy and lactation.
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Grzęda et al. Animal Models: Obesity and Diabetes
Nephron Number in Juvenile Sheep. Br J Nutr (2005) 94(6):938–47. doi:
10.1079/BJN20051559

197. Morrison JL, Botting KJ, Dyer JL, Williams SJ, Thornburg KL, McMillen IC.
Restriction of Placental Function Alters Heart Development in the Sheep
Fetus. Am J Physiol Regul Integr Comp Physiol (2007) 293(1):R306–13. doi:
10.1152/ajpregu.00798.2006

198. Wang J, Ma H, Tong C, Zhang H, Lawlis GB, Li Y, et al. Overnutrition and
Maternal Obesity in Sheep Pregnancy Alter the JNK-IRS-1 Signaling
Cascades and Cardiac Function in the Fetal Heart. FASEB J (2010) 24
(6):2066–76. doi: 10.1096/fj.09-142315

199. Fan L, Lindsley SR, Comstock SM, Takahashi DL, Evans AE, He GW, et al.
Maternal High-Fat Diet Impacts Endothelial Function in Nonhuman
Primate Offspring. Int J Obes (Lond) (2013) 37(2):254–62. doi: 10.1038/
ijo.2012.42

200. Cerf ME. High Fat Programming and Cardiovascular Disease. Medicina
(Kaunas) (2018) 54(5):86. doi: 10.3390/medicina54050086

201. Moreira AS, Teixeira Teixeira M, da Silveira Osso F, Pereira RO, de Oliveira
Silva-Junior G, Garcia de Souza EP, et al. Left Ventricular Hypertrophy
Induced by Overnutrition Early in Life. Nutr Metab Cardiovasc Dis (2009) 19
(11):805–10. doi: 10.1016/j.numecd.2009.01.008

202. Habbout A, Guenancia C, Lorin J, Rigal E, Fassot C, Rochette L, et al.
Postnatal Overfeeding Causes Early Shifts in Gene Expression in the Heart
and Long-Term Alterations in Cardiometabolic and Oxidative Parameters.
PloS One (2013) 8(2):e56981. doi: 10.1371/journal.pone.0056981

203. Borengasser SJ, Zhong Y, Kang P, Lindsey F, Ronis MJ, Badger TM, et al.
Maternal Obesity Enhances White Adipose Tissue Differentiation and Alters
Genome-Scale DNA Methylation in Male Rat Offspring. Endocrinology
(2013) 154(11):4113–25. doi: 10.1210/en.2012-2255

204. Liang X, Yang Q, Fu X, Rogers CJ, Wang B, Pan H, et al. Maternal Obesity
Epigenetically Alters Visceral Fat Progenitor Cell Properties in Male
Offspring Mice. J Physiol (2016) 594(15):4453–66. doi: 10.1113/JP272123

205. Van De Maele K, Devlieger R, Gies I. In Utero Programming and Early Detection
of Cardiovascular Disease in the Offspring of Mothers With Obesity.
Atherosclerosis (2018) 275:182–95. doi: 10.1016/j.atherosclerosis.2018.06.016

206. Agarwal P, Morriseau TS, Kereliuk SM, Doucette CA, Wicklow BA, Dolinsky
VW. Maternal Obesity, Diabetes During Pregnancy and Epigenetic
Mechanisms That Influence the Deve lopmenta l Or ig ins of
Cardiometabolic Disease in the Offspring. Crit Rev Clin Lab Sci (2018) 55
(2):71–101. doi: 10.1080/10408363.2017.1422109

207. Neri C EA. Effects of Maternal Obesity on Fetal Programming: Molecular
Approaches. Cold Spring Harb Perspect Med (2016) 6(2):a026591. doi:
10.1101/cshperspect.a026591

208. Elahi MM, Cagampang FR, Mukhtar D, Anthony FW, Ohri SK, Hanson MA.
Long-Term Maternal High-Fat Feeding From Weaning Through Pregnancy and
Lactation Predisposes Offspring to Hypertension, Raised Plasma Lipids and Fatty
Liver in Mice. Br J Nutr (2009) 102(4):514–9. doi: 10.1017/S000711450820749X

209. Samuelsson AM, Morris A, Igosheva N, Kirk SL, Pombo JM, Coen CW, et al.
Evidence for Sympathetic Origins of Hypertension in Juvenile Offspring of
Obese Rats . Hypertension (2010) 55(1):76–82. doi : 10.1161/
HYPERTENSIONAHA.109.139402

210. Khan IY, Dekou V, Douglas G, Jensen R, Hanson MA, Poston L, et al. A
High-Fat Diet During Rat Pregnancy or Suckling Induces Cardiovascular
Dysfunction in Adult Offspring. Am J Physiol Regul Integr Comp Physiol
(2005) 288(1):R127–33. doi: 10.1152/ajpregu.00354.2004

211. Drake AJ, Reynolds RM. Impact of Maternal Obesity on Offspring Obesity
and Cardiometabolic Disease Risk. Reproduction (2010) 140(3):387–98. doi:
10.1530/REP-10-0077

212. Godfrey KM, Reynolds RM, Prescott SL, Nyirenda M, Jaddoe VW, Eriksson
JG, et al. Influence of Maternal Obesity on the Long-Term Health of
Offspring. Lancet Diabetes Endocrinol (2017) 5(1):53–64. doi: 10.1016/
S2213-8587(16)30107-3

213. Reynolds RM, Allan KM, Raja EA, Bhattacharya S, McNeill G, Hannaford
PC, et al. Maternal Obesity During Pregnancy and Premature Mortality
From Cardiovascular Event in Adult Offspring: Follow-Up of 1 323 275
Person Years. BMJ (2013) 347:f4539. doi: 10.1136/bmj.f4539

214. McMillen IC, Robinson JS. Developmental Origins of the Metabolic
Syndrome: Prediction, Plasticity, and Programming. Physiol Rev (2005) 85
(2):571–633. doi: 10.1152/physrev.00053.2003
Frontiers in Endocrinology | www.frontiersin.org 22
215. Mamun AA, O’Callaghan M, Callaway L, Williams G, Najman J, Lawlor DA.
Associations of Gestational Weight Gain With Offspring Body Mass Index
and Blood Pressure at 21 Years of Age: Evidence From a Birth Cohort Study.
Circulation (2009) 119(13):1720–7. doi: 10.1161/CIRCULATIONAHA.
108.813436

216. Oken E, Taveras EM, Kleinman KP, Rich-Edwards JW, Gillman MW.
Gestational Weight Gain and Child Adiposity at Age 3 Years. Am J Obstet
Gynecol (2007) 196(4):322 e1–8. doi: 10.1016/j.ajog.2006.11.027

217. Tam CHT, Ma RCW, Yuen LY, Ozaki R, Li AM, Hou Y, et al. The Impact of
Maternal Gestational Weight Gain on Cardiometabolic Risk Factors in
Children. Diabetologia (2018) 61(12):2539–48. doi: 10.1007/s00125-018-
4724-x

218. West NA, Crume TL, Maligie MA, Dabelea D. Cardiovascular Risk Factors
in Children Exposed to Maternal Diabetes In Utero. Diabetologia (2011) 54
(3):504–7. doi: 10.1007/s00125-010-2008-1

219. Salter A TE, Langley-Evans S. Influence of Maternal Nutrition on the
Metabolic Syndrome and Cardiovascular Risk in the Offspring. Clin
Lipidol (2009) 4(2):145–58. doi: 10.2217/clp.09.4

220. Chen P, Piaggi P, Traurig M, Bogardus C, Knowler WC, Baier LJ, et al.
Differential Methylation of Genes in Individuals Exposed to Maternal
Diabetes In Utero. Diabetologia (2017) 60(4):645–55. doi: 10.1007/s00125-
016-4203-1

221. Ruchat SM, Houde AA, Voisin G, St-Pierre J, Perron P, Baillargeon JP, et al.
Gestational Diabetes Mellitus Epigenetically Affects Genes Predominantly
Involved in Metabolic Diseases. Epigenetics (2013) 8(9):935–43. doi: 10.4161/
epi.25578

222. Kawamura M, Itoh H, Yura S, Mogami H, Fujii T, Makino H, et al. Isocaloric
High-Protein Diet Ameliorates Systolic Blood Pressure Increase and Cardiac
Remodeling Caused by Maternal Caloric Restriction in Adult Mouse
Offspring. Endocr J (2009) 56(5):679–89. doi: 10.1507/endocrj.K08E-286

223. Mossa F, Carter F, Walsh SW, Kenny DA, Smith GW, Ireland JL, et al.
Maternal Undernutrition in Cows Impairs Ovarian and Cardiovascular
Systems in Their Offspring. Biol Reprod (2013) 88(4):92. doi: 10.1095/
biolreprod.112.107235

224. Torrens C, Brawley L, Anthony FW, Dance CS, Dunn R, Jackson AA, et al.
Folate Supplementation During Pregnancy Improves Offspring
Cardiovascular Dysfunction Induced by Protein Restriction. Hypertension
(2006) 47(5):982–7. doi: 10.1161/01.HYP.0000215580.43711.d1

225. Rexhaj E, Bloch J, Jayet PY, Rimoldi SF, Dessen P, Mathieu C, et al. Fetal
Programming of Pulmonary Vascular Dysfunction in Mice: Role of
Epigenetic Mechanisms. Am J Physiol Heart Circ Physiol (2011) 301(1):
H247–52. doi: 10.1152/ajpheart.01309.2010

226. Vickers MH, Breier BH, McCarthy D, Gluckman PD. Sedentary Behavior
During Postnatal Life Is Determined by the Prenatal Environment and
Exacerbated by Postnatal Hypercaloric Nutrition. Am J Physiol Regul Integr
Comp Physiol (2003) 285(1):R271–3. doi: 10.1152/ajpregu.00051.2003

227. Barros MA, De Brito Alves JL, Nogueira VO, Wanderley AG, Costa-Silva JH.
Maternal Low-Protein Diet Induces Changes in the Cardiovascular
Autonomic Modulation in Male Rat Offspring. Nutr Metab Cardiovasc Dis
(2015) 25(1):123–30. doi: 10.1016/j.numecd.2014.07.011

228. Manning J, Vehaskari VM. Low Birth Weight-Associated Adult
Hypertension in the Rat. Pediatr Nephrol (2001) 16(5):417–22. doi:
10.1007/s004670000560

229. Goyal R, Longo LD. Maternal Protein Deprivation: Sexually Dimorphic
Programming of Hypertension in the Mouse.Hypertens Res (2013) 36(1):29–
35. doi: 10.1038/hr.2012.129

230. Gilbert JS, Lang AL, Grant AR, Nijland MJ. Maternal Nutrient Restriction in
Sheep: Hypertension and Decreased Nephron Number in Offspring at 9Months
of Age. J Physiol (2005) 565(Pt 1):137–47. doi: 10.1113/jphysiol.2005.084202

231. Tappia PS, Gabriel CA. Role of Nutrition in the Development of the Fetal
Cardiovascular System. Expert Rev Cardiovasc Ther (2006) 4(2):211–25. doi:
10.1586/14779072.4.2.211

232. Gilbert JS, Lang AL, Nijland MJ. Maternal Nutrient Restriction and the Fetal
Left Ventricle: Decreased Angiotensin Receptor Expression. Reprod Biol
Endocrinol (2005) 3:27. doi: 10.1186/1477-7827-3-27

233. Cheema KK, Dent MR, Saini HK, Aroutiounova N, Tappia PS. Prenatal
Exposure to Maternal Undernutrition Induces Adult Cardiac Dysfunction.
Br J Nutr (2005) 93(4):471–7. doi: 10.1079/BJN20041392
February 2022 | Volume 13 | Article 785674

https://doi.org/10.1079/BJN20051559
https://doi.org/10.1152/ajpregu.00798.2006
https://doi.org/10.1096/fj.09-142315
https://doi.org/10.1038/ijo.2012.42
https://doi.org/10.1038/ijo.2012.42
https://doi.org/10.3390/medicina54050086
https://doi.org/10.1016/j.numecd.2009.01.008
https://doi.org/10.1371/journal.pone.0056981
https://doi.org/10.1210/en.2012-2255
https://doi.org/10.1113/JP272123
https://doi.org/10.1016/j.atherosclerosis.2018.06.016
https://doi.org/10.1080/10408363.2017.1422109
https://doi.org/10.1101/cshperspect.a026591
https://doi.org/10.1017/S000711450820749X
https://doi.org/10.1161/HYPERTENSIONAHA.109.139402
https://doi.org/10.1161/HYPERTENSIONAHA.109.139402
https://doi.org/10.1152/ajpregu.00354.2004
https://doi.org/10.1530/REP-10-0077
https://doi.org/10.1016/S2213-8587(16)30107-3
https://doi.org/10.1016/S2213-8587(16)30107-3
https://doi.org/10.1136/bmj.f4539
https://doi.org/10.1152/physrev.00053.2003
https://doi.org/10.1161/CIRCULATIONAHA.108.813436
https://doi.org/10.1161/CIRCULATIONAHA.108.813436
https://doi.org/10.1016/j.ajog.2006.11.027
https://doi.org/10.1007/s00125-018-4724-x
https://doi.org/10.1007/s00125-018-4724-x
https://doi.org/10.1007/s00125-010-2008-1
https://doi.org/10.2217/clp.09.4
https://doi.org/10.1007/s00125-016-4203-1
https://doi.org/10.1007/s00125-016-4203-1
https://doi.org/10.4161/epi.25578
https://doi.org/10.4161/epi.25578
https://doi.org/10.1507/endocrj.K08E-286
https://doi.org/10.1095/biolreprod.112.107235
https://doi.org/10.1095/biolreprod.112.107235
https://doi.org/10.1161/01.HYP.0000215580.43711.d1
https://doi.org/10.1152/ajpheart.01309.2010
https://doi.org/10.1152/ajpregu.00051.2003
https://doi.org/10.1016/j.numecd.2014.07.011
https://doi.org/10.1007/s004670000560
https://doi.org/10.1038/hr.2012.129
https://doi.org/10.1113/jphysiol.2005.084202
https://doi.org/10.1586/14779072.4.2.211
https://doi.org/10.1186/1477-7827-3-27
https://doi.org/10.1079/BJN20041392
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles
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