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Abstract

MAP kinases are integral to the mechanisms by which cells respond to a wide variety of environmental stresses. In
Caenorhabditis elegans, the KGB-1 JNK signaling pathway regulates the response to heavy metal stress. In this study, we
identified FOS-1, a bZIP transcription factor, as a target of KGB-1-mediated phosphorylation. We further identified two
transcriptional targets of the KGB-1 pathway, kreg-1 and kreg-2/lys-3, which are required for the defense against heavy metal
stress. FOS-1 plays a critical role in the transcriptional repression of the kreg-1 gene by recruiting histone deacetylase (HDAC)
to its promoter. KGB-1 phosphorylation prevents FOS-1 dimerization and promoter binding, resulting in promoter
derepression. Thus, HDAC behaves as a co-repressor modulating FOS-1-mediated transcriptional regulation. This study
describes the direct link from JNK signaling, Fos phosphorylation, and regulation of kreg gene transcription, which
modulates the stress response in C. elegans.
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Introduction

Mitogen-activated protein kinase (MAPK) signal transduction

pathways are evolutionarily conserved in eukaryotic cells and

transduce signals in response to a variety of extracellular stimuli.

Each pathway is composed of three classes of protein kinases:

MAPK, MAPK kinase (MAPKK) and MAPK kinase kinase

(MAPKKK) [1,2]. MAPKKK phosphorylates and activates

MAPKK, which in turn activates MAPK. This activation cascade

can be reversed by phosphatases. In particular, members of the

MAPK phosphatase (MKP) family can remove phosphate groups

from activated MAPK [1,2]. Three subgroups of MAPKs have

been identified: extracellular signal-regulated kinase (ERK), c-Jun

N-terminal kinase (JNK), and p38 kinases [1,2]. JNK and p38

MAPKs function as key mediators of stress and immune signaling

in mammals. The MKK4 and MKK7 MAPKKs have been

shown to activate JNK, and the MKK3 and MKK6 MAPKKs

serve as the major activators of p38 MAPK. The specific

MAPKKs are themselves phosphorylated and activated by specific

MAPKKKs. Different MKPs display different activities toward

ERK, JNK, and p38.

Invertebrate model organisms such as Drosophila melanogaster and

Caenorhabditis elegans are useful for understanding the effects and

interactions of JNK proteins, especially since they are amenable to

the analysis of cytoprotective gene expression and the specific

contributions of different tissues [3,4]. Recent studies in C. elegans

have revealed that the JNK MAPK signaling components are

highly conserved between C. elegans and mammals. One such C.

elegans JNK pathway is the KGB-1 pathway, composed of an

MLK-type MAPKKK MLK-1, an MKK7-type MAPKK MEK-1

and a JNK-type MAPK KGB-1 [5]. The KGB-1 pathway is

required for the protection against heavy metals and protein

folding stress [5,6,7], and regulates the transcriptional responses to

bacterial pore-forming toxins [8]. Another component of this

pathway is the MKP VHP-1, which negatively regulates the KGB-

1 pathway by dephosphorylating KGB-1 [5]. However, the

components that function downstream of the KGB-1 pathway

have yet to be elucidated.

Various targets of JNK phosphorylation have been identified in

mammalian systems, including members of the basic region

leucine zipper (bZIP) family of transcription factors such as ATF2

and Jun [9,10]. The activating protein 1 complex (AP-1)

constitutes an important subset of bZIP transcription factors

[9,10]. AP-1 component proteins interact as homodimers or

heterodimers, bind DNA through conserved bZIP domains, and

regulate transcription of their target genes. A large body of

research supports a model in which extracellular stimuli trigger

AP-1 phosphorylation by JNK, leading to reprogramming of

target gene expression [11,12]. Given the importance of chroma-

tin dynamics in the control of gene expression, recent work has

focused on factors interacting with AP-1 that can mediate

chromatin modification and remodeling, notably enzymes that

reversibly modify histone tails by acetylation. The histone

deacetylase (HDAC) complex was thus found to inhibit the JNK
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pathway [13,14]. Gene repression by the HDAC complex is

relieved by phosphorylation of Jun, which causes it to dissociate

from the promoter [15,16]. These findings suggest that chromatin

dynamics may play a central role in the cellular response to JNK

signaling.

To understand the role of KGB-1 signaling in the heavy metal

stress response, we screened for proteins that may interact with

KGB-1 and identified FOS-1, a C. elegans homolog of Fos, and

showed that it functions downstream of KGB-1. In addition, we

identified two genes whose expression is induced by copper in a

KGB-1-dependent manner: kreg-1 and kreg-2 (KGB-1 regulated genes).

We found that FOS-1 represses transcription via the recruitment

of a Class I histone deacetylase HDA-1 to the promoter.

Biochemical assays demonstrated that phosphorylation by KGB-

1 inhibits FOS-1 self-association and binding to the kreg-1

promoter. These results suggest that FOS-1 and HDA-1 play an

inhibitory role in the response to heavy metal stress, and that the

KGB-1 pathway confers tolerance to heavy metals by phosphor-

ylating and thereby negatively regulating FOS-1.

Results

KGB-1 interacts with and phosphorylates FOS-1
To identify components that function downstream of KGB-1,

we screened a C. elegans mixed-stage cDNA library by the yeast

two-hybrid method to isolate proteins that interact with KGB-1.

Generally, kinase-negative (KN) forms of protein kinases consti-

tutively associate with their substrate. Therefore, as bait we used

KGB-1(K67R), a KN form in which Lys-67 in the ATP-binding

motif has been mutated to arginine. From this screen, we identified

10 proteins that interact with KGB-1 (Table S1). One of them is

FOS-1, an ortholog of the mammalian Fos transcription factor

[10,17]. Because Fos is a known substrate of MAPK in many

systems, we considered FOS-1 as a likely substrate of KGB-1. The

FOS-1 protein is similar to other Fos proteins in that it possesses a

basic DNA-binding domain, a leucine zipper region, and a

carboxyl terminus rich in serine and threonine residues, which are

typical sites of phosphorylation (Figure 1A). The fos-1 gene

encodes two FOS-1 isoforms, FOS-1A and FOS-1B [17]. As FOS-

1A has previously been characterized as a regulator of anchor-cell

invasion during nematode development [17], we focused our

investigations on the FOS-1B form (hereafter referred to as FOS-

1). To confirm an interaction between KGB-1 and FOS-1, we

co-expressed HA-tagged KGB-1 KN and T7-tagged FOS-1 in

COS-7 cells, immunoprecipitated HA-KGB-1 KN with anti-HA

antibodies, and probed for T7-FOS-1 on a Western blot with anti-

T7 antibodies. We found that KGB-1 KN co-immunoprecipitated

with FOS-1 (Figure 1B), indicating that KGB-1 can physically

associate with FOS-1.

The physical association of KGB-1 with FOS-1 suggested that

FOS-1 may be a phosphorylation target of KGB-1. Indeed, in

COS-7 cells, co-expression of KGB-1 activated by MEK-1

resulted in the appearance of slower migrating forms of the

FOS-1 protein when analyzed by SDS-polyacrylamide gel

electrophoresis (SDS-PAGE) (Figure 1C, lane 2). Pre-treatment

of extracts with alkali phosphatase reduced the intensities of the

band shifts (Figure 1C, lane 3), which is a typical indicator of

dephosphorylation. Expression of MEK-1 in the absence of KGB-

1 did not induce any mobility shift (Figure S1A).

The FOS-1 protein contains six putative MAPK phosphoryla-

tion sites (S/TP): Ser-151, Thr-263, Thr-278, Thr-304, Thr-316,

and Thr-318 (Figure 1A). We generated a mutant form of FOS-1,

[FOS-1(6A)], in which all 6 Ser/Thr residues had been changed to

Ala. When we analyzed extracts from COS-7 cells transfected with

FOS-1(6A) together with active KGB-1, we observed no slowly

migrating bands in SDS-PAGE (Figure S2A, lane 12). To identify

the specific phosphorylated residue(s) in FOS-1, we introduced

various combinations of Ala mutations into the six Ser/Thr

residues. We observed that the T304A, T316A, T318A triple

mutation completely abrogated phosphorylation of FOS-1 (Figure

S2B, lane 9), suggesting that Thr-304, Thr-316, and/or Thr-318

are potential phosphorylation sites. We further generated three

FOS-1 mutants that individually changed Thr-304, Thr-316, or

Thr-318 to Ala and found that the FOS-1(T304A) mutation

exhibited decreased phosphorylation by KGB-1 (Figure 1D, line 3

and Figure S2). These results suggest that T304 is a major site of

phosphorylation. However, we did also observe a minor slower-

migrating band, indicating that there is some residual phosphor-

ylation of FOS-1(T304A) and that Thr-316 and/or Thr-318 may

be minor sites of KGB-1 phosphorylation. To confirm that KGB-1

phosphorylates FOS-1 at the Thr-304 residue, we generated anti-

phospho-FOS-1 antibodies that specifically recognize FOS-1

phosphorylated at Thr-304. Transfection with active KGB-1,

but not with the kinase-negative mutant KGB-1 KN, resulted in

strong reactivity of FOS-1 with this antibody (Figure 1D, lanes 1,

2). In contrast, we found that the FOS-1 (T304A) mutated form

could not be detected by this antibody (Figure 1D, lane 3),

confirming that it was specific for FOS-1 phosphorylated at Thr-

304.

Fos family proteins function as dimers that bind DNA and

regulate the transcription of target genes [9,10,18]. We therefore

next investigated whether FOS-1 undergoes homo-dimerization.

FOS-1 was fused to both GFP and FLAG and expressed in COS-

7 cells together with T7-FOS-1. We immunoprecipitated the

GFP-FLAG-FOS-1 protein with anti-GFP antibodies, and tested

for co-precipitation of T7-FOS-1 by blotting with anti-T7

antibodies. We differentiated between GFP-FLAG-FOS-1 and

T7-FOS-1 by virtue of their different molecular weights. Indeed,

GFP-FLAG-FOS-1 readily co-immunoprecipitated with T7-

FOS-1 (Figure 1E, lanes 1, 2), indicating that the two proteins

oligomerized, presumably as dimers. We next examined whether

KGB-1 phosphorylation correlated with the degree of FOS-1 self-

association. Co-expression of active but not inactive KGB-1

resulted in reduced co-immunoprecipitation of T7-FOS-1 with

Author Summary

We have investigated the mechanisms by which the soil
nematode Caenorhabditis elegans regulates its response to
environmental stresses. Previously, we showed that a
conserved KGB-1 JNK mitogen-activated protein kinase
(MAPK) pathway regulates the response to heavy metal
stress in C. elegans, illustrating that these key stress
signaling pathways in mammals are also conserved in C.
elegans. Various proteins have been identified as potential
targets of JNK MAPK in mammals; however, the identifi-
cation of JNK MAPK physiological substrates has proven
more challenging in C. elegans. Here we demonstrate that
Fos, a bZIP family transcription factor, and HDAC, a Class I
histone deacetylase, are crucial components functioning
downstream of KGB-1 in the JNK-mediated stress response
pathway. We find that FOS-1 functions as a transcriptional
repressor by recruiting HDAC to its target promoters. In
response to stress, activated KGB-1 relieves this repression
via phosphorylation of FOS-1. Thus, this study shows how
JNK signaling induces tolerance to stress at the gene level
and describes a novel mechanism of gene regulation by
which this is effected.

The C. elegans JNK Pathway in Stress Response
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GFP-FLAG-FOS-1 (Figure 1E, lanes 3, 4). We next examined the

phosphorylation state of FOS-1 self-association using anti-

phospho-FOS-1 antibodies and observed that the phosphorylated

form of T7-FOS-1 was not co-precipitated with GFP-FLAG-

FOS-1 (Figure 1E, lane 3). This indicates that phosphorylation

inhibits self-association of FOS-1. We also generated a mutant

intended to mimic FOS-1 phosphorylation by replacing the

Thr-304 residue with glutamic acid, with the purpose to examine its

self-association potential. However, when expressed in COS-7 cells,

FOS-1(T304E) exhibited faster migration on SDS-PAGE compared

to wild type FOS-1 (Figure S1B), suggesting that the structure of

FOS-1(T304E) is different from that of phosphorylated FOS-1.

Thus, this mutation does not appear to mimic FOS-1

phosphorylation.

Figure 1. FOS-1 is phosphorylated by KGB-1. (A) Schematic representation of the structures of human c-Fos and C. elegans FOS-1 proteins. Dark
boxes represent the basic and leucine zipper regions. Six Ser/Thr-Pro motifs are shown. (B) Interaction of FOS-1 with KGB-1. COS-7 cells were co-
transfected with expression vectors encoding T7-FOS-1 and HA-KGB-1(K67R; KN) as indicated. Whole cell extracts (WCE) and immunoprecipitated
complexes obtained with anti-HA antibodies (IP) were analyzed by Western blot (WB). Experiments were performed five times with similar results.
(C, D) Phosphorylation of FOS-1 by KGB-1. COS-7 cells were co-transfected with expression vectors encoding T7-FOS-1 (wild type; WT), T7-FOS-
1(T304A), HA-KGB-1 WT, HA-KGB-1 KN, and FLAG-MEK-1 as indicated. Whole cell extracts were incubated in either the absence or presence of calf
intestine alkali phosphatase (CIAP) before analyzing by Western blot (C). Experiments were performed three times with similar results. (E) FOS-1
dimerization is inhibited by KGB-1-mediated phosphorylation. COS-7 cells were co-transfected with expression vectors encoding T7-FOS-1 WT, GFP-
FLAG-FOS-1 WT, HA-KGB-1 WT, HA-KGB-1 KN, and FLAG-MEK-1 as indicated. Whole cell extracts and immunoprecipitated complexes obtained with
anti-GFP antibodies were analyzed by Western blot (WB). Arrowheads indicate the positions of phosphorylated GFP-FLAG-FOS-1 and T7-FOS-1.
Experiments were performed three times with similar results.
doi:10.1371/journal.pgen.1003315.g001

The C. elegans JNK Pathway in Stress Response
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FOS-1 negatively regulates the stress response mediated
by the KGB-1 pathway

Since the KGB-1 MAPK pathway regulates the response to

heavy metal stress [5,6,7], we tested whether FOS-1 also regulates

the stress response to heavy metals. Existing fos-1 loss-of-function

mutants could not be used to assay for heavy metal toxicity,

because they have a sterile phenotype (data not shown). We

therefore tested the effect of fos-1 knockdown on the stress response

using a feeding RNA interference (RNAi) method. Animals were

placed on agar plates containing copper (Cu2+) ions, fed a bacteria

strain expressing the double-stranded RNA for fos-1, and their

development was monitored for any signs of an altered response to

heavy metal stress. As shown Figure 2A, fos-1 RNAi had no effect

on the sensitivity to Cu2+ ions. Animals treated with fos-1 RNAi

exhibited an everted/protruded vulval phenotype in the adult as

observed in fos-1a loss-of-function mutants [17]. This indicates that

fos-1 RNAi indeed had caused knockdown of fos-1. In contrast to

the lack of effect in wild-type animals, fos-1 RNAi suppressed the

sensitivity to Cu2+ ions in kgb-1(km21) mutants (Figure 2A and

Figure S3), suggesting that FOS-1 negatively regulates the

tolerance to heavy metal stress.

The above results raised the possibility that KGB-1-mediated

phosphorylation of FOS-1 Thr-304 relieves FOS-1-mediated

inhibition in response to stress. To test this possibility, we

expressed wild-type FOS-1 or the non-phosphorylatable FOS-

1(T304A) mutant from the heat shock promoter (Phsp-16) in wild-

type animals. We found that expression of FOS-1(T304A) resulted

in sensitivity to Cu2+ ion compared to expression of wild type

FOS-1 (Figure 2B). These results suggest that KGB-1 phosphor-

ylation at Thr-304 negatively regulates FOS-1 function.

Identification of genes whose transcription is activated
by the KGB-1 pathway

To understand how the KGB-1 pathway modulates gene

activity and to define the physiological processes in which the

heavy metal stress response may be involved, we examined gene

expression changes in wild-type and kgb-1 mutant animals

subjected to heavy metal stress by carrying out a microarray

analysis (see Materials and Methods) (Figure S4A and Tables S2,

S3, S4, S5, S6, S7). From this, we identified six kreg (KGB-1-regulated

gene) genes whose expression was regulated by KGB-1 (Figure S4B

and Table S8). Among these, expression of two of the genes was

increased in response to Cu2+ ions (Figure S4B and Table S8).

These were designated kreg-1 and kreg-2. The protein encoded by

kreg-1 (F53A9.2) is a novel 83 amino acids protein with

polyhistidine streches, while the kreg-2 gene is identical to lys-3,

which encodes a lysozyme. We validated our microarray data by

quantitative real-time RT-PCR (qRT-PCR) (Figure 3A and 3B).

In wild-type animals, Cu2+ induced the expression of both kreg-1

and kreg-2, but in kgb-1(km21) mutants induction of both genes was

considerably reduced. To determine whether the kreg genes play

functionally important roles in the resistance to heavy metal stress

in C. elegans in vivo, we used RNAi to inhibit the expression of kreg-

1 or kreg-2 and then examined the stress response. RNAis against

either kreg-1 or kreg-2 caused a partial sensitivity to Cu2+ ions

(Figure 3C and Figure S5). The kreg-2/lys-3 gene encodes a

secreted lysozyme that is presumably involved in anti-bacterial

defense [19]. This raised the possibility that there may be a role for

bacteria in the susceptibility to heavy metal stress. To test this

possibility, we fed the worms on viable versus heat-killed bacteria

and asked if this affected their heavy metal sensitivity. We found

that heat treatment of bacteria had no effect on either the heavy

metal sensitivity in wild-type animals or the heavy metal sensitive

phenotype caused by kgb-1 and lys-3 mutations (data not shown).

Thus, bacteria appear to play no role in the susceptibility to heavy

metal stress and it remains unclear how LYS-3 may protect against

heavy metal stress.

To analyze in vivo kreg-1 expression patterns and to develop

tools for further analysis, we generated a Pkreg-1::venus reporter,

consisting of the kreg-1 promoter driving expression of venus. Wild-

type animals harboring the Pkreg-1::venus reporter exhibited weak

Venus expression in the absence of Cu2+ (Figure 3D and 3E).

However, Pkreg-1::venus expression was robustly induced in the

intestine of animals following incubation with Cu2+ (Figure 3D

and 3E). To confirm that the Pkreg-1::venus reporter behaves

similarly to endogenous kreg-1 mRNA, we tested whether Pkreg-

1::venus induction is dependent on the KGB-1 MAPK pathway,

Figure 2. Effect of fos-1 inhibition on stress sensitivity. (A) Suppression of the kgb-1 heavy metal-sensitive phenotype by fos-1 depletion. Each
animal was cultured from embryogenesis on normal plates containing copper sulfate (40 mM) and seeded with a bacteria strain expressing the
double-stranded RNA for fos-1. The relative viability is shown with standard errors. Error bars indicate 95% confidence interval. **P,0.01 as
determined by Student’s t test. NS, not significant. (B) Heavy metal sensitivity caused by FOS-1(T304A) overexpression. Wild-type animals harboring
the Phsp-16::t7::fos-1 transgene as an extrachromosomal array were cultured from embryogenesis on normal plates containing copper sulfate
(100 mM). The relative viability is shown with standard errors. **P,0.01 as determined by Student’s t test. NS, not significant.
doi:10.1371/journal.pgen.1003315.g002

The C. elegans JNK Pathway in Stress Response
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which is negatively regulated by the VHP-1 phosphatase [5]. In

contrast to the wild-type animals, very little Pkreg-1::venus

expression was induced by Cu2+ in kgb-1(km21) mutants

(Figure 3D and 3E). Treatment of animals with vhp-1 RNAi

resulted in the constitutive expression of the Pkreg-1::venus

transgene in wild-type, but not in kgb-1(km21) animals (Figure 3D

and 3E). Thus, the Pkreg-1::venus reporter is induced in response to

heavy metal stress through the activation of the KGB-1 pathway.

FOS-1 functions as a repressor of kreg-1 induction
mediated by the KGB-1 pathway

To understand the role of FOS-1 in the induction of kreg-1 in

response to Cu2+ stress, we examined the effect of fos-1 RNAi on

Pkreg-1::venus expression in C. elegans. Treatment with fos-1 RNAi

markedly increased intestinal Pkreg-1::venus expression even in the

absence of Cu2+ (Figure 4). The effect of fos-1 RNAi on expression

of kreg-1 and kreg-2 was further confirmed by qRT-PCR (Figure

S6). These results raised the possibility that FOS-1 functions as a

repressor for gene induction activated by the KGB-1 pathway. To

test this hypothesis, we carried out epistasis analysis using fos-1

RNAi and kgb-1(km21) mutants. We observed that while expres-

sion of the Pkreg-1::venus reporter gene was diminished in kgb-

1(km21) mutants, treatment with fos-1 RNAi was epistatic to this

and resulted in increased kreg-1 reporter activity (Figure 4). This

indicates that FOS-1 functions downstream of KGB-1 as a

repressor of kreg-1 induction by Cu2+.

Figure 3. The KGB-1 pathway regulates expression of kreg genes. (A, B) Effect of copper ion on expression of kreg-1 (A) and kreg-2 (B). Wild-
type and kgb-1 mutant animals were cultured on plates seeded with a bacteria strain. At 3 days after hatching, animals were treated with copper
sulfate (1 mM) for 1 hour and total RNA was isolated. Expression of genes was analyzed by qRT-PCR. Data are compared using a one-way ANOVA.
**P,0.01. (C) Heavy metal sensitivity caused by inhibition of kreg genes. The eri-1 mutant animals were cultured from embryogenesis on normal
plates containing copper sulfate (100 mM) and seeded with bacteria strains expressing the indicated double-stranded RNA. The relative viability is
shown with standard errors. Error bars indicate 95% confidence interval. **P,0.01 as determined by Student’s t test. (D, E) Effect of copper ion on
expression of the kreg-1 reporter. Wild-type and kgb-1 mutant animals harboring the Pkreg-1::venus transgene as an extrachromosomal array were
cultured on plates seeded with a bacteria strain expressing the double-stranded RNA for vhp-1. At 3 days after hatching, animals were treated with
copper sulfate (1 mM) for 1 hour. These animals were then transferred to NGM plates and incubated for 3 hours. Fluorescent (Venus) views are
shown in D. Scale bar: 100 mm. ‘‘Weak’’ refers to animals in which intestinal Venus was present at low levels. ‘‘Strong’’ indicates that Venus was
present at high levels in most of the intestine. Percentages of animals in each expression category are listed in E. The numbers (n) of animals
examined are shown.
doi:10.1371/journal.pgen.1003315.g003

The C. elegans JNK Pathway in Stress Response
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Incubation with Cu2+ induced Pkreg-1::venus expression in the

intestine in a manner dependent on the KGB-1 pathway. This

observation suggests that activation of the KGB-1 pathway in the

intestine is critical in the defense against heavy metal stress.

Consistent with this, MEK-1, a MAPKK in the KGB-1 pathway,

is expressed in intestinal cells [6,20]. However, we have previously

shown that expression of MEK-1 in the epidermis can rescue the

Cu2+- sensitive phenotype of mek-1 null mutants [6]. To test

whether expression of MEK-1 in the intestine of mek-1 mutants

confers resistance to heavy metal stress, we expressed the mek-1

cDNA in the intestine using the elt-2 promoter. The mek-1(ks54)

deletion mutant carrying Pelt-2::mek-1 exhibited resistance to heavy

metal stress (Figure S7). The Pkreg-1::venus reporter may lack the

region required for its expression in epidermis.

Fos proteins bind to Jun or other bZIP proteins to create an AP-

1 dimer complex, which regulates gene expression [9,10,18]. In

fact, similar to mammalian and Drosophila Fos and Jun proteins, C.

elegans FOS-1 and JUN-1 form heterodimers [18,21]. To examine

whether C. elegans jun-1 plays the same role as fos-1 in modulating

kreg-1 expression, we treated wild-type animals with jun-1 RNAi,

however it failed to increase intestinal Pkreg-1::venus expression

(Figure S8A). ATF-7 is a member of the bZIP transcription factor

family and functions in innate immunity mediated by the PMK-1

p38 pathway [22]. We therefore tested the effect of atf-7 RNAi on

Pkreg-1::venus reporter activity and similarly observed no effect

(Figure S8A). Consistent with these results, neither knockdown of

jun-1 nor a loss-of-function atf-7(qd22) mutation resulted in

enhanced heavy metal stress sensitivity in wild-type animals or

suppression of the stress-sensitive phenotype of kgb-1 mutants

(Figure S8B and S8C). Thus, JUN-1 and ATF-7 do not participate

in the heavy metal stress response mediated by the KGB-1

pathway.

The bZIP domain of Fos binds the consensus sequence, TGA(C/

G)TCA, called the TPA-responsive element (TRE) [23]. The

promoter region of the kreg-1 gene contains two TRE binding

motifs, termed TRE1 and TRE2 (Figure 5A). To determine

whether these TRE motifs are required for FOS-1-mediated

repression of Pkreg-1::venus expression, we deleted each motif

independently within the Pkreg-1::venus reporter (Figure 5A). Dele-

tion of TRE1 (Pkreg-1Dtre1::venus) had no effect on the expression

pattern of the transgene (Figure 5B and 5C). In contrast, deletion of

TRE2 (Pkreg-1Dtre2::venus) resulted in constitutive expression in both

wild-type and kgb-1(km21) mutant animals (Figure 5B and 5C).

Furthermore, we found that treatment with fos-1 RNAi did not

enhance constitutive expression of the Pkreg-1Dtre2::venus transgene

(Figure 5B and 5C). Thus, the TRE2 binding site is required in cis to

mediate repression of kreg-1 by FOS-1. These results support the

possibility that FOS-1 negatively regulates kreg-1 expression through

the TRE2 site in the promoter.

To examine whether FOS-1 binds directly to the kreg-1

promoter via TRE2, we conducted chromatin immunoprecipita-

tion (ChIP) assays. Human embryonic kidney (HEK) 293 cells

were co-transfected with the Pkreg-1::venus reporter together with

either T7-FOS-1 or the negative control T7-hGrhl2. Lysates were

immunoprecipitated with anti-T7 antibodies, and quantitative

PCR analysis was performed to amplify DNA fragments contained

in the immunoprecipitated complexes. PCR analysis showed that

FOS-1 bound efficiently to the kreg-1 promoter, whereas the

negative control human Grhl2 protein did not (Figure 6A). We

could detect binding of FOS-1 to the Pkreg-1Dtre1::venus transgene

(data not shown), but not to the Pkreg-1Dtre2::venus transgene

(Figure 6A), indicating that FOS-1 associates with the kreg-1

promoter via an interaction with the TRE2 motif.

As shown above, self-association of FOS-1 is prevented by

KGB-1-mediated phosphorylation. We next addressed whether

FOS-1 phosphorylation affects its ability to interact with the TRE2

element of the kreg-1 promoter. Cell extracts obtained from COS-7

cells expressing T7-FOS-1 were incubated with probes and

analyzed in a gel-retardation assay. We found that FOS-1 was

able to associate with a probe containing the optimal TRE2

sequence, but not with a probe in which the core 6 bases of TRE2

were deleted (Figure 6B, lanes 1, 2, 5). To further confirm the

interaction of FOS-1 with the TRE2 element, we utilized site-

directed mutagenesis to convert the consensus TGAGTCA

sequence to AAGCTTA in the TRE2 element. A similar

alteration has been shown to inhibit the AP-1-DNA interaction

Figure 4. FOS-1 represses kreg-1 expression. Wild-type and kgb-1 mutant animals harboring the Pkreg-1::venus transgene as an
extrachromosomal array were cultured on plates seeded with a bacteria strain expressing the double-stranded RNA for fos-1. Fluorescent (Venus)
views are shown in A. Scale bar: 100 mm. ‘‘Weak’’ refers to animals in which intestinal Venus was present at low levels. ‘‘Strong’’ indicates that Venus
was present at high levels in most of the intestine. Percentages of animals in each expression category are listed in B. The numbers (n) of animals
examined are shown.
doi:10.1371/journal.pgen.1003315.g004
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[24]. Indeed, we observed that FOS-1 was not able to bind to the

mutated TRE2 probe (Figure 6B, lane 6). In addition, the protein-

DNA complex was supershifted by pre-incubation with anti-T7

antibody (Figure 6B, lane 3), indicating that T7-FOS-1 is involved

in this complex. When MEK-1 and KGB-1 were co-expressed

with T7-FOS-1 in COS-7 cells, the association of FOS-1 with the

optimal TRE2 probe was decreased (Figure 6C, lanes 1–3). This

reduction was dependent on the kinase activity of KGB-1

(Figure 6C, lane 4). Thus, FOS-1 phosphorylation by KGB-1

decreases the association of FOS-1 with its target gene promoter.

Taken together, these results suggest that the KGB-1 pathway

activates transcription of target genes by phosphorylation of FOS-

1, which inhibits FOS-1 self-association and binding to its target

promoter.

C. elegans histone deacetylase HDA-1 functions as a
negative regulator of kreg-1 induction mediated by the
KGB-1 pathway

How does FOS-1 repress kreg-1 transcription? Given the

importance of chromatin dynamics in the control of gene

expression, recent work has focused on AP-1 interaction partners

capable of chromatin remodeling and modification [13–16,25,26].

It has been reported that AP-1, during the innate immune

response, recruits HDAC1, a member of the Class I histone

deacetylase (HDAC) family, to the promoter of a gene that

encodes an antibacterial protein where it deacetylates promoter-

associated histones [26]. Therefore, we examined whether

HDACs might affect Pkreg-1::venus expression. C. elegans possesses

three HDAC genes, hda-1, hda-2 and hda-3, which encode Class I

HDAC homologs [27,28]. We found that treatment with hda-1

RNAi resulted in constitutive expression of the Pkreg-1::venus

reporter in wild-type animals (Figure 7A and 7B). Furthermore,

hda-1 knockdown significantly restored loss of intestinal Pkreg-

1::venus expression in kgb-1(km21) mutants (Figure 7A and 7B). We

also found that hda-1 RNAi had little effect on the constitutive

expression caused by the Dtre2 deletion of the Pkreg-1::venus

reporter (Figure 7A and 7B), indicating that negative regulation of

kreg-1 expression by HDA-1 requires the TRE2 motif in the

promoter. In addition, we observed by qRT-PCR that hda-1 RNAi

enhanced expression of the kreg-2 gene (Figure S9), confirming that

this effect is not specific only to kreg-1.

Next we asked whether FOS-1 could interact with HDA-1. T7-

FOS-1 and FLAG-HDA-1 were co-expressed in HEK293 cells. We

immunoprecipitated FLAG-HDA-1 with anti-FLAG antibodies,

Figure 5. FOS-1 negatively regulates kreg-1 expression via the TRE2 site. (A) Schematic representation of the structure of the kreg-1
promoter. Two TRE sites are represented by dark boxes. (B, C) Effect of deletion of the TRE sites on expression of the kreg-1 reporter. Wild-type and
kgb-1 mutant animals harboring the Pkreg-1Dtre1::venus or Pkreg-1Dtre2::venus transgene as an extrachromosomal array were cultured on plates
seeded with a bacteria strain expressing the double-stranded RNA for fos-1. Fluorescent (Venus) views are shown in B. Scale bar: 100 mm. ‘‘Weak’’
refers to animals in which intestinal Venus was present at low levels. ‘‘Strong’’ indicates that Venus was present at high levels in most of the intestine.
Percentages of animals in each expression category are listed in C. The numbers (n) of animals examined are shown.
doi:10.1371/journal.pgen.1003315.g005
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and probed for the T7-FOS-1 on a Western blot with anti-T7

antibodies. We failed to detect an association between FOS1- and

HDA-1 (Figure 7C, lane 1). However, if we transfected in the Pkreg-

1::venus reporter along with T7-FOS-1 and FLAG-HDA-1, we could

detect an association between FOS-1 and HDA-1 (Figure 7C, lane

3). Furthermore, removal of the TRE2 site from the Pkreg-1::venus

reporter reduced this interaction (Figure 7C, lane 4). These results

suggest that HDA-1 and FOS-1 can associate on the kreg-1 promoter.

Figure 6. The DNA binding activity of FOS-1 is inhibited by KGB-1-mediated phosphorylation. (A) FOS-1 binds to the TRE2 sites. HEK293
cells were co-transfected with the Pkreg-1::venus construct together with expression vectors encoding T7-FOS-1 or T7-hGrhl2 as indicated. For
chromatin immunoprecipitation assays, immunoprecipitated complexes obtained with anti-T7 antibodies were analyzed by quantitative PCR. Data
are compared using a one-way ANOVA. **P,0.01. Immunoprecipitated T7-FOS-1 and T7-hGrhl2 were monitored by Western blot. (B, C) Effect of FOS-
1 phosphorylation by KGB-1 on the TRE2 binding activity. COS-7 cells were co-transfected with expression vectors encoding T7-FOS-1, HA-KGB-1 WT,
HA-KGB-1 KN, and FLAG-MEK-1 as indicated. For gel retardation assays, cell extracts were incubated with the TRE2 retardation probes. Anti-T7
antibodies or normal mouse IgG were added in the binding reactions (B). Expression of T7-FOS-1, HA-KGB-1, and FLAG-MEK-1 was monitored by
Western blot. Experiments were performed three times with similar results.
doi:10.1371/journal.pgen.1003315.g006
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Finally, we examined whether HDA-1 contributes to the

response to heavy metal stress. Knockdown of hda-1 by RNAi in

wild-type animals had no effect on their sensitivity to Cu2+ ions

(Figure 7D). In contrast, knockdown of hda-1 by RNAi suppressed

the sensitivity to Cu2+ ions in kgb-1(km21) mutants. Thus, HDA-1

negatively regulates the heavy metal stress response, consistent

with the observation that kreg-1 expression is repressed by HDA-1.

Discussion

JNK MAPK cascades are pivotal signaling modules controlling

diverse signal transduction pathways in eukaryotes. The C. elegans

KGB-1 JNK pathway regulates the stress response to heavy metals

[5,6,7]. In this study, we present functional evidence showing that

FOS-1, a bZIP transcription factor homologous to human Fos,

and HDA-1, a member of the Class I histone deacetylase family,

are crucial components functioning downstream in the KGB-1-

mediated stress response pathway (Figure 8). In the absence of

stress, FOS-1 and HDA-1 act cooperatively to repress transcrip-

tion of target genes involved in the heavy metal stress response. In

response to stress, activated KGB-1 relieves this repression by

phosphorylating FOS-1. Thus, we provide a mechanistic linkage

between FOS-1 phosphorylation, the degree of its dimerization

and its biological activity/function.

Figure 7. HDA-1 functions cooperatively with FOS-1. (A, B) Effect of hda-1 depletion on expression of the kreg-1 reporter. Wild-type and kgb-1
mutant animals harboring the Pkreg-1::venus transgenes as an extrachromosomal array were cultured on plates seeded with a bacteria strain
expressing the double-stranded RNA for hda-1. Fluorescent (Venus) views are shown in A. Scale bar: 100 mm. ‘‘Weak’’ refers to animals in which
intestinal Venus was present at low levels. ‘‘Strong’’ indicates that Venus was present at high levels in most of the intestine. Percentages of animals in
each expression category are listed in B. The numbers (n) of animals examined are shown. (C) Interaction of HDA-1 with FOS-1. HEK293 cells were co-
transfected with the Pkreg-1::venus construct and expression vectors encoding FLAG-HDA-1 and T7-FOS-1 as indicated. Whole cell extracts and
immunoprecipitated complexes obtained with anti-FLAG antibodies were analyzed by Western blot. FOS-1 signal intensities in co-
immunoprecipitates with HDA-1 were quantitated and normalized to those in whole cell extracts. Relative levels of immunoprecipitated FOS-1
are shown. Experiments were performed three times with similar results. (D) Suppression of the kgb-1 heavy metal-sensitive phenotype by hda-1
depletion. Each animal was cultured from embryogenesis on normal plates containing copper sulfate (40 mM) and seeded with a bacteria strain
expressing the double-stranded RNA for hda-1. The relative viability is shown with standard errors. Error bars indicate 95% confidence interval.
**P,0.01 as determined by Student’s t test. NS, not significant.
doi:10.1371/journal.pgen.1003315.g007
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Identification of target genes downstream of the KGB-1
pathway

A key step in understanding the KGB-1 JNK pathway is the

identification of downstream targets that are activated by KGB-1

and that perform the actual protective function. Analysis of gene

expression comparing wild type and kgb-1 mutants has led to the

identification of two targets of the KGB-1 pathway, namely kreg-1

and kreg-2/lys-3. Both targets are transcriptionally induced by

stress, both require the KGB-1 pathway for their full induction,

and both are required for protection of the animal against heavy

metal stress. These data suggest that activation of the KGB-1

pathway leads to increased production of these proteins that this in

turn leads to protection and defense against heavy metal stress.

The identity of one of these genes is particularly revealing: The

protein encoded by kreg-1 contains polyhistidine stretches, which

are well known to bind metal ions (e.g. Ni2+, Cu2+, Co2+ and Zn2+)

and widely used as an affinity tag [29]. A previous study also

revealed that Hpn, a 60 amino acids protein with polyhistidine

stretches in Helicobacter pylori, preferentially binds Cu2+ ion and is

able to confer copper resistance when expressed in Escherichia coli

[30]. Thus, we speculate that the KREG-1 protein may confer

resistance to Cu2+ stress by chelating this ion through these

polyhistidine stretches.

Role of FOS-1 in the KGB-1 pathway
In this study, we identified the FOS-1 bZIP transcription

factor as a downstream component of the KGB-1 pathway.

FOS-1 was isolated as a protein that binds to KGB-1 and we

showed that KGB-1 phosphorylates FOS-1 in the C-terminal

regulatory region. Fos and Jun of bZIP transcription factors

form part of the AP-1 transcription factor complexes [18,23].

These transcription factors are homologous within two adjacent

domains: a basic region and a leucine zipper motif, which are

necessary for DNA binding and factor dimerization, respective-

ly. Indeed, C. elegans FOS-1 acts as an activator of spermathecal-

specific plc-1 gene expression by forming heterodimers with

JUN-1 [21]. In addition, a genome-wide RNAi screen identified

fos-1 and jun-1 as genes important for the KGB-1-mediated

defense pathway against pore-forming toxins made by soil

bacterium [8]. Thus, it is likely that the JNK-AP-1 pathway has

the role in protection against pore-forming toxins by regulating

transcriptional responses. However, we found that JUN-1 is not

involved in the KGB-1-mediated stress response pathway. We

demonstrated that FOS-1 is capable of forming homodimers

and acts as a repressor of its target gene expression. Dimeriza-

tion of FOS-1 most likely serves to enhance its DNA binding

affinity to target promoters and it is therefore likely that the C.

elegans FOS-1 binding partner determines whether FOS-1

functions as a repressor or activator.

It has been proposed that bZIP transcription factors can switch

between repressor and activator mode, as illustrated by the

transcriptional regulation of C. elegans ATF-7 and the yeast Sko1p

resulting from MAPK activation [22,31]. Activation of the PMK-1

p38 MAPK pathway in response to pathogen infection results in

PMK-1 phosphorylation of ATF-7, leading to a switch in ATF-7

from a transcriptional repressor to an activator [22]. In yeast,

Sko1p is phosphorylated via the Hog1p MAPK pathway in

response to osmotic stress, and this converts Sko1p from a

repressor to an activator [31]. Here, we found that depletion of

FOS-1 suppressed the heavy metal sensitivity of kgb-1 mutants, but

had no effect on the heavy metal sensitivity in wild-type animals.

These results strongly suggest that FOS-1 simply acts as a

transcriptional repressor of the heavy metal stress response

mediated by the KGB-1 pathway. Thus, FOS-1 regulation of

Figure 8. Proposed model for the KGB-1 pathway in stress response. In the absence of heavy metal stress, FOS-1 forms homodimers and
binds to the TRE2 motif in the kreg target promoter. FOS-1 dimerization potentiates recruitment of HDA-1 to the promoter. The FOS-1/HDA-1
repressor complex represses transcription of kreg target genes (left panel). In the presence of heavy metal stress, the KGB-1 pathway is activated and
FOS-1 is phosphorylated by KGB-1. FOS-1 phosphorylation leads to a switch from dimer to monomer, resulting in dissociation of the FOS-1/HDA-1
repressor complex from the target promoter that activates transcription of kreg genes (right panel).
doi:10.1371/journal.pgen.1003315.g008
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the heavy metal stress response does not appear to involve

switching of its transcriptional regulation activity.

Our analysis showing FOS-1 phosphorylation by KGB-1 and

its biological consequences has provided some novel molecular

insights into the regulation of FOS-1. We found that phosphor-

ylation blocks FOS-1 dimer formation and that this results in

reduced binding to the promoter of target genes. We imagine

that dimeric FOS-1 binds DNA with a higher affinity than the

monomeric form. Based on these data, we propose that

activation of the KGB-1 pathway in response to heavy metal

stress results in FOS-1 phosphorylation, leading to a switch of

FOS-1 from dimer to monomer and consequent loss of

promoter binding (Figure 8).

Mechanism of FOS-1/HDA-1-mediated control of gene
expression in the KGB-1 pathway

How does FOS-1 act as a repressor of kreg-1 transcription? Our

results suggest that the HDA-1 histone deacetylase co-operates

with FOS-1 to repress transcription of the kreg-1 gene (Figure 8).

Many transcription factors have been shown to recruit protein

complexes that locally alter the acetylation of histones. Recruit-

ment of HDAC can lead to transcriptional repression, whereas

recruitment of histone acetyltransferase can lead to transcriptional

activation. These results suggest that FOS-1 acts as a transcrip-

tional repressor by recruiting HDA-1 to the promoter of the kreg-1

gene. Therefore, it is quite likely that KGB-1 activates kreg-1

expression by derepressing this FOS-1/HDA-1 repressor complex

(Figure 8). In this model, FOS-1 forms homodimers and binds to

the TRE2 motif in the kreg-1 promoter. FOS-1 dimerization might

also potentiate the recruitment of HDA-1 to the promoter. Thus,

the FOS-1/HDA-1 repressor complex may function to prevent

inadvertent activation of the kreg genes in the absence of heavy

metal stress. When signaled by heavy metal stress, KGB-1 is

activated and phosphorylates FOS-1, which leads to dissociation of

the FOS-1 dimer and dissociation of the FOS-1/HDA-1 repressor

complex from the kreg-1 promoter, resulting in the activation of

kreg-1 expression.

The ability of Fos to function as a repressor has also been

described in Drosophila [14]. HDAC is recruited to promoters

occupied by unphosphorylated DFos and represses transcription

of its target genes. JNK-mediated phosphorylation of DFos not

only releases the HDAC corepressor complex and leads to

activation by derepression but also unmasks the function of

histone acetyltransferase and results in increased transcriptional

efficiency. However, the mechanism of C. elegans FOS-1

derepression described here represents a unique case where

transcription factor phosphorylation leads to reduced dimeriza-

tion, DNA binding and loss of HDAC association. Comparing

Drosophila Fos and C. elegans FOS-1, we find that significant

homology is present only in the adjacent basic and leucine zipper

motifs. In addition, the amino acid sequence of the region

flanking the phosphorylation sites is not conserved between

Drosophila Fos and C. elegans FOS-1 [32]. Nevertheless, the basic

mechanisms of JNK-mediated phosphorylation of Fos and its

effects on Fos/HDAC repressor complex formation are evolu-

tionally conserved between C. elegans and Drosophila. This finding

thus reveals a common underlying mechanism by which the JNK

signaling pathway modulates the activities of the Fos family of

bZIP transcription factors.

In summary, we have described a mechanism of transcrip-

tional regulation whereby KGB-1 activates expression of the

stress response genes by promoting the dissociation of a FOS-1/

HDA-1 repressor complex. This is a new finding that could

provide valuable insights into the stress response in the context

of the whole organism. It would greatly enhance our under-

standing of the stress response mediated by JNK signaling to

elucidate how the kreg genes confer tolerance to heavy metals in

C. elegans.

Materials and Methods

Plasmids
The yeast expression vector for the LexA DNA-binding domain

(DBD)-fused KGB-1(K67R) was constructed by inserting each

coding sequence into pBTM116. The mammalian expression

vectors for HA epitope-tagged KGB-1 (HA-KGB-1) and FLAG

epitope-tagged MEK-1 (FLAG-MEK-1) were described previously

[5]. The cDNA for fos-1 was isolated by the Y. Kohara EST

project (National Institute of Genetics, Mishima, Japan). The

cDNAs for hda-1 and human Grhl2 were amplified by PCR from C.

elegans and human cDNA libraries, respectively, and completely

sequenced. The mammalian expression constructs for T7-FOS-1,

GFP-FLAG-FOS-1, FLAG-HDA-1 and T7-hGrhl2 were con-

structed by inserting each coding sequence into a vector expressing

epitope-tagged protein under the control of the cytomegalovirus

(CMV) promoter. Each coding sequence was amplified by PCR

using primer sets to create restriction sites immediately before the

first codon and after the stop codon. Mutated forms of FOS-1

were made by oligonucleotide-directed PCR and the mutations

were verified by DNA sequencing. To construct the Phsp-

16::t7::fos-1 plasmids, each t7::fos-1 fragment from the mammalian

expression vectors for T7-FOS-1 was subcloned into the

pPD49.78 vector. Gateway cloning technology (Invitrogen) was

used to construct the Pkreg-1::venus plasmid for expression in

animals. The Pkreg-1::venus plasmid was constructed by fusion of

the venus coding sequence to a 2.8 kbp genomic fragment

containing the kreg-1 promoter. Deletions of Pkreg-1::venus were

made by oligonucleotide-directed PCR and the deletions were

verified by DNA sequencing. The Pelt-2::mek-1::venus plasmid was

constructed by fusing three DNA fragments in the following order:

a 2.9 kbp genomic fragment containing the elt-2 promoter, the

mek-1 coding sequence, and the venus coding sequence. The Pmek-

1::mek-1::venus, Pttx-3::gfp and sur-5::gfp plasmids were described

previously [6,33,34].

Antibodies
Anti-phospho-FOS-1 rabbit polyclonal antibody was raised

against a synthetic phospho-polypeptide, CSNTGL(P)TPSGQP

[(p), phosphorylated], which corresponds to the C-terminal

portion of FOS-1 and affinity purified. Anti-HA monoclonal

antibody 16B12 (Covance), anti-FLAG monoclonal antibody M2

(Sigma), anti-T7 monoclonal antibody (Novagen) and anti-GFP

polyclonal antibody (Clontech) were used.

C. elegans strains
All strains were maintained on nematode growth medium

(NGM) plates at 20uC and fed with bacteria of the OP50 strain, as

described [35]. The alleles used in this study were N2 Bristol as the

wild type, kgb-1(km21), mek-1(ks54), atf-7(qd22), and eri-1(mg366).

Strains carrying the Phsp-16::t7::fos-1 transgene were generated by

injecting this DNA together with the sur-5::gfp plasmid, which

expresses GFP in the nuclei of most somatic cells from

embryogenesis, into the gonads of young adult N2 animals as

described [36]. Strains carrying the Pkreg-1::venus transgene were

generated by injecting this DNA together with the Pttx-3::gfp

plasmid, which expresses GFP in a pair of AIY interneurons, into

the gonads of young adult N2 animals.
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Stress sensitivity
Assays for the effect of fos-1 transgenes on heavy metal toxicity

were carried out as follows. Animals were grown and allowed to

lay eggs on NGM plates seeded with bacteria of the OP50 strain.

Embryos expressing GFP were transferred to NGM plates

containing the indicated concentrations of copper sulfate. After

incubation for 1 day at 20uC, the numbers of hatched embryos

were determined by counting unhatched embryos. After additional

incubation for 3 days either at 20uC or 33uC for 1 hour twice a

day, the animals that developed into adulthood were counted. The

percentage of adults was calculated by multiplying the number of

adults by 100 and dividing by the number of hatched animals. The

relative viability was estimated by dividing the percentage of adults

in the presence of heavy metals by the percentage of adults in the

absence of heavy metals.

Assays for the effect of RNAi on heavy metal toxicity were

performed as follows. Animals were grown and allowed to lay

eggs on NGM plates seeded with bacteria of the OP50 strain.

Embryos were transferred to NGM plates containing the

indicated concentrations of copper sulfate and seeded with

bacteria of the HT115 strain carrying plasmids expressing the

respective double-stranded RNAs for fos-1, kreg-1, kreg-2, jun-1 or

hda-1. After incubation for 1 day at 20uC, the numbers of hatched

embryos were determined by counting unhatched embryos. The

animals that developed into adulthood were counted 4 days after

egg laying. The relative viability was estimated as described

above.

RNA isolation, microarray, and real-time qRT–PCR
Adult worms of each strain were incubated with H2O or 1 mM

copper sulfate for 1 hour. Total RNA was then prepared using

Trizol reagent (Invitrogen), followed by DNase I treatment,

phenol/chloroform extraction and ethanol precipitation. RNA

was dissolved in water and used as a template for a genome-wide

microarray analysis and real-time qRT-PCR. Affymetrix Gene-

Chip microarray processing was performed once by Takara Bio

Inc. according to the manufacturer’s protocol (Affymetrix). Briefly,

total RNA was prepared from wild-type and kgb-1 mutant animals

subjected to Cu2+ ion exposure or left untreated (control).

Biotinylated cRNA was hybridized to Affymetrix Genechips

containing probes against 22,500 transcripts. qRT-PCR was

performed with a 7300 real-time RT-PCR system (Applied

Biosystems) using SYBR Premix Ex Taq (Takara). A standard

curve was generated from diluted RNA derived from wild-type

animals, and levels of gene expression were normalized to act-1

expression.

Identification of kreg genes
The microarray results were used as an initial screen to identify

genes whose expression was increased in response to Cu2+ ions and

in a manner dependent on KGB-1. We selected target genes by

the following process (Figure S4A). First, transcript expression

levels were compared between animals with or without Cu2+

treatment (Tables S2 and S3). 334 genes were chosen that were

up-regulated greater than 2-fold by Cu2+ in wild-type animals

(Table S4). Second, we compared Cu2+-mediated gene induction

in wild-type versus kgb-1 mutant animals to identify genes whose

induction was affected by kgb-1. We identified 66 genes whose

induction by Cu2+ in kgb-1 mutants was ,50% of the induction

seen in wild-type animals (Table S5). Third, we compared basal

expression levels between wild-type and kgb-1 mutant animals,

since basal activity of KGB-1 can be detected in wild-type animals

[5,6]. We identified 50 genes whose basal expression was

decreased or not changed in kgb-1 mutants versus wild-type

animals (Table S6). Finally, data were manually curated to remove

genes no longer predicted to be expressed using data available in

Wormbase. From this we chose the top 13 genes whose expression

was significantly induced by Cu2+ in wild-type animals (Table S7).

We then re-examined regulation of these genes in a more

quantitative manner by qRT-PCR (Figure S4B). From this we

obtained a final list of 6 genes whose regulation was reproducibly

affected by kgb-1 (Table S8).

Microarray data for the Cu2+-treated/non-treated wild-type

animals and Cu2+-treated/non-treated kgb-1 mutant animals have

been deposited in NCBI-GEO with the accession numbers

GSE42703. The following links have been created to allow review

of records GSE42703: http://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc = GSE42703

Reporter assay
Wild-type and kgb-1 mutant animals harboring the Pkreg-

1::venus transgene as an extrachromosomal array were cultured on

plates seeded with a bacteria strain expressing the respective

double-stranded RNAs for vhp-1, fos-1, jun-1, atf-7 or hda-1. At 3

days after hatching, animals were treated with copper sulfate

(1 mM) for 1 hour. These animals were then transferred to NGM

plates and incubated for 3 hours. The percentages of animals in

each expression category are listed. ‘‘Weak’’ refers to animals in

which intestinal Venus was present at low levels. ‘‘Strong’’

indicates that Venus was present at high levels in most of the

intestine.

Phosphatase treatment, immunoprecipitation, and ChIP
assays

For phosphatase treatment, cell lysates were incubated with or

without calf intestinal alkaline phosphatase (NEB) at 36uC for

5 minutes. Immunoprecipitation from COS-7 cells was carried out

as described previously [37]. For immunoprecipitation from

HEK293 cells, cells were pretreated with 1% paraformaldehyde

in PBS for 10 minutes and glycine at a final concentration of

0.125 M for 5 minutes and collected. The ChIP assay was

performed using ChIP-IT Express Enzymatic Shearing (Active

Motif) according to the manufacturer’s instructions. In brief, the

soluble chromatin extracts were prepared from 26108 HEK293

cells, and immunoprecipitated with anti-T7 monoclonal antibod-

ies and protein G magnetic beads (VERITAS) overnight. The

immunoprecipitated DNA-histone complexes were incubated

overnight at 65uC to reverse cross-linking and then treated with

RNase A and protease K. Purified DNA fragments were subjected

to quantitative PCR.

Gel-retardation assays
Transfected COS-7 cells were lysed in lysis buffer containing

20 mM HEPES (pH 7.4), 150 mM NaCl, 12.5 mM b-glycero-

phosphate, 1.5 mM MgCl2, 2 mM EGTA, 10 mM NaF, 2 mM

dithiothreitol, 1 mM Na3VO4, 1 mM phenylmethylsulfonyl fluo-

ride, 100 units/ml aprotinin, 0.5% Triton X-100. Binding

reactions were performed at room temperature for 30 minutes

by incubating cell extracts and Cy5.5-labeled retardation probes in

binding buffer containing 25 mM Tris (pH7.9), 250 mM KCl,

1 mM EDTA, 5% glycerol, 1 mM dithiothreitol, 0.25 mg/ml

BSA, 0.1% Triton X-100 and 0.1 mg/ml of poly(dI)Npoly(dC). The

samples were analyzed on 3–12% polyacrylamide gels. For

supershift experiments, anti-T7 antibodies or normal mouse IgG

(Santa Cruz) (1 mg per lane) were added in the binding reactions.

The sequences of the gel retardation probes are as follows: TRE2

probe, 59-AATTGCTGAGTCACAGACAT-39; mutated TRE2
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probe, 59-AATTGCAAGCTTACAGACAT-39; probe deleting

the core 6 bases of TRE2, 59-AAATAATTGCCAGACATTAC-

39. TRE2 and mutated TRE2 are underlined.

Yeast two-hybrid screening
The LexA DBD-KGB-1 (K67R) plasmid was used as bait to

screen the Caenorhabditis elegans cDNA library in pACTII [38]. The

bait plasmid and the library cDNAs were co-transformed into the

Saccharomyces cerevisiae reporter strain L40 [MATa, trp1, leu2, his3,

LYS2::(lexAop)4-HIS3, URA3::(lexAop)8-LacZ]. Yeast cells were plated

onto a synthetic medium plate lacking histidine and containing 3-

amino triazole, and allowed to grow at 30uC. Transformants grown

on selective medium plates were then streaked on selective medium

plates again. Plasmids were collected from colonies that grew on

selective medium plates and subjected to DNA sequencing.

Supporting Information

Figure S1 FOS-1 is phosphorylated by KGB-1. (A) Phosphor-

ylation of FOS-1 by KGB-1. COS-7 cells were co-transfected with

expression vectors encoding T7-FOS-1, HA-KGB-1, and FLAG-

MEK-1 as indicated. Whole cell extracts were analyzed by

Western blot. (B) Effect of the T304E mutation on FOS-1. COS-7

cells were transfected with expression vectors encoding T7-FOS-1

WT and FOS-1(T304E) as indicated. Whole cell extracts were

analyzed by Western blot.

(TIF)

Figure S2 Sites of FOS-1 phosphorylation by KGB-1. (A, B)

COS-7 cells were co-transfected with expression vectors encoding

T7-FOS-1 variants, HA-KGB-1 WT, HA-KGB-1 KN, and

FLAG-MEK-1 as indicated. Whole cell extracts were analyzed

by Western blot. In the FOS-1 variants, each Ser or Thr residue

was replaced with Ala.

(TIF)

Figure S3 Effect of fos-1 inhibition on stress sensitivity. Each

animal was cultured from embryogenesis on normal plates

containing copper sulfate (40 mM) and seeded with a bacteria

strain expressing the double-stranded RNA for fos-1. The

percentages of worms reaching adulthood 4 days after egg laying

are shown with standard errors. Error bars indicate 95%

confidence interval. **P,0.01 as determined by Student’s t test.

NS, not significant.

(TIF)

Figure S4 Identification of kreg genes. (A) Flow chart for

microarray screening. Comparisons among groups subjected to

different treatments are presented. There were 334 genes whose

expression was up-regulated .2-fold between Cu2+-treated/non-

treated wild-type animals. Of these 334 genes, 66 genes showed

.2-fold up-regulation in Cu2+-treated wild-type animals/Cu2+-

treated kgb-1 animals. Of these 66 genes, 50 showed increase or no

change in non-treated wild-type animals/non-treated kgb-1

animals. (B) qRT-PCR analysis of genes isolated from microarray

screen. Wild-type and kgb-1 mutant animals were cultured on

plates seeded with a bacteria strain. At 3 days after hatching,

animals were treated with copper sulfate (1 mM) for 1 hour and

total RNA was isolated. Expression of genes was analyzed by

qRT-PCR and six genes were identified as kreg (KGB-1-regulated

gene). Data are compared using a one-way ANOVA. *P,0.05,

**P,0.01. NS, not significant.

(TIF)

Figure S5 Heavy metal sensitivity caused by inhibition of kreg

genes. The eri-1 mutant animals were cultured from embryogenesis

on normal plates containing copper sulfate (100 mM) and seeded

with bacteria strains expressing the indicated double-stranded

RNA. The percentages of worms reaching adulthood 4 days after

egg laying are shown with standard errors. Error bars indicate 95%

confidence interval. **P,0.01 as determined by Student’s t test. NS,

not significant.

(TIF)

Figure S6 FOS-1 represses kreg expression. Wild-type and kgb-1

mutant animals were cultured on plates seeded with a bacteria

strain expressing the double-stranded RNA for fos-1. Total RNA

was isolated and expression of kreg-1 (A) and kreg-2 (B) was

analyzed by qRT-PCR. Data are compared using a one-way

ANOVA. **P,0.01.

(TIF)

Figure S7 Expression of mek-1 in the intestine determines

resistance to heavy metal stress. Each animal was cultured from

embryogenesis on normal plates containing copper sulfate

(100 mM). The relative viability is shown with standard errors.

Error bars indicate 95% confidence interval. **P,0.01 as

determined by Student’s t test.

(TIF)

Figure S8 Effects of JUN-1 and ATF-7 on the KGB-1

pathway. (A) Effect of JUN-1 and ATF-7 on kreg-1 expression.

Wild-type animals harboring the Pkreg-1::venus transgene as an

extrachromosomal array were cultured on plates seeded with a

bacteria strain expressing the double-stranded RNA for fos-1,

jun-1 or atf-7. ‘‘Weak’’ refers to animals in which intestinal

Venus was present at low levels. ‘‘Strong’’ indicates that Venus

was present at high levels in most of the intestine. Percentages

of animals in each expression category are listed. The numbers

(n) of animals examined are shown. (B) Effect of JUN-1 on

heavy metal sensitivity. Each animal was cultured from

embryogenesis on normal plates containing copper sulfate

(40 mM) and seeded with a bacteria strain expressing the

double-stranded RNA for jun-1. The percentages of worms

reaching adulthood 4 days after egg laying are shown with

standard errors. Error bars indicate 95% confidence interval.

**P,0.01 as determined by Student’s t test. NS, not significant.

(C) Effect of ATF-7 on heavy metal sensitivity. Each animal was

cultured from embryogenesis on normal plates containing

copper sulfate (40 mM). The percentages of worms reaching

adulthood 4 days after egg laying are shown with standard

errors.

(TIF)

Figure S9 Effect of hda-1 depletion on expression of kreg-1 and

kreg-2 genes. Wild-type and kgb-1 mutant animals were cultured on

plates seeded with a bacteria strain expressing the double-stranded

RNA for hda-1. Total RNA was isolated and expression of kreg-1

(A) and kreg-2 (B) was analyzed by qRT-PCR. Data are compared

using a one-way ANOVA. **P,0.01.

(TIF)

Table S1 List of KGB-1 interacting proteins isolated by yeast

two-hybrid screening. A C. elegans mixed-stage cDNA library were

screened by the yeast two-hybrid method to isolate proteins that

interact with KGB-1. From this screen, we identified 10 proteins

that interact with KGB-1.

(XLS)

Table S2 Comparison of transcript expression levels between

wild-type animals with or without Cu2+ treatment. A microarray

analysis was carried out to examine gene expression changes in

wild-type animals subjected to heavy metal stress. Transcript
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expression levels were compared between wild-type animals with

or without Cu2+ treatment.

(XLSX)

Table S3 Comparison of transcript expression levels between

kgb-1 mutant animals with or without Cu2+ treatment. A

microarray analysis was carried out to examine gene expression

changes in kgb-1 mutant animals subjected to heavy metal stress.

Transcript expression levels were compared between kgb-1 mutant

animals with or without Cu2+ treatment.

(XLSX)

Table S4 List of genes that were up-regulated by Cu2+ in

wild-type animals. A microarray analysis was carried out to

examine gene expression changes in wild-type and kgb-1 mutant

animals subjected to heavy metal stress. 334 genes were chosen

that were up-regulated greater than 2-fold by Cu2+ in wild-type

animals.

(XLSX)

Table S5 List of genes whose induction by Cu2+ in kgb-1 mutants

was ,50% of the induction seen in wild-type animals. Among the

334 genes listed in Table S4, we identified 66 genes whose

induction by Cu2+ in kgb-1 mutants was ,50% of the induction

seen in wild-type animals.

(XLSX)

Table S6 List of genes whose basal expression was decreased or

not changed in kgb-1 mutants versus wild-type animals. Among the

66 genes listed in Table S5, we identified 50 genes whose basal

expression was decreased or not changed in kgb-1 mutants versus

wild-type animals.

(XLSX)

Table S7 List of the top thirteen genes whose expression was

significantly induced by Cu2+ in wild-type animals. Among the 50

genes listed in Table S6, we manually removed genes no longer

predicted to be expressed, and selected the top 13 genes whose

expression was significantly induced by Cu2+ in wild-type animals.

(XLSX)

Table S8 List of six kreg genes. We analyzed the 13 genes listed

in Table S7 by qRT-PCR and confirmed that six of these are

genes whose expression is regulated by KGB-1. These were

designated as kreg genes (KGB-1-regulated gene).

(XLSX)
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