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Abstract

Background

Central retinal vein occlusion (CRVO) is a common disease characterized by a disrupted

retinal blood supply and a high risk of subsequent vision loss due to retinal edema and neo-

vascular disease. This study was designed to assess the concentrations of selected signal-

ing proteins in the vitreous and blood of patients with ischemic CRVO.

Methods

Vitreous and blood samples were collected from patients undergoing surgery for ischemic

CRVO (radial optic neurotomy (RON), n = 13), epiretinal gliosis or macular hole (control

group, n = 13). Concentrations of 40 different proteins were determined by an ELISA-type

antibody microarray.

Results

Expression of proteins enriched in the vitreous (CCL2, IGFBP2, MMP10, HGF, TNFRSF11B

(OPG)) was localized by immunohistochemistry in eyes of patients with severe ischemic

CRVO followed by secondary glaucoma. Vitreal expression levels were higher in CRVO pa-

tients than in the control group (CRVO / control; p < 0.05) for ADIPOQ (13.6), ANGPT2 (20.5),

CCL2 (MCP1) (3.2), HGF (4.7), IFNG (13.9), IGFBP1 (14.7), IGFBP2 (1.8), IGFBP3 (4.1),

IGFBP4 (1.7), IL6 (10.8), LEP (3.4), MMP3 (4.3), MMP9 (3.6), MMP10 (5.4), PPBP (CXCL7

or NAP2) (11.8), TIMP4 (3.8), and VEGFA (85.3). In CRVO patients, vitreal levels of CCL2

(4.2), HGF (23.3), IGFBP2 (1.23), MMP10 (2.47), TNFRSF11B (2.96), and VEGFA (29.2)

were higher than the blood levels (vitreous / blood, p < 0.05). Expression of CCL2, IGFBP2,

MMP10, HGF, and TNFRSF11B was preferentially localized to the retina and the retinal pig-

ment epithelium (RPE).
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Conclusion

Proteins related to hypoxia, angiogenesis, and inflammation were significantly elevated in

the vitreous of CRVO patients. Moreover, some markers known to indicate atherosclerosis

may be related to a basic vascular disease underlying RVO. This would imply that local ther-

apeutic targeting might not be sufficient for a long term therapy in a systemic disease but hy-

pothetically reduce local changes as an initial therapeutic approach.

Introduction
Retinal vein occlusion is the second most common vascular eye disease and causes vision loss
due to macular edema, retinal bleeding and ischemia [1]. The worldwide prevalence is estimat-
ed at 1:1250 [2]. Central retinal vein occlusion (CRVO) is less frequent than branch retinal
vein occlusion (BRVO) but results in greater retinal damage.

Visual acuity (VA) prognosis in CRVO is significantly improved by treatment of macular
edema either with intravitreal steroids or anti-VEGF therapeutics that address inflammatory
and VEGF-driven ocular changes [3]. Intravitreal anti-VEGF treatment leads to significant vi-
sual gain of 15 letters or more in up to 60% of the patients (47% ranibizumab [4], 55% afliber-
cept [5], 60% bevacizumab [6]) at one year. However, final VA of� 20/40, sufficient to allow
for driving and reading, is only reached in every second patient (47% ranibizumab [4]). This
underlines the need for a detailed characterization of risk factors and further improvement of
treatment strategies.

Known risk factors for RVO are advanced age [1], glaucoma and systemic diseases, especial-
ly components of the metabolic syndrome such as diabetes mellitus, hypertension and hyper-
lipidemia [7]. Regarding diabetes, patients with end-organ damage from diabetes have a
significantly increased risk of CRVO, while those without do not [7]. Hyperlipidemia leads to
atherosclerosis, which represents a later state of the disease. Atherosclerosis of the central reti-
nal artery was found in association with CRVO [8]. The hypothesis that atherosclerosis is asso-
ciated with a higher risk of CRVO is supported by the finding that history of stroke and
peripheral arterial disease are associated with higher incidence of CRVO [7,9,10].

Inflammatory cytokines, chemokines and neurotrophic factors have been investigated in
the vitreous of patients with retinal vascular diseases due to diabetes or retinal vein occlusion.
VEGF is upon the most investigated as anti-VEGF is implemented in therapy [3,11]. Elevated
levels of inflammatory immune mediators such as IL-6, IL-8, CCL2 were reported in central
and branch RVO, diabetic macular edema, proliferative diabetic retinopathy and retinal de-
tachment [12]. Others found significantly higher levels of IL-1β, IL-2, IL-5, IL-8, IL-9, IL-10,
IL-12, IL-13, CCL11, G-CSF, IFN-γ, CXCL10, CCL2, CCL4, TNF, and VEGF specifically in
CRVO [13]. An association between the expression of inflammatory factors and the severity of
macular edema was observed in CRVO [14]. Levels of VEGF, IL-6, sICAM-1 and PEDF corre-
lated independently with vascular permeability. These factors were higher in CRVO than in
controls, higher in ischemic versus non-ischemic CRVO and correlated with macular edema in
optic coherence tomography [14].

Analysis of plasma levels of atherosclerotic and thrombophilic risk factors demonstrated
that arterial hypertension, hypercholesterolemia, hyperhomocysteinemia and elevated factor
VIII were associated with an increased risk for ischemic versus non-ischemic CRVO [15]. We
set out to simultaneously investigate the expression of 40 proteins associated with inflamma-
tion, hypoxia, angiogenesis and atherosclerosis in vitreous and blood samples of patients
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undergoing RON (radial optic neurotomy) for clinically defined ischemic CRVO and com-
pared it to a control group of patients receiving surgery for epiretinal gliosis or a macular hole.
Criteria for the selection of the proteins to measure were solubility in the cytoplasm (as we did
not expect cells or cell membranes in the vitreous), a context with angiogenesis and inflamma-
tion, and availability from the provider of the array. Our data suggest that distinct chemokines
(CCL2) and growth factors (HGF) may represent valuable targets for novel therapeutic ap-
proaches to treat or prevent ischemic complications in CRVO patients. The observations also
support epidemiologic data regarding risk factors such as atherosclerosis.

Materials and Methods

Ethics statement
All patients gave their written informed consent prior to their inclusion in the study. The study
was registered as experimental laboratory investigation at the Center of Clinical Trials and ap-
proved by the Institutional Review Board of the University Freiburg (No 215/08) and per-
formed in accordance with the IRB’s requirements, with the ethical standards laid down in the
1964 Declaration of Helsinki and with the federal laws in Germany.

Patients and study design
Patients with ischemic CRVO were recruited between 2005 and 2006. At the time of sample ac-
quisition, radial optic neurotomy was thought a valuable surgical approach for ischemic
CRVO. However, this technique did not fulfil expectations [16]. In recent years, intravitreal
anti-VEGF treatment has been introduced to treat macular edema secondary to CRVO. It is
currently the new standard of treatment for either non-ischemic and ischemic CRVO and sur-
gical approaches are left to rare severe cases. CRVO patients with ischemic occlusive disease,
indicated either by nonperfusion in fluorescence angiography (> 10 disc diameters), visual
acuity> 1.0 log MAR, and/or clinical findings such as dark hemorrhages, a high number of
cotton wool spots, or massive leakage of the vessels and papilledema [17], were selected for vit-
rectomy and radial optic neurotomy (n = 13). Duration of CRVO was defined as time from
onset of symptoms until surgery. Neovascularizations of the iris were found in 2/13 patients.
Control specimens were collected from 13 patients undergoing vitrectomy for macular pucker
and macular hole. Patient data is presented in Table 1. CRVO patients did not show differences
compared to control regarding age and the risk factors arterial hypertension, diabetes, and his-
tory of stroke. Significantly more CRVO patients presented with hyperlipidemia, history of
smoking, glaucoma and use of anticoagulants (aspirin or phenprocoumon), indicating a higher
prevalence of cardiovascular diseases known as risk factors for CRVO.

A standard 3-port vitrectomy was performed during surgery. Sample acquisition was
achieved as the first step of the surgery avoiding dilution by the infusion. Depending on clinical
findings, additional procedures such as laser photocoagulation, intravitreal administration of
triamcinolone or bevacizumab could be included at the end of surgery. Samples (200–400 μl
each) were immediately stored at -80°C until further investigation.

Patients with other proliferative eye diseases, such as uveitis or diabetic retinopathy, or pa-
tients with intraocular surgery within the last 6 months, or history of vitrectomy, were excluded
from the study.

Measurement of proteins
Concentrations of various proteins from vitreous and blood samples were measured with an
ELISA-type antibody microarray (Quantibody, Raybiotech Inc., Norcross, GA) following the
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manufacturer’s instructions. Antibodies for each protein were arrayed in quadruplicates per
array. 80 μl of vitreous or blood was used for each sample. The detection antibodies were la-
belled with biotin which was detected with Alexa Fluor 555-conjugated streptavidin. The sig-
nals were read with a G2565 microarray reader (Agilent Technologies, Santa Clara, CA). TM4
Spotfinder (http://www.tm4.org, [18]) was used for quantification of the spots. The concentra-
tions of the proteins were calculated from the median intensities of the spots using standard
curves obtained with a mix of the 40 peptide standards. Detection limits were calculated from
the standard curves with DINTEST (http://www.luiw.ethz.ch/computer/software/) according
to DIN 32645. Protein concentrations were determined using the Bradford assay with BSA as a
standard [19] as the BCA (Bicinchoninic acid) test resulted in erroneously high values if the
proteins were not precipitated.

Mean concentrations for CRVO and control groups were compared by nonparametric com-
parisons (R package nparcomp, http://www.r-project.org/) with Tukey’s correction for multi-
ple comparisons. Correlation between concentrations and the time after CRVO was
determined by the Pearson product-moment correlation coefficient. p< 0.05 was considered
significant. Correlations among proteins as well as among patients were tested in R with corr
(psych package) using the Spearman coefficient and Holm adjustment for multiple compari-
son. Biochemical pathways were analyzed by enrichment analysis (EnrichmentBrowser and
gage in Bioconductor) against the KEGG pathways database (http://www.genome.jp/kegg/)
and the gene ontology database (http://geneontology.org/) for the CRVO patients and vitreous
samples with 24 genes showing expression above background. A complete list of factors tested,
gene symbol, gene ID and gene name is provided as supplementary S1 Table.

Immunohistochemistry
Enucleated eyes from two female patients (88 and 61 years old) with severe ischemic CRVO
followed by neovascular glaucoma were investigated for expression of the proteins that showed

Table 1. Patient characteristics.

CRVO Control

Number of patients (male) 13 (5) 13 (4)

Age (mean ± SD, years) 74.6 ± 9.7 69.5 ± 9.8

Duration of CRVO (weeks) 9.4 ± 5.9 not applicable

Neovascularisation of the iris (at time of surgery) 2/13 (15%) 0 (0%)

Neovascularisation of the disc or elsewhere in the retina 0 (0%) 0 (0%)

Mean visual acuity (log MAR +/- SD) 1.6 +/- 0.48 not applicable

Risk factors for CRVO (%):

Glaucoma 6/13 (46%) 0 (0%)

Arterial hypertension 10/13 (77%) 11/13 (85%)

Diabetes 0 (0%) 0 (0%)

Hyperlipidemia 2/13 (15%) 0 (0%)

History of stroke 1/13 (8%) 1/13 (8%)

Smoking 2/13 (15%) 0 (0%)

Anticoagulation 5/ 13 aspirin 2/ 13 marcumar 2/ 13 aspirin 0/ 13 marcumar

SD = standard deviation

BCVA = best corrected visual acuity

CRVO = central retinal vein occlusion

Control = epiretinal gliosis or macular hole.

doi:10.1371/journal.pone.0126859.t001
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higher concentrations in the vitreous than in blood. Sections (5 μm) of paraffin embedded eyes
were dewaxed and demasked for 20 min in 100 mM sodium citrate, pH 6.0, in a steamer. After
transfer to TBST (50 mM Tris / HCl pH 7.6, 0.9% NaCl, 0.02% Tween 20), sections were
blocked with Ultra V Block (Lab Vision at medac GmbH, Wedel, Germany) and incubated
with antibodies as listed in Table 2 for 3 h. After washing in TBST, an AP-labelled goat anti-
mouse secondary antibody (A3562, Sigma-Aldrich, Taufkirchen, Germany) was applied for
1 h, or a biotin-labelled goat anti-rabbit secondary antibody (71-00-30, KPL, Gaithersburg,
MD, USA) was applied for 1 h followed by streptavidin-coupled AP (71-00-45, KPL) for 1 h.
Slides were washed and AP was made visible by the Vector Red AP Substrate Kit I (SK-5100,
Vector Labs at Axxora, Lörrach, Germany). Sections were counter-stained with hematoxylin.

Results

Concentration of various proteins in the vitreous or blood
The blood concentrations of the proteins investigated in this study were similar in CRVO pa-
tients compared to control patients (range of the ratios between 0.22 and 1.93, median 1.04,
Table 3). In contrast, the concentration of total protein in the vitreous of CRVO patients was
6.4 fold elevated compared to that of control patients (Table 3). The vitreous concentrations of
proteins ADIPOQ, ANGPT2, CCL2, HGF, IFNG, IGFBP1, IGFBP2, IGFBP3, IGFBP4, IL6,
LEP, MMP3, MMP9, MMP10, PPBP, TIMP4, and VEGFA were elevated in CRVO patients
compared to control patients (range of the ratios between 0.75 and 85.3, median 1.82, Table 3).
Proteins like FGF6, FGF7, MMP1, TIMP1, and TIMP2 did not show enhanced vitreous con-
centrations in CRVO patients compared to controls. This indicates that there was not only a
break-down of the blood retina barrier but also a local production within the eye or a selective
transport of proteins. The total increase of the proteins measured in this study was 1.1 μg/ml in
the vitreous (mainly contributed by PPBP), while the increase in total vitreal protein was 2.8
mg/ml indicating a 2500 fold impact of blood retina barrier break-down as compared to ocular
protein expression. Taking into account the ocular expression of proteins not measured in this
study, the factor will be somewhat smaller than 2500.

In CRVO patients, most of the proteins investigated had significantly higher concentrations
in blood than in the vitreous. However, protein concentrations (ratio vitreous / blood) of CCL2

Table 2. Antibodies used for immunohistochemistry.

Antibody against Company Product No. Type Host Dilution

ADIPOQ Acris SP2182P Polyclonal rabbit 1:50

CCL2 Acris PP1044P1 Polyclonal rabbit 1:400

COL IV Abcam ab6586 Polyclonal rabbit 1:500

GFAP Dako Z0334 Polyclonal rabbit 1:1000

HGF Aviva ARP44317_P050 Polyclonal rabbit 1:400

IBA1 Wako 019–19741 Polyclonal rabbit 1:500

IGFBP2 GeneTex GTX113471 Polyclonal rabbit 1:400

MMP10 Abcam ab38930 Polyclonal rabbit 1:1000

PPBP PeproTech 500-P03 Polyclonal rabbit 1:50

TNFRSF11B Acris SM7070P Monoclonal mouse 1:50

COL IV: collagen IV

GFAP: glial fibrillary acidic protein

IBA1: allograft inflammatory factor 1 (AIF1).

doi:10.1371/journal.pone.0126859.t002
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Table 3. Concentration of various factors in vitreous fluid and blood serum of CRVO patients and controls.

CRVO Control Vitreous Correlation with
time after CRVO

Gene Unit Blood ± SD Vitreous ± SD V / B Blood ± SD Vitreous ± SD V / B CRVO /
Control

Detection
limit

Blood Vitreous

ADIPOQ ng/
ml

151 ± 23 61 ± 24 0.40 * 135 ± 25 4.5 ± 3.9 0.03 * 13.6 * 1.0 -0.22 -0.28

ANGPT2 pg/
ml

1268 ± 1258 1619 ± 1120 1.28 1120 ± 554 79 ± 26 0.07 * 20.5 * 63 0.01 -0.33

CCL2 pg/
ml

193 ± 85 809 ± 118 4.20 * 218 ± 92 252 ± 113 1.15 3.2 * 17 -0.13 -0.55 *

HGF ng/
ml

0.50 ± 0.26 11.7 ± 6.4 23.3 * 0.55 ± 0.32 2.5 ± 1.5 4.55 * 4.7 * 0.13 -0.33 -0.28

IFNG pg/
ml

725 ± 273 97 ± 110 0.13 * 998 ± 559 7 ± 12 0.01 * 13.9 * 43 -0.21 -0.33

IGFBP1 ng/
ml

7.8 ± 2.8 3.0 ± 1.8 0.38 * 6.1 ± 1.7 0.20 ± 0.12 0.03 * 14.7 * 0.13 0.38 -0.06

IGFBP2 ng/
ml

9.3 ± 1.5 11.4 ± 1.6 1.23 * 8.8 ± 1.1 6.4 ± 2.8 0.73 * 1.8 * 0.44 -0.09 -0.41

IGFBP3 ng/
ml

51 ± 14 6.8 ± 3.4 0.13 * 36 ± 11 1.7 ± 0.69 0.05 * 4.1 * 1.4 -0.08 -0.29

IGFBP4 ng/
ml

68 ± 24 9.4 ± 2.6 0.14 * 50 ± 23 5.4 ± 2.2 0.11 * 1.7 * 4.0 0.22 -0.28

IL6 pg/
ml

94 ± 31 43 ± 38 0.46 * 118 ± 60 4 ± 3 0.03 * 10.8 * 6 -0.19 -0.42

LEP ng/
ml

10 ± 10 0.98 ± 0.96 0.10 * 33 ± 41 0.29 ± 0.12 0.01 * 3.4 * 0.40 0.26 0.67 *

MMP3 ng/
ml

12.0 ± 6.4 1.02 ± 0.62 0.08 * 9.3 ± 5.1 0.24 ± 0.29 0.03 * 4.3 * 0.40 -0.36 -0.40

MMP9 pg/
ml

13039 ± 6806 142 ± 63 0.01 * 11886 ± 7446 39 ± 14 0.00 * 3.6 * 43 -0.47 -0.29

MMP10 pg/
ml

198 ± 306 488 ± 350 2.47 * 339 ± 236 90 ± 58 0.26 * 5.4 * 47 -0.42 -0.27

PPBP ng/
ml

4867 ± 1522 1105 ± 442 0.23 * 3091 ± 1488 94 ± 80 0.03 * 11.8 * 9.0 0.03 -0.73 *

TIMP4 ng/
ml

3.9 ± 1.7 1.1 ± 0.39 0.28 * 2.70 ± 0.87 0.29 ± 0.10 0.11 * 3.8 * 0.17 0.46 -0.43

TNFRSF11B ng/
ml

1.42 ± 0.76 4.2 ± 1.6 2.96 * 2.1 ± 2.1 2.7 ± 1.7 1.30 1.5 0.19 0.09 0.40

VEGFA pg/
ml

202 ± 278 5883 ± 4503 29.2 * 398 ± 413 69 ± 27 0.17 * 85.3 * 136 -0.24 -0.46

ANGPT1 ng/
ml

13 ± 12 0 ± 0 0.00 * 25 ± 15 0 ± 0 0.00 * - 1.5 -0.44 -

CCL7 pg/
ml

74 ± 22 4 ± 2 0.06 * 55 ± 29 2 ± 1 0.04 * 2.0 * 14 0.17 -0.38

CXCL11 pg/
ml

70 ± 38 3 ± 2 0.04 * 49 ± 29 4 ± 3 0.08 * 0.75 6 0.25 0.09

EGF pg/
ml

854 ± 721 0 ± 1 0.00 * 1867 ± 1246 0 ± 1 0.00 * - 12 -0.41 0.11

FGF2 pg/
ml

361 ± 160 139 ± 26 0.39 * 338 ± 129 151 ± 42 0.45 * 0.92 209 -0.03 0.69 *

IGF1 pg/
ml

3963 ± 1873 85 ± 167 0.02 * 3417 ± 2076 97 ± 236 0.03 * 0.88 2078 0.06 -0.44

IGFBP5 ng/
ml

6.9 ± 4.1 3.0 ± 3.7 0.43 6.6 ± 5.7 1.6 ± 1.2 0.24 * 1.9 3.8 0.17 -0.11

(Continued)
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(4.2), HGF (23.3), IGFBP2 (1.23), MMP10 (2.47), TNFRSF11B (2.96), and VEGFA (29.2) were
significantly higher in the vitreous than in the blood of the same patient (p< 0.05, Table 3).
This indicates that the proteins showing higher concentrations in the vitreous were, at least
partially, produced within the eye or actively transported there. In control patients, only HGF
showed significantly higher concentrations in the vitreous than in blood. Statistical analysis of
the correlations among proteins or patients were not conclusive, most probably because of the

Table 3. (Continued)

CRVO Control Vitreous Correlation with
time after CRVO

Gene Unit Blood ± SD Vitreous ± SD V / B Blood ± SD Vitreous ± SD V / B CRVO /
Control

Detection
limit

Blood Vitreous

IL1B pg/
ml

14 ± 6 7 ± 2 0.51 * 13 ± 7 8 ± 2 0.63 0.88 11 0.17 0.26

IL4 pg/
ml

47 ± 23 10 ± 6 0.21 * 46 ± 29 7 ± 4 0.15 * 1.4 10 -0.17 -0.36

IL13 pg/
ml

53 ± 18 7 ± 8 0.13 * 81 ± 51 0 ± 0 0.00 * - * 13 -0.41 -0.21

IL18BP pg/
ml

592 ± 263 110 ± 56 0.19 * 584 ± 290 65 ± 28 0.11 * 1.7 * 133 -0.24 -0.49

MMP2 pg/
ml

838 ± 350 142 ± 52 0.17 * 453 ± 520 150 ± 96 0.33 0.95 179 0.04 0.30

MMP8 pg/
ml

87 ± 95 9 ± 14 0.10 * 76 ± 78 4 ± 5 0.05 * 2.25 22 -0.30 -0.34

TNF pg/
ml

197 ± 117 11 ± 33 0.06 * 887 ± 971 0 ± 0 0.00 * - 65 -0.31 -0.20

TNFRSF18 pg/
ml

210 ± 132 16 ± 9 0.07 * 263 ± 140 11 ± 9 0.04 * 1.5 76 -0.36 -0.34

FGF6 pg/
ml

174 ± 99 43 ± 6 0.25 * 166 ± 75 40 ± 7 0.24 * 1.08 38 -0.02 0.46

FGF7 pg/
ml

143 ± 90 23 ± 8 0.16 * 198 ± 181 25 ± 12 0.13 * 0.92 15 -0.24 -0.47

MMP1 ng/
ml

1.95 ± 2.6 0.33 ± 0.10 0.17 * 4.7 ± 4.5 0.27 ± 0.12 0.06 * 1.2 0.20 -0.45 0.23

TIMP1 ng/
ml

34 ± 19 5.4 ± 1.6 0.16 * 33 ± 18 4.4 ± 2.5 0.13 * 1.2 0.22 -0.47 -0.33

TIMP2 ng/
ml

15.0 ± 5.4 9.6 ± 1.4 0.64 * 7.7 ± 3.1 8.0 ± 2.6 1.03 1.2 0.32 -0.39 -0.40

Protein mg/
ml

46 ± 12 3.3 ± 1.7 0.07 * 56 ± 12 0.51 ± 0.58 0.01 * 6.4 * 0.48

*significant difference as determined by nonparametric comparisons (p < 0.05)

Criteria for selected factors labeled in bold: vitreous concentration higher than blood values; or vitreous concentration of CRVO and control significantly

different, and at least one value for vitreous above the detection limit. Italic factors: Vitreous values below detection limit.

All values for FGF4 and MMP13 were below the detection limit, and the values for concentrations of ANGPT1, CCL7, CXCL11, EGF, FGF2, IGF1,

IGFBP5, IL1B, IL4, IL13, IL18BP, MMP2, MMP8, TNF, and TNFRSF18 in the vitreous of both CRVO patients and controls were below the detection limit.

The column “Correlation with time after occlusion” shows the Pearson product-moment correlation coefficient that is a measure of the linear correlation

between the protein concentration in the vitreous or blood and the time after occlusion. * indicates statistical significance (p < 0.05). Note that the

significance of LEP is lost if the highest value is omitted. The time after occlusion is the time between the CRVO and vitrectomy.

SD = standard deviation

V / B = vitreous / blood

CRVO = central retinal vein occlusion.

doi:10.1371/journal.pone.0126859.t003
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small number of proteins and patients. The same was true for the biochemical
pathway analyses.

Dependence of the protein concentrations from the time after occlusion
The time between the onset of symptoms due to CRVO and the time point at which the vitre-
ous specimen was taken was different for each patient (time after occlusion, mean: 9.4 ± 5.9
weeks). As surgery was performed once in every patient, specimens could not be taken at differ-
ent time points which limits the interpretation of the results. We compared the concentrations
of the proteins measured to the time after occlusion (Table 3). PPBP (-0.73, p<0.05) and CCL2
(-0.55, p<0.05) showed a negative correlation (Fig 1) that may reflect an increased selective
permeability for certain small proteins or an increased inflammatory or angiogenic state short-
ly after CRVO that is repaired with time. Similar tendencies, though not statistically significant,
were found for IGFBP2, IL6, MMP3, TIMP4, and VEGFA. In contrast, LEP showed a positive
correlation (0.67, p<0.05).

Localization of selected proteins in the human eye
Ocular localization of the proteins that showed significantly higher expression in the vitreous
than in blood (CCL2, IGFBP2, MMP10, HGF, TNFRSF11B) was investigated in histological
specimens of eyes from patients with painful blindness due to secondary glaucoma after CRVO
(Fig 2). Staining for all these factors was found preferentially in the retina and in the retinal pig-
ment epithelium (RPE) but to a much lesser extent in the optic nerve head or extrascleral
nerves. Staining intensity was higher in ocular areas affected with inflammation. HGF was ad-
ditionally found in the endothelium and media of some but not all extrascleral vessels. Staining
for GFAP (glial marker), IBA1 (microglial and macrophage marker), and COL IV (marker for
basement membranes of vessels) was used for comparison.

Discussion
Retinal vein occlusion and subsequent ischemia are followed by the release of cytokines, growth
factors and enzymes which contribute to severe vision loss due to retinal edema and neovascu-
larization. Previous studies in patients suffering from retinal vein occlusions detected a range
of proteins in the vitreous [20,21]. Vitreal VEGFA concentrations were also determined earlier
[11,22,23] and used as a reference in this study. In contrast to previous reports, we had the op-
portunity to assess distinct protein levels in the vitreous as well as in blood samples of patients
following ischemic CRVO and compare them to unrelated controls. This allowed us to further
characterize CRVO-specific changes in vitreal protein expression patterns and to gather evi-
dence for ischemia-induced localized expression of distinct proteins as opposed to a release
from blood.

Most of the proteins that were found to be more prevalent in the vitreous of CRVO patients
than in controls appear to be strongly related to hypoxia, inflammation or angiogenesis.
VEGFA, ADIPOQ, ANGPT2, CCL2, IGFBP1, or LEP share a common hypoxia-response ele-
ment (HRE) at their promoter or intron [24–27] indicating that they are regulated by HIF1A
or HIF2A. In addition, IGFBP2 and IGFBP3 are known to be up-regulated upon hypoxia
[28,29], but it is currently unclear if they are upregulated by HIF or by one of his target genes.
Three of these factors (VEGFA, CCL2 and IGFBP2) showed significantly higher levels in the
vitreous than in the blood of CRVO patients. These data are clearly consistent with the activa-
tion of hypoxia-induced gene networks and a localized intraocular expression of specific pro-
teins due to a hypoxic state.

Vitreal Cytokine Concentrations in Ischemic CRVO

PLOSONE | DOI:10.1371/journal.pone.0126859 May 15, 2015 8 / 15



Fig 1. Correlation of the vitreal concentration of PPBP, CCL2, and LEPwith the time after occlusion
(time between onset of symptoms due to CRVO and surgery). Each data point represents a pair of data
from an individual patient. Note that the significance of LEP is lost if the highest value is omitted.

doi:10.1371/journal.pone.0126859.g001
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The transcription factor NFKB is upregulated by hypoxia. It has a central role in inflamma-
tion as it induces IFNG [30] and IL6 [31]. Both were detected in the vitreous of CRVO patients
and significantly increased compared to controls. In atherosclerosis, CCL2 (also named MCP-
1) is involved in initial steps of inflammation by attracting monocytes, T-cells and dendritic
cells [32,33]. These data strongly support the notion that CRVO is inducing an inflammatory
response in the vitreous.

VEGFA, HGF, MMP3 and MMP9 share common ETS1 binding sites in their promoter re-
gion [34–36]. The transcription factor ETS1 is expressed in endothelial cells and upregulates
genes involved in angiogenesis. ETS1 itself is induced by angiogenic factors like VEGF, HGF,
or FGF2 resulting in a positive feed-back loop [37,38]. Moreover, expression of ETS1 is in-
duced by HIF1A [39] linking angiogenesis to hypoxia in addition to the up-regulation of
VEGFA by HIF. The metalloprotease MMP10 is induced by the transcription factor MEF2 in
response to VEGFA [40,41]. This indicates that significant vitreal levels of angiogenic signaling
factors are present in ischemic CRVO before neovascular changes are clinically apparent. In
addition, these findings point towards a set of angiogenic target proteins including HGF and
selected MMPs which may be amenable to pharmacological intervention.

HGF was found to be increased in vitreous samples of patients with proliferative diabetic
retinopathy and was higher in vitreous than in blood similar to our results [42]. The intraocular
expression of CCL2, HGF, IGFBP2, MMP10, and TNFRSF11B was confirmed by immunohis-
tochemistry in eyes of patients with secondary glaucoma after RVO. This validates some of our
earlier results and provides strong evidence that these proteins are expressed in ocular tissues.
For most of them, expression within the eye has been reported earlier: CCL2, HGF [43,44],
IGFBP2, MMP10, TNFRSF11B, and VEGFA [45] demonstrating that at least one cell type in
the eye can produce these proteins under certain conditions.

Current ocular treatment is focused on anti-VEGF agents and anti-inflammatory steroids.
Our data may add therapeutic targets to improve current anti-VEGF therapy in ischemic
CRVO. Further investigation in the factors associated with hypoxia, inflammation and angio-
genesis in ischemic CRVOmay also lead to new therapeutic approaches to prevent conversion
from non-ischemic to ischemic CRVO.

We also asked, whether our limited sample reflects known risk factors for retinal vein occlu-
sion such as metabolic syndrome (diabetes, hypertension, hyperlipidemia (> 1 factor)), athero-
sclerosis of central retinal artery, history of stroke, and peripheral artery disease. More CRVO
patients presented with one or more risk factors compared to controls (most pronounced dif-
ferences in hyperlipidemia, smoking and use of anticoagulation). This is in line with previous
findings: Analysis of plasma levels of atherosclerotic and thrombophilic risk factors demon-
strated that arterial hypertension, hypercholesterolemia, hyperhomocysteinemia, elevated fac-
tor VIII were associated with an increased risk for ischemic versus non ischemic CRVO [15].
Our findings stress the need for careful work-up of ischemic CRVO patients to detect risk fac-
tors and adequately treat all the patient’s diseases.

Pathophysiology of CRVO is not yet completely clear, but it is agreed that atherosclerotic
changes of the retinal arteries contribute to the disease [46]. With regard to the vitreal proteins

Fig 2. Immunohistochemical staining (alkaline phosphatase, red; blue counter staining: hematoxylin) for CCL2, HGF, IGFBP2, MMP10, and
TNFRSF11B in ocular samples of various patients. These factors were found preferentially in the retina and additionally in nerves and in the RPE.
TNFRSF11B was found in the axons and some nuclei of extrascleral nerves. HGF was additionally found in the endothelium and media of some but not all
extrascleral vessels. GFAP (glia cell marker), IBA1 (migroglia and macrophage marker, and COL IV (basement membrane marker, e.g. in the basement
membrane of vessels and in the membrana limitans interna) are shown for comparison. Note that GFAP is not expressed in the outer segments of the
photoreceptors as is the case for CCL2, HGF, IGFBP2, MMP10, and TNFRSF11B. neg: negative control without primary antibody, a: artery, n: nerve, ONL:
outer nuclear layer, green arrow: RPE.

doi:10.1371/journal.pone.0126859.g002
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detected in CRVO patients, TNFRSF11B is a marker of atherosclerosis [47], though its patho-
physiological role is yet unclear [48]. Similarly, serum concentration of TIMP4 is increased in
systemic sclerosis [49]. TIMP4 is the major MMP inhibitor in platelets and is released upon
platelet aggregation induced by collagen and thrombin [50,51]. MMP10 is upregulated by
thrombin in endothelial cells and enhances fibrinolysis [52,53]. PPBP is expressed upon plate-
let activation during thrombus formation [54]. PPBP expression is induced by MMP3 [55].
Both MMP9 and CCL2 are associated with atherosclerosis [56] where CCL2 attracts monocytes
that mature into macrophages and produce MMP9. This cleaves components of the extracellu-
lar matrix within the atherosclerotic plaques. Thus, several of the vitreal proteins we detected
are consistent with an atherosclerotic phenotype. Since data on the vitreal protein expression
patterns preceding the retinal vein occlusion are not available, it remains challenging to dissect
which vitreal proteins reflect an underlying chronic condition rather than an acute
occlusion response.

In summary, ischemic CRVO is characterized by increased vitreal levels of a distinct set of
proteins, some of them locally expressed, which may serve as targets for novel therapeutic ap-
proaches to augment current anti-inflammatory and anti-angiogenic treatments.

Supporting Information
S1 Table. Factors tested. V / B = vitreous / blood. CRVO = central retinal vein occlusion.
Corr. = correlation.
(DOCX)
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