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Abstract: This paper studies the target tracking problem ireless sensor networks
where sensor nodes are deployed randomly. To azhiagking accuracy constrained by
energy consumption, an energy-efficient optimizaticapproach that enables
reorganization of wireless sensor networks is psedo The approach includes three
phases which are related to prediction, localiraind recovery, respectively. A particle
filter algorithm is implemented on the sink nodefaoecast the future movement of the
target in the first prediction phase. Upon the clatipn of this phase, the most energy
efficient sensor nodes are awakened to collab@igtiocate the target. Energy efficiency
is evaluated by the ratio of mutual informationeoergy consumption. The recovery
phase is needed to improve the robustness of thpagh. It is performed when the
target is missed because of the incorrect predtetggt location. In order to recapture the
target by awakening additional sensor nodes agfepossible, a genetic-algorithm-based
mechanism is introduced to cover the recovery disashow that the proposed approach
has excellent tracking performance. Moreover, in cefficiently reduce energy
consumption, prolong network lifetime and reductvoek overheads.

Keywords: Wireless sensor networks, energy-efficient, optatian, reorganization-
enabled
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1. Introduction

Wireless sensor networks (WSNs) consist of manyloarly deployed wireless sensor nodes,
which have the ability to sense the environmengcess the information and disseminate data
wirelessly. A sink node, which has relative powkrdomputing and communication capacity, is
located in WSN for processing and exchanging datee to the inherent limitations of sensor nodes
such as small sensing scope, low sensing precaidnscanty energy resource, sensor nodes should
collaboratively measure a target constrained byggneonsumption. Most sensor nodes provide four
different modes for radio transmission: transnmeteive, idle and sleep. To conserve precious energy
resource, sensor nodes keep sleeping most ofrtige Tihe fewer sensor nodes are awakened, the less
energy is consumed. Therefore, sensing optimizasiam important issue in WSN and approaches are
introduced to settle this problem [1]. In this papee study sensing optimization strategies fogear
tracking in WSN. The problem is complicated becadsiction quality, tracking quality and energy
consumption are critical metrics [2].

To track a moving target, it needs to detect thesg@mce of the target first. With prediction-based
approaches, the number of awakened sensor noddstimtion can be sharply reduced. In [3-5], it is
assumed that sensor node observations are acem@teach sensor node can get the perfect target
location independently once the target moves itdosensing range. This assumption makes the
problem easy because the tracking results arereldiive to the detection results. In fact, sensmte
observation error is an important parameter whah affect prediction error and tracking accuraay. |
[6], the authors take account of the sensor noderehtion error and study a more realistic target
motion model. But the work doesn’'t pay attentiondaling with the missing targets, so that the
proposed approach isn’'t robust enough.

With the prediction results, the network alerts rappiate sensor nodes to locate the target in the
next tracking period. Because of the collaboraégssence, sensor node selection is a critical fssue
saving energy [2, 7-9]. In [2], the authors propdise information-driven sensor querying (IDSQ)
approach, where the selected sensor nodes cabamlevely increase target location informationhwit
low communication energy consumption. Time efficieris not considered in the work and the
approach is also not energy efficient enough. éf skelected sensor node can’t detect the target, the
target location information is still transmittedttee sensor node which causes extra energy waste. T
approaches in [2] and [7] are damageable as noaméesh to recovery from target missing.

Because of the uncertainty of target mobility ardser node detection ability, blind sensor node
may appear during collaborative target location].[Especially when the first selected sensor node
can’'t detect the target, none of the target locaitrdormation can be gained, which implies that the
target totally missed in this tracking period. hat case, the network needs to be reorganizedotarea
the target. Network reorganization increases taggatching area by awakening extra sleeping sensor
nodes. In [3, 5], the network first awakens allghdior sensor nodes around the current sensor Hode.
the target still can’t be found, all the sensor esd@h the network are awakened. This process can
guarantee a large probability to find the targat,itis not energy efficient enough. In [10], a gestric
method is introduced. It's fast, but not practieaibithe sensor node detection ability is uncertain
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In this paper, we propose an energy-efficient ogtition approach that enables reorganization of
WSN. The proposed approach contains three phasaticipon phase, localization phase and recovery
phase. The sink node performs particle filter tedpst target trajectory and awakens the sensor node
nearest to the predicted result. In the localizajdhase, the most energy-efficient sensor node is
selected to apply a measurement and update targeibation in each step. Energy efficiency
optimization and time efficiency are both considene the sensor node selection. To improve the
robustness of the approach, a recovery mechaniperisrmed to find the target again in case that th
selected senor node can’t detect the target. Sevmie selection for recovery is based on a pre-
performed genetic algorithm (GA). We show that fpineposed approach is energy-efficient and can
prolong the lifetime of WSN.

The rest of the paper is organized as follows: iBec@ provides system architecture and basic
models of WSN for later analysis. In Section 3, present the details of our approach, including
prediction phase, localization phase and recovdrgs@. In Section 4, experimental results are
presented to evaluate the performance of the peabapproach. Finally, the conclusion is given in
Section 5.

2. Target Trackingin Wireless Sensor Network

In this section, we describe the system architectifirtarget tracking in wireless sensor network,
and set up assumptions on basic models for illistraand later analysis, including bearing sensor
node detection model, observation and collaboratimuel, energy consumption model and linear
target motion model.

2.1. System architecture

Here, we assume that stationary sensor nodes dicgnolly distributed in the sensing field. All of
the sensor nodes have four different radio modesisinit, receive, idle and sleep. Sleep mode
consumes the least power compared with other mdaaesupport sleep mode, a low power paging
channel in the physic layer, which keeps runninfubitduty, is used to communicate among sensor
nodes [11]. Through this low-power paging chanaetensor node can be awakened by other sensor
node or by the sink node. Each sensor node camdaeteits location by exploiting Global Position
System (GPS). Sensor nodes report the informatimutathemselves (such as locations) to the sink
node periodically. The sensor node broadcastsnfwemation to the network and makes each one
receive the whole network knowledge. With power tomntechnology, sensor nodes can change
communication range in order to reduce radio eneagpgumption and improve connectivity [12]. For
each sensor node, any other sensor nodes in its1goivation range could become its neighborhoods.
Due to the limited transmission ability of sensodes, data transmission is usually multi-hop (frsm
sensor node to another sensor node, towards teirtkenode). The sink node has relatively powerful
transmission capacity. It can send data to anyosermdes in the network directly, if the sensirgdi
is not very large.
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2.2. Sensor node probability detection model

Because wireless sensor nodes have limited seresigg, a sensor node could monitor a target only
when the target moves into its detection rangea®inletection model and probability model are both
presented to describe detection capacity of sermies [13, 14]. In fact, sensor node detectionshean
easily affected by environmental noise. The detectesult is uncertain, especially when the taiget
near the edge of the detection range where thalsignse-ratio (SNR) is small. In order to describe

the uncertainty of sensor node detections, we assuprobability model in this paper. The probaypilit
of point q detected by sensor nodeis given as below:

0 if r+r,<d(s.q)
pe,(§) =€ if r—r, <d(s,q)<r +r, W
1 if d(s,q)sr-r,

where the superscript of pf’y(s) denotes detection, and the subscrgysdenote the coordinates of
point g; r is the detection range, is the detection uncertainty rangifs,q) is the Euclidean
distance between sensor nogleand the poing; A, 5, 5, are parameters of the detection model,
a,=r,—r+d(s,q) anda, =r,+r-d(s,q). Figure 1 shows detection probabilities with diéfet
d(s,q). It is assumed that the detection range is urtt the range of detection error is 0.4 units.

Different from binary detection model, probabilityodel doesn’'t have a step change, so it's more
realistic to describe detection capacity of semsaies.

Figure 1. Sensor node detection model with different pararsete
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If point g can be detected by several sensor nodes, théo@lave detection probability is:

o, (S.) =1—§|D‘S|W(1— SMED) 2)
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where S, is the set of detectable sensor nodes. We défateatpoint can be detected efficiently if

Pry (So) 2 P 3
where pj is the efficient detection threshold.

2.3. Observation and collaboration model

In WSN, targets are present in a location domdme Joal of tracking is to locate the target to some
accuracy in each tracking period. As a single sensde is accuracy-limited, aggregating sensor node

observations is generally used to improve trackioguracy. It is assumed that bearing sensor nodes a
randomly scattered in the network. L(et,, VY, ) and (X, y,) denote the target location and sensor

node location, respectively. The bearing sensoe mmdxservation is [15]:

6 =arctan?@ s 4y (4)
Xar ~%s
wherew, is the perturbation noise, which can be simplitisdzero mean Gaussian noise.

Aggregating sensor node observations can reducetattyet location distribution error. With

Bayesian estimation, sensor node observations ednsked step by step [8, 16]. Denote target lonatio
random and its realization value X¥yand x, respectively. LeZ, andz, denote thdath awakened

sensor node observation random and its realizatabme, respectively. The posterior target location
distribution incorporated with thi¢éh awakened sensor node observation is [8]:

p(X|Z1:Zf"12j =z )
—CPle, 102 = 2 2= 7. ©)
(x| Z, =z, A Zj—l)

whereC is a normalization constant. If sensor node olagems are conditionally independent with
each other conditioned on target location, Equat)rtan be expressed as below for short.

P(X[z,,z)=Cp(z |XIP (X[Z+v- .7, (6)
We use root-mean-square-error (RMSE) to measuratbet location distribution estimation error
RMSE(X) =+ E(Jx -X][) (7)
whereX is the true value of target locatioR(])l is the expectation of target location distribution

p(X|2z,....z ); |l is the Euclidean distance. As the true targettionax is actually unknown, we use
E(x) to approximate it.
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2.4. Sensor node energy consumption model

A wireless bearing sensor node consists of segeraponents, including MCU (micro control unit),
radio, sensors and memory. Each component constiffeegnt amounts of power in different modes.
Table 1 shows the basic energy consumption ofreiffecomponents.

Table 1. Energy consumed by different components of acemsde.

Component Mode Energy consumption (mW)
Radio Transmission 35+R
Radio Receiving 35+ K
Sensor Active 10
MCU Active 20

Here, B, and B, denote the transmission power and receiving posespectively. Their values are

relative to the characteristics of the radio [17]s assumed that energy consumed by transmittikg
bit packetd distance is:

E, (k,d) =R (k,d) Ot, (k) =k{E, +&,,,, 1) ®)

where E is the transmitter circuitry energy, . is the transmit amplifier energyt, (k) is the time
for transmittingk bit data. To receive the same packet, a sens@ stoolld cost energl,:

E.(k,d) = Py(k,d)Ot. (k) =K E,, 9)

where E,, is the receiver circuitry energyit,(k) is the time for receivingk bit data;lt; (k) and
Ut,(k) are determined by radio transmission rate. Vatdi¢sese parameters are shown in Table

Table 2. Radio energy consumption of a sensor node.

Parameters Value
Transmitter circuitry E,) 50nJ/bit

Transmit amplifier €, ) 100pJ/bit/M
Receiver circuitry E,,) 50nJ/bit
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2.5. Linear target motion model
In our approach, the sink node predicts target ma&ve according to the target motion model. For

the ground target tracking applications in a 2-disi@enal domain, the state vector of the movingetrg
can be expressed as below:

X = (%% YY) (10)

where(x, Y;) is the target location at timend (%, ¥,) is the target velocity at tinte
For linear cases, target state transition funateombe expressed by [18]:

X =FX GV, (11)

whereF is the state transition matriX/, is the process noise at tirjeG is the process noise matrix.
Given the target tracking peridd, the expressions df and G are given as below:

1T 0O T2/2 0
0100
F= G=| | 0 (12)
00 1T 0 T2/2
0001 o T

3. Optimal Strategiesfor Target Tracking Sensing

Based on the system architecture and basic maalelenergy-efficient optimization approach that
enables reorganization of WSN is presented ingbddion. The basic idea of the approach is to educ
the number of awakened sensor nodes.

3.1. Target motion prediction phase

In a target tracking network, sensor nodes collaiiely locate the target and then report the tesul
to the sink node. Hence, the sink node keeps thaewimformation about the tracked target. It is
assumed that if there is no target in the sens@ild, fsome sensor nodes are still awakened peéithglic
to keep enough coverage of the sensing field. Wthésrget moves into the sensing field, it can be
detected, located and reported to the sink nodesdmge active sensor nodes. When the initial
information about the target is enough, the sintenbas the ability to anticipate the future moveimen
of the target and activate the sensor nodes nagdssaonitor it.

The sink node has the capacity to implement somealeomputing prediction algorithm. Here, we
propose the particle filter algorithm for predictioThe particle filter is a nonparametric methadds|
well suited to the target tracking problem in WSiNbgre target distributions may be non-Gaussian.

Basic steps of particle filter algorithm is givenlaelow [19-21]:
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1) Initialize particles and importance weights.
Particles are initialized to satisfy the prior distition. Importance weights of thth particle in the
kth step prediction are initialized to be

W =1/N_, i=1,...N, (13)

where N, is the number of particles.

2) Update particles and importance weights
Particles are updated to be

X =Fx +GV(k-1i) (14)

wherei =1,--,N_; ¥ is the predicted target state of tite particle in thekth step;F andG are

defined in Section 2.5.
With sensor node observations, importance weigttsipdated to be

o p(zx0) p(x0|x2)

W =w ——— , {15
(X )
where p(0J and q(J are both conditional probabilities.
Then, importance weights should be normalized to be
i) — \nfi N j
o) =) /3w (16)
3) Resample particles
It is defined that efficient sample size is:
N, (17)

whereVar(w,E‘)) is derived from residual resampling. M is less than the theoretical threshold,
particles should be resampled with importance wsiglf’, =1/N_.

4) Update target state
NS Al N
X =2 50 D) (18)
i=1

where y, is the updated target state in ke step.
The predicted target location in tkila step can be derived from Equation (14):
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Ny
X, = Z‘;dk"/Ns (19)
i=1
where X" is the location part of"" .

In the tracking applications, the model of targettion is uncertain. The collaborative localization
is also accuracy-limited. These two factors both en#tke system model incorrect, which brings
considerable prediction error [22].

3.2. Collaborative target localization phase

When the prediction phase is finished, a localmaphase is performed to select sensor nodes for
collaborative localization. The collaborative tardetalization phase is analogous with the IDSQ
proposed in [2]. But we pay more attention to threet constraint and energy efficiency, and a
mechanism dealing with the missing target is coei@iin this phase, which makes our approach robust
enough. Figure 2 displays the localization scendficstly, the sink node awakens a sensor node to
monitor the target according to the predicted talgeation. The active sensor node, also called the
predicted sensor node, collects the target infdomand produces a target location distribution.nfhe
it activates another sensor node for observatiosdmge metrics. For simplicity, we call the sensor
node performing selectiodesignator and the selected sensor natisignee. The designee applies a
measurement to the target. A “Yes” message isteetite designator if the designee detects thettarge
and a “No” message if not. When the designatorivesea “Yes” massage, it transmits the target
location distribution to the designee and then dussk to sleep. The designee then becomes a new
designator. It updates the target location distiilbuand awakens another sensor node. By repeatedly
awakening a new sensor node to monitor the tatbet,uncertainty of target location distribution
reduces. Collaboration stops when termination don are satisfied. At last, the current designato
reports the collaboration result to the sink noadle @ tracking period finishes.

Figure2. Collaborative target localization scenario.

Sensor node

Sink node

Target

Predicted target location
Awaken & Feedback
Data transmission

Prediction

From the information-theoretic point of view, sensmde observations increase the information
about the target. The goal of sensor node seleidiomfind the most energy-effective sensor node in
each step so as to prolong the life-time of thewodt. As sensor node selection implies data
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transmission, the objective function for sensorenedlection should be a combination of information
gain and energy consumption. It can be defined as:

F - #inf

20
wCOSt ( )

where @], is the information gained by sensor node obsemwaty, . is the energy consumption.

cost

Thus, the selected sensor nadghould satisfy:

i0s

i =argma &j (21)

cost
where S is the set of candidate sensor nodes. It can fieedeas:

S={sensoi | | x-"k<r+r, i= 1,2,.N} (22)

where N is the number of sensor nodes in the netwﬁiﬁkts the Euclidian distance;+r, is the
maximal detection ranges; is the location of sensor nodeX is the true target location which is
unknown actually. Here, we udg(x) to approximatex.

How to evaluate the expected information gain ef@nsor node observation is the core problem

of sensor node selection. In previous works, thenaf mutual information was introduced [23, 24].
The mutual information (X, Z;) between the target location randofnand the predicted sensor node

observation randornz, is:

p(x.2)
1(X,2,) = 12)log—22 %) gz
x20= I e on oy 03

p(x,z)=p(z IX)p (), P@EFYP(XZ.

XOX

According to Section 2.4, if sensor nadewvakens sensor nofldat should cost

Weos= 3 | ——K(E, + 6,y 02, +E, )+ E, (24)

p.al| Tpq

wherea . represents the reliability of the transmissionwleein sensor node and sensor node,
a,,0[0,1]; k is the data needed to be transmittEdis the energy consumed to awaken a sensor
node;l is the shortest routing from sensor node sensor nodg As each sensor node knows any

others’ positions, the shortest routing between sgasor nodes can be calculated by the Dijkstra
algorithm [25]. Thus, Equation (21) can be expressed
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i =arg r&a{ Epo ){ Io%} pzq:m l:al [k(Ee + € B2+ Ere) + ECD (25)

At the beginning of each tracking period, theraasprior target distribution. It is assumed thatlea
sensor node has the same mutual information. Bedtesenergy consumed by the sink node can be
ignored, Equation (25) can be simplified as

i =argmin| x - (26)

wherex; denotes location of sensor nade is the predicted target location.

As sensor nodes are randomly scattered, it's pessilat several sensor nodes have the same
distance to the predicted target location. If be,dne closest to the sink node is selected.

The selected sensor node needs to update the thsgebution by its measurement and prior
distribution. The whole packet transmitted is dedime Figure 3, wheré x andl]y is the grid size of
target location distribution. Packet head contaosrce and destination IDs, packet size and other
useful information. It is small enough to be igrlb@mpared with the packet body. The grid size of
target distribution affects localization precisiavhich is determined by application.

Figure 3. Packet format for target location distribution.

Packet body
Packet
head | }------- X
A
probability
X +aXx
TyFay
‘probability |

Obviously, transmitting the whole information abdhbé target location distribution may augment
packet size and waste energy. We set a transmipsadrability thresholdp;, to decide whether the

point information should be transmitted. Lp}, denote the probability of target location disttiba
at point(x, y). The information transmission probabilip;y of point (x,y) can be expressed as:
1 if py, OhG, 2
s { et e (@7)
0 If px,y pr,y < pth

where p;’,y is the collaborative detection probability complby Equation (2).

As the probability model is introduced to descrsieasor node detection capacity (see Section 2.2),
there’s a problem with what to do if an active sgnsode can’'t detect the target. Because
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environmental impacts always change slowly, thessemode may remain blind to the target for a
while. Thus, using a sensor node to observe suvedsss impossible to improve detection probability
If the blind sensor node is also the predicted aensde, a recovery mechanism proposed below is
performed to find the target. If a blind sensor@agpears during the collaboration procedure, alsim
method is then used. Obviously, when a designatotsvto select a sensor node, it needs to compute
Equation (20) for all of the candidate sensor nottexase that the optimal sensor node misses the
target, the designator could awaken the sub opserador node. If the target still can’'t be detectiee
less optimal sensor node is designated. Thus, ttextdd probability of the target can be greatly
improved. To avoid awakening too many sensor noslegh is a waste of time, it is assumed that the
awakening steps can’'t be more than a constant numbe whose value is determined by the
maximum speed the network can track and the allavpper bound of the target localization error.
Collaboration stops in three cases. 1) The predéfiarget localization accuracy is satisfied. 2) All
candidate sensor nodes have been awakened. To soigl sensor nodes depleting energy too fast,
which shortens the lifetime of the network, a h&tirziis proposed that each sensor node can only be
awakened no more than one time in a single traggergd. 3) Awakening steps is larger thiap. It
defines that the target is when the collaboration stops in case 1 @atwhen the collaboration stops
in case 2 or 3.

3.3. Recovery phase for tracking failure

Considering the unpredictable behavior of the tamyed the uncertainty of the sensor node
detection ability, it is impossible to guarante@(% probability that the predicted sensor node can
detect the target. The whole tracking process manteerupted just because the target is missed in a
tracking period. To avoid these situations, a repoueechanism is necessary to recapture the target.

The essential of recovery mechanism is to increhsecbverage by awakening extra sleeping
sensor nodes. While the coverage is satisfiedntimeber of the awakened sensor nodes should be as
few as possible. Thus, it also can be defined axa koverage optimization problem. As detection
probability model is introduced in Section 2.2siimpossible to use geometric method [10] to eséma
coverage rate. However, the problem can be easifed by genetic algorithm (GA). GA is a
traditional evolution algorithm which is widely use global search problems. It can get approximate
optimal solutions easily, but it converges slowbanthe optimal solution. Running GA real-timely
during target tracking on the sink node is impdssénd unnecessary. In fact, GA optimized result is
only relative to the network topology which keemsstant in a fairly long time. Sensor nodes report
their information to the sink node periodicallyughthe sink node keeps the current topology of the
network. It has enough time to perform GA and tkiisws which sensor nodes should be awakened to
detect at any moment.

Let v, denote the maximum target speed the network eak.tiet A" denote the recovery area

at tracking time.

A ={(x ) [x =+ =y sy, 1T v 28)
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where(x, y) denotes a point location of sensing fiek]; is the allowed upper bound of target
localization error;(x{™™, y¢~™) is the collaborative target location at timer [T ; T is the tracking

period; 7 is the time interval between the current trackiegod and the last tracking period when the

target can be located.

Recovery mechanism is displayed in Figure 4, whiegedashed circle is the detection range and the
solid circle denotes the recovery area. When thke sode receives a “No” message, it awakens the
sensor nodes around the blind sensor node to thweecovery area. We call the sensor node selected
for recovery mechanism thiecovery sensor node. If some recovery sensor nodes find the targety th
report to the sink node and the one nearest ttatget is designated to be the new designator.

Figure 4. Recovery mechanism for target tracking failure.

O Sensor node

® Blind sensor node
o | ¥ Recovery sensor node

® Sink node

° 1@ Target

o | ® Predicted target location
<+— Report

<=-= Prediction

The ideal sensor node selection mechanism for regguecess is that the sensor nodes selected
only cover the recovery area. It needs to be dore real-time manner, which is impossible for GA.
Here, we use an approximate approach that contamsteps. First, candidate sensor nodes that can
cover the whole sensing field are determined by @ Aproposed in [26]. Second, the useful sensor
nodes which can efficiently cover the recovery aneaselected.

Using GA to cover the whole sensing field is ndficlilt. It is assumed that there akesensor
nodes in the network. Ledn denote the state of sensor nodehe value ofsn is defined as below:

_ |1 if sensor node= active 20]
0 if sensor node=deep
Thus, the state vector of the whole network candpeessed as:
SN=[sn,,sn, sy ] (30)

Obviously, efficient coverage rate and energy corexli to awaken sensor nodes are both crucial
metrics to select recovery sensor nodes. In tipgmpave define the fitness function of GA for séleg

recovery sensor nodes:
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. _ f(C)
Fit = " (31)

r

whereC, is the efficient coverage rate of the selectedsenodesC. denotes the energy consumed
to awaken the selected sensor nodgd) is a function to control the importance weightcoiverage

rate in optimized solution. For simplicity, we dedi that the optimal coverage rate should be larger
than a threshold,, J(0,1]. The function can be expressed as:

Ce If Ce 2 Cmax E:th
f(C.)= . 32)
O If Ce < Cmax |]:th

whereC__, is the maximal coverage rate achieved by awakealirggnsor nodes in the network.
Efficient coverage rat€, can be calculated by a grid algorithm

C == (33)

wheren, is the number of grids that can be covered efiitye It is calculated by the sensor node
detection model (see Section 2.8);is the number of all grids. The grid size affetts toverage

precision.
Energy consumed for recove@y is only relative to the number of the active semsmles, that is:

C = Z sn [E, (34)

where E, is the same definition as that in Equation (24).

GA optimization is used to find out the networktstaector that has the maximal fithess value. The
termination condition of GA is the maximum genearatG,_,. If G, is not very large, GA could get

several solutions with different initial populatgnThe solution that can cover the recovery aread mos
energy-efficiently (i.e., has the maximal fitnesslue, whereC, excludes the energy consumed to
awaken the current blind sensor node) is selected.

The recovery mechanism is designed with two steps:

1) GA_Cover. As we use GA to do global optimizatinstead of local optimization, the selected
sensor nodes located inside the recovery area magatisfy the coverage rate. In Figure 5, some
selected sensor node located outside the recoveaymovides a great coverage to the area. It also
seems that the farther a sensor node is away fnenedge of recovery area, the less it contribuges t

the coverage of the area. Thus, to simply adaptet@very sensor node, we define an awakening area
with the radiusr,

r,=rl+p) (35)
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wherer, is the radius of the recovery area. It can beutalled asr, =v,Ot+¢&,; pis a adapting

coefficient. It is relative to the parameters of ensor node detection model and varies with senso
node locations.

Sensor nodes located inside the awakening arefirstreawakened to detect the target. The GA
Cover step could ensure a nearly maximal probghdirecapture the target.

Figure 5. Recovery sensor nodes selected by GA.

® GA selected sensor node
% Recovery sensor node
® Blind sensor node
i — Recovery area
---= Awakening area
-------- Detection range

2) Complement. If the GA_Cover step still can’tdithe target, a Complement step is performed to
cover the left area. This guarantees the maximédgtnidty to find the target.

The recovery phase is efficient only if some semsales can detect the target. If the target fatls in
a blind spot, no sensor node can detect it. In siades, though the target can not be located, the
recovery process is still performed, because drtlye recovery process can'’t find the target, tiné s
node can determine that the target is in a blird. sp

4. Experimental Results

Here, we present the results of several experimgenesvaluate the performance of our energy-
efficient optimal strategies for target trackingsi@g.

4.1. Experimental setup

In our experiments, 300 sensor nodes are unifodistyibuted in a 300 m x 300 m area. The sink
node is located at (150 m, 150 m). Each sensor hage detection radius of 30 m, and the range of
detection error is 12 m. The parameters of the sarmte detection model ake1, 3,=1, 3,=0.5[used
in Equation (1)]A point in the sensing field could be efficientlipwered only when the detection
probability exceeds 0.9. Sensor nodes can dirdetky to others in the range of 90 m with the
reliability o =1. Sensor nodes should keep radio on for 40 msgorerdata integrity. They also need
30 ms for sampling and computing to reach a cormiugAccording to Table 1, the energy consumed
to awaken a sensor node is:
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E, =35mW 40ns+( 10nW + 26nW)03fs= 2.8 IBJ

The tracking period is determined by the applicatoml it is set to be 2 s. The sensing field is
divided into rectangles (1 m x 1 m) and (6 m x 6far)target distribution transmission and recovery,
respectively. The threshold of transmission prolitgbik set to bep;, =10° experientially. The

network is designed to track vehicles with the madivelocity less than 30 m/s. In a tracking period
it allows to awaken sensor nodes withif) =5 steps. GA population size is 100. The maximum

generation is 100. The probability of crossover andation is 0.950 and 0.050, respectively. We set
the minimum coverage threshoty =95.0% to guarantee enough coverage. The recovery range
adapting coefficient is set to hg=1.1 according to the sensor node locations and paemmet the
detection models.

In this paper, a vehicle moves through the senfshd, with a maximum velocity of 20 m/s and a
maximum acceleration of 4 ni/sFigure 6 shows the target tracking scenario. Télgicle moves
randomly in the sensing field, and the whole 60Kirag periods are studied.

Figure 6. Sensor node deployment and tracked vehicle tajec
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The experiments consist of two parts. Firstly, tragkprocedures are presented to display what
happens in our approach. Then, impacts of locatimagrror upper bound, and sensor node

observation standard deviatian are studied. Energy consumption is used to evathatperformance
of the proposed approach.
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4.2. Vehicle tracking procedures

It is assumed that the standard deviation of Ganssensor node model ¢s=8°. The allowed
upper bound of target localization errorgs=4m. When the target moves into the sensing field,
some active sensor nodes catch the target anceldcdt is assumed that in the first two tracking
periods, the sink node doesn’t perform predictibages because past information of target locaisons
not enough. In the left 58 tracking periods, pradicerrors are studied.

Figure 7 shows the prediction results, which ingidhat most of the prediction errors are less than
8 m, with relative errors less than 2.7%. The semsmites nearest to the prediction results are
awakened and apply measurements to the target. iStemce between target and the nearest sensor
node determines whether the recovery mechanisnernformed. Prediction error and sensor node
density are both decisive factors to the distaRigure 7 indicates that all of the distances ase than
20 m (with the detection probability of 0.972) eptat time 60 s. At this instant, the target moves
through a sparsely deployed region, and the prdiisensor node distance is more than 35 m (with the
detection probability less than 0.003).

If there’s no recovery mechanism, the target wdnddmissed after tracking for 60 s. To avoid this
situation, the recovery mechanism is performeddteit the target. Figure 8 displays the recovery
procedure, wheré&+" denotes the true target location and “x” dendtes predicted target location.
The thin solid line denotes the sensor node detecsinge. The thick solid line denotes the awakening
range. The dashed line denotes the target trajeatmryhe grayscale represents the coverage ratie. Wi
GA optimization, 53 sensor nodes are selected verc®6.5% of the whole sensing field. There are 31
sensor nodes located inside the recovery areagrlgdive of them are awakened to detect the target
which can cover 97.2% of the recovery area.

Figure 7. Prediction error and distance between prediaiedtion and the predicted sensor node.
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Figure 8. Recovery mechanism to find the missing target.
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Tracking accuracy, which is indicated in Figures9the most important metric in the target tracking
application. The horizontal solid line in the figuepresents the localization error upper bound wof. 4
In most of the tracking periods, localization esrare less than the allowed target localizatioorerr
upper bound except at time 40 s and 60 s. In femtking accuracy is reactive to the sensor node
locations. At time 40 s, the target is located2a5(1 m, 204.9 m), where sensor nodes are scattered
sparsely around. Because there are not enoughrseades to provide reliable observations, the
collaborative localization stops when the awakerstgpsN, is achieved. At time 60 s, a recovery
mechanism is performed, which means an extra stepseéd to find the target. Thus, there are no
enough steps left to locate the target accurately.

Figure 9. Tracking result with a localization error uppeuhd of 4 m.
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Figure 10. Energy consumption of WSN in 60 tracking periods.
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Energy consumption in each tracking period is pregskeim Figure 10, where the energy consumed
by communication between sensor nodes and the revae is ignored. The energy consumption
without optimization is calculated by a simple maaism that can be expressed as below:

1. All the sensor nodes located within the range ofm24round the predicted target location are
awakened to detect the target in each trackinggeri

2. Sensor node measurements are aggregated in al garisar node. The central sensor node is
selected from all the sensor nodes in the rang&ah, which can minimize the communication
energy.

3. The range 24 m is the lower bound that the targetbealocated in each tracking period with the

sensor node distribution and target trajectory showrigure 6.

The energy consumption with optimization is caleedby our approach. We divide energy with
optimization into two parts for analysis. Awakeniagergy represent the energy consumed to keep
sensor nodes active, which is proportional to thekened sensor node number. Communication
energy is determined by the amount of transmittath cand distance. It seems that the energy
consumption of our approach is much less thandh#te mechanism without optimization in each
tracking period except when there is a recoveryggss. Furthermore, more sensor nodes awakened
means more energy consumed for communication.

4.3. Impact of localization error upper bound

Prediction error grows very quickly with an incarresystem model. The upper bound of
localization errorg, is a crucial parameter in the system model. Thaeval £, implies the required

tracking accuracy and has a great influence optbeiction result. Therefore, it's important to azal
impact of &, on the total energy consumption. In general, tilaevof ¢, is determined by applications.

Different from other parameters, an applicationaglsvpresents its requirement in the way of “The
maximum location error should be no more than”. Thiusre is space to choose an appropriate value
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to reduce the energy consumption. Here, we asshiatdite value ok, is allowed to be less than 5%

of sensing field. We study the energy consumptibhocalization and recovery when the value of
g,varies from 1 m to 15 m. Energy consumptions are@ttegage of 100 iterations.

Figure 11. Impact of localization error upper bound on egergnsumption.
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Impact of ¢, is presented in Figure 11. Two parts of energysaomption are analyzed: localization

energy, which is computed by Equation (24) and repoenergy, which is derived by Equation (34). It
seems that wheg, is less than 5 m, the network rarely needs regoserthat only a little energy is

consumed for recovery. When the valuesgpfincreases, measured noise in the particle filsesrand

results in worse PF prediction results. When thedioted target locations can no longer correctly

reflect the true target locations, the frequencyemfovery performing increases and more energy is
consumed for recovery. When the valuespfis more than 12 m, recovery mechanisms are peéetrm

much more frequently, along with the range of respvarea increasing. Both two factors make the

recovery energy consumes quickly. However, theg@neonsumed for localization has the opposite
trend. When the value &f, is small, it's hard for sensor nodes to reach ltdwalization accuracy

within the maximal awakening steps, . Therefore, energy consumed for localization keeigh.

When the error becomes more than 7 m, in mosteofritking periods, it only needs two active sensor
nodes for localization, and the energy for locaiaakeeps low.
The total energy consumption can be computed as:

E[otal = EP + EL + ER (36)

where E,, E, and E; denote the energy consumed in the prediction pHasalization phase and

recovery phase, respectively. Similar to Figurev®,ignore the energy consumed by communications
between sensor nodes and the sink node. The taayeconsumption is:

Eoa = EL*Eg (37)
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The total energy consumption with differegtis shown in Figure 12. It seems that the netwak h
the minimal energy cost when the valuespfis set to be 7 m. As it's defined at the end dftida 3.2,

the Out target rate is 8.33%. Certainly, if theleggpion requires that the localization error isde¢han
7m, the energy consumption reduces when the ases.r

Figure 12. Total energy consumption of WSN vs. localizatioreupper bound.
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4.4. Impact of sensor node observation deviation

Standard deviation of sensor node observatiois another crucial factor that impacts the network
energy consumption. Moreovey, is closely relative to the overhead of sensor n@ies/iously, small
o value makes sensor nodes expensive. Because td#rggenumber of sensor nodes, WSN is very
sensitive to the overheads of sensor node. To pydloa lifetime of the network and reduce network
overhead as well, it is important to design thevoek with appropriate sensor node accuracy.

Figure 13. Impact of sensor node observation standard demiah energy consumption.
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Figure 13 shows the impact of on the network energy consumption, which are trerages of
100 iterations. When the value af increases, the network needs more sensor nodeslfaborative
sensing so that the localization error could bellemthan ¢, . It also becomes much more difficult to
reach the accuracy within the limited awakeningstdBoth two reasons make recovery mechanism
performs more frequently, and the energy consumpgtiolocalization and recovery rises.

5. Conclusions

Target tracking applications in WSN require higlckiag accuracy and low energy consumption.
This paper proposes an energy-efficient optimizasipproach that enables reorganization of WSNSs.
The basic idea of the approach is to keep sensagsnsigeping as long as possible. The proposed
target tracking approach typically goes through tithe phases of prediction and localization. In the
prediction phase, the sink node performs a parfiltér algorithm to forecast target movement based
on past information and awakens a sensor nodetinegredicted target location. When the prediction
is over, the localization phase starts immediatéhye current active sensor node calculates mutual
information and energy consumption of candidatesgemodes, and then selects the most energy-
efficient sensor node to locate target collaboed§ivin cases where the current sensor node id bdin
the target, the recovery phase is added after rbgighion phase to recapture the target by awakenin
extra sensor nodes which are selected by a prefpeetl genetic algorithm. At last, a series of
experiments are carried out to investigate thegperdince of our approach. The impacts of localization
error upper bound and standard sensor node obsendsviation are also studied. It is verified that
the proposed approach can satisfy tracking accuwvatly Moreover, it can reduce energy consumption,
prolong the lifetime of network and decrease nekvasrerheads.
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