
Retinal vein occlusion (RVO) is the second most common 
retinal vascular disease after diabetic retinopathy, and it is an 
important cause of visual loss [1,2]. RVO can be classified 
as branch retinal vein occlusion (BRVO), central retinal vein 
occlusion (CRVO), and hemispheric RVO. It is characterized 
by obstruction of the retinal vein, leading to macular edema, 
hemorrhage, and retinal ischemia [3]. Ischemia can lead to 
hypoxia and may trigger the release of inflammatory factors, 
including cytokines, chemokines, and vascular endothelial 
growth factors [3-5]. Vitreous hemorrhage is one of the 
major complications of ischemic RVO, and it is considered a 
result of neovascularization caused by retinal ischemia [3,6]. 
Vitreous hemorrhage is reported in 10% of ischemic CRVO 
by 9 months after the onset of occlusion and developed in 
61%–73% of patients with ischemic BRVO during follow-up 
periods between 2 and 4 years [7,8].

The role of inflammation in the clinical consequences of 
RVO is a topic of growing interest. Chemokines are a family 
of small heparin-binding proteins, mostly known for their 
role in chemotaxis, immune surveillance, and inflammation 
[9]. The roles of some proinflammatory chemokines in RVO 
have been reported by a few research groups, and increased 
levels of some chemokines are associated with macular 
edema and retinal ischemia [3-5,10,11]. Overexpression of 
proinflammatory cytokines and chemokines may exacerbate 
hypoxia, and a vicious circle may follow. However, there 
are limited studies on the vitreous levels of chemokines in 
patients with RVO complicated with vitreous hemorrhage. In 
addition, most published studies on chemokine profiles have 
focused on the aqueous humor in patients with macular edema 
but not ischemic RVO complicated with vitreous hemorrhage. 
Having a better understanding of the chemokine profile in 
ischemic RVO enables us to know more about activation of 
the immune-inflammatory process in RVO, thus contributing 
to development of future therapeutic approaches. Therefore, 
we designed the present study to investigate the vitreous 
levels of chemokines in eyes with ischemic RVO in an attempt 
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to obtain a better understanding of the pathophysiology in the 
disease and identify potential treatment targets.

METHODS

This study was performed in accordance with the tenets of 
the Declaration of Helsinki. The study adhered to the ARVO 
statement on human subjects. Informed consent was obtained 
from all the study subjects, and the study was approved 
by the Research Ethics Committee of the Guangdong 
Provincial People’s Hospital (Number 2016232A). The 
control group comprised subjects with idiopathic macular 
holes (IMHs) and preretinal membranes (PRMs). The RVO 
group comprised subjects with central or branch retinal 
vein occlusion complicated with unresolved or condensed 
vitreous hemorrhage. Subjects with the following conditions 
were excluded: (1) patients with other ocular conditions 
(glaucoma, uveitis, etc.); (2) patients with a history of ocular 
surgery within the previous 6 months; (3) patients who had 
received anti-VEGF treatment; and (4) subjects with severe 
systemic inflammatory diseases. All subjects underwent a 
complete ocular examination. Vitreous humor was collected 
from 20 control subjects (six with PRMs and 14 with IMHs) 
and 25 subjects with ischemic RVO. The 23-gauge trocar 
and cannula system (Alcon Laboratories, Inc., Fort Worth, 
Texas) was used to perform pars plana vitrectomy under 
standardized operation procedures for all subjects. About 
0.2 to 0.4 ml of undilute vitreous humor was aspirated 
into a sterile syringe before the intraocular infusion. The 
samples were immediately placed on ice and transferred to 
microcentrifuge tubes. After immediately centrifugation at 
1,000 ×g at 4 °C for 10 min, the supernatants of the samples 
were aspirated and subsequently stored at −80 °C until further 
analysis.

We used the Bio-Plex ProTM human chemokine panel 
40-plex kit (Bio-Rad Laboratories, Inc., Hercules, CA) 
to measure the concentrations of the following 40 human 
chemokines: interleukin (IL)-10, IL-16, C-X-C motif ligand 
10 (CXCL10(, CXCL11, C-C motif ligand 2 (CCL2), CCL8, 

CCL7, CCL13, CCL22, macrophage migration inhibitory 
factor (MIF), CXCL9, CCL3, CCL15, CCL20, CCL19, 
CCL23, CXCL16, CXCL12, CCL17, CCL25, TNF-α, CCL21, 
CXCL13, CXCL5, CCL11, CCL24, CCL26, CCL27, CX3CL1, 
CXCL6, granulocyte macrophage colony-stimulating factor 
(GM-CSF), CXCL1, CXCL2, CCL1, interferon-gamma 
(IFN-γ), IL-1β, IL-2, IL-4, IL-6, and IL-8. All experimental 
procedures were conducted according to the manufacturer’s 
instructions. The Bio-PlexTM 200 System (software version 6.1, 
Bio-Rad Laboratories) was used to analyze the fluorescence 
intensity of the assay. A chemokine concentration lower than 
the limit of detection was regarded as non-measurable.

The STRING database was used to demonstrate 
interactions between the different groups. The STRING 
database aims to collect and integrate all functional 
interactions between the expressed proteins by consolidating 
known and predicted protein–protein association data for a 
large number of organisms [12]. The associations in STRING 
include direct (physical) interactions, as well as indirect 
(functional) interactions, as long as both are specific and 
biologically meaningful [13].

Statistical analysis: The statistical analyses were performed 
using IBM SPSS Statistics version 19.0 (IBM SPSS Statistics; 
IBM Corporation, Chicago, IL). The chi-square test was 
performed for clinical variables such as sex, and the Mann–
Whitney U test was performed for evaluation of differences 
in chemokine levels. A p value less than or equal to 0.05 was 
considered statistically significant.

RESULTS

The clinical characteristics of the control group and the RVO 
group are shown in Table 1. In comparison to the control 
group, the mean systolic and diastolic blood pressures were 
higher in the RVO group, but they were not statistically 
significant (p=0.230 and p=0.736, respectively). No 
statistically significant differences in age and gender were 
found between the control group and the RVO group (p=0.630 
and p=0.502, respectively).

Table 1. Demographic and clinical characteristics of the control group and RVO group.

Clinical characteristics Control group (n=20) RVO group (n=25) P value
Age (years) 56.20.40±10.18 57.84±12.03 0.630*
Male/Female 43,748 15/10 0.502#
SBP (mmHg) 133.75±19.51 140.52±17.72 0.230*
DBP (mmHg) 77.90±10.09 79.00±11.33 0.736*

RVO=retinal vein occlusion; SBP=Systolic blood pressure; DBP=Diastolic blood pressure; *=data was 
described as mean±standard deviation and compared with one-way ANOVA; #=data was analyzed with 
chi-square test.
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The following 29 chemokines were statistically 
significantly elevated in the RVO group compared with the 
control group (Table 2): CCL21, CXCL13, CCL27, CCL24, 
CX3CL1, CXCL6, IFN-γ, IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, 
IL-16, CXCL10, CXCL11, CCL8, CCL7, CCL13, CCL22, 
MIF, CXCL9, CCL3, CCL15, CCL20, CCL19, CCL23, 
CCL25, and TNF-α. Figure 1 shows the interactions among 
the 29 chemokines.

Three chemokines were elevated more than six times in 
the RVO group compared with the control group, including 
IL-8, CXCL9, and TNF-α (Figure 2). The levels of the 
following ten chemokines were comparable between the 
control group and the RVO group: CXCL5, CCL11, CCL26, 
GM-CSF, CXCL1, CXCL2, CCL1, CCL2, CXCL12, and 
CXCL16. CCL17 was not included in the analysis because 
it was non-measurable in more than 70% of the samples of 
each group.

DISCUSSION

In the present study, we investigated and compared the 
vitreous levels of 40 chemokines in 20 relatively healthy 
subjects and 25 patients with ischemic RVO. We found that the 
levels of 29 of 39 chemokines were statistically significantly 
elevated in the RVO group compared with the control group. 
Moreover, the levels of IL-8, CXCL9, and TNF-α showed 
a more than six-fold increase in the RVO group versus the 
control group, and CXCL9 expression showed the greatest 
change of all the tested chemokines. String pathway analysis 
showed that the chemokines of the C-C motif ligand family 
and the C-X-C motif ligand family tended to interact in a 
cluster, while CXCL10 and IL-8 played roles linking them to 
the interleukin family. CX3CL1 could be activated by IFN-γ, 
TNF-α, and IL-1β. IL-2 could be activated by IL-6, IL-16, 
and TNF-α, while it could be inhibited by IL-4, CXCL10, 
and IL-6. IL-1β could be activated by IL-2, IL-8, IFN-γ, 
and TNF-α, and IL-1β activated CCL3, CCL20, CXCL6, 
and CX3CL1. IL-8 could be activated by IL-4, IFN-γ, IL-2, 
TNF-α, and IL-1β, but it could be inhibited by IL-10 and IL-6. 
CXCL10 can be activated by IFN-γ, TNF-α, and IL-1β, while 
it could be inhibited by IL-4 and IL-10.

Previous studies have reported that some chemokines 
are elevated in the aqueous humor or vitreous humor of 
patients with ischemic or non-ischemic RVO, and we found 11 
chemokines in the panel were among them, including IL-1β, 
IL-2, IL-6, IL-8, IL-10, CCL3, CCL11, CXCL9, CXCL10, 
IFN-γ, and TNF-α [5,8,14-17]. Regarding the intraocular 
levels of chemokines in ischemic RVO, IL-1β, IL-6, IL-8, 
IFN-γ, CCL2, and TNF-α were found to be elevated and were 
reported to play a role in the pathogenesis of the ischemic 

form of RVO as well as the associated neuronal cell death 
occurring within the retina [8]. Noma et al. found that 
aqueous levels of IL-6 are correlated with the size of the 
non-perfused area in BRVO, indicating that IL-6 could be 
used to determine the severity of the ischemic condition [10]. 
Although studies have found the elevation of the chemokines 
above in ischemic RVO, few of them investigated ischemic 
subjects with vitreous hemorrhage. Thus, the present study 
demonstrated a comprehensive insight and provides more 
information for further investigation in patients with RVO 
complicated with vitreous hemorrhage.

Studies reported that the levels of CCL2 and CXCL12 
were higher in the intraocular fluid of patients with RVO, 
while we found that the vitreous concentrations of these 
chemokines were comparable between the control group 
and the RVO group. Suzuki and colleagues reported that 
the vitreous levels of CCL2 was elevated in patients with 
CRVO compared to healthy controls [14]. In conditions of 
iris neovascularization secondary to ischemic RVO, the 
vitreous levels of CXCL12 were upregulated. Kii et al. 
found that vitreous CXCL12 levels in active RVO (four eyes 
with iris neovascularization) were statistically significantly 
higher than those in quiescent RVO (16 eyes without iris 
neovascularization) and the negative controls, whereas 
there was no statistically significant difference between 
patients with quiescent RVO and the negative controls [18]. 
The present study showed that CXCL12 in the subjects with 
vitreous hemorrhage secondary to ischemic RVO was not 
statistically different from the controls. It is interesting that 
different phenotypes of ischemic RVO (e.g., RVO with iris 
neovascularization and RVO with vitreous hemorrhage) had 
different expression of CXCL12. In an animal experiment, the 
expression of CXCL12 was reduced at 2 days after the RVO 
models were induced, while it was upregulated at 20 days 
after the induction, suggesting that this chemokine may play 
a role in the progression of RVO [19]. More investigations 
are needed to clarify the controversial results of CXCL12 in 
RVO eyes.

To our knowledge, little is known about the intraocular 
concentration of the following chemokines in patients 
with RVO: IL-4, IL-16, CCL7, CCL8, CCL13, CCL15, 
CCL20, CCL21, CCL22, CCL23, CCL24, CCL25, CCL26, 
CCL27, CXCL5, CXCL6, CXCL11, CXCL13, CX3CL1, 
and MIF. IL-4 was reported as an anti-inf lammatory 
factor and has been considered an antiangiogenesis factor 
in diabetic retinopathy [20,21]. In addition, IL-4 has the 
function to increase the survival of retinal ganglion cells 
[22]. IL-16 is a chemoattractant for various CD4+ immune 
cells, and it contributes to the regulatory process of CD4+ 
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cell recruitment and activation at sites of inflammation in 
association with asthma and several autoimmune diseases 
[23]. Few studies have been reported to reveal the role of IL-16 
in ocular diseases, except that it is known to be associated 
with allergic conjunctival disorders and thyroid-associated 
ophthalmopathy [24,25]. Elevated aqueous levels of CCL15, 
CXCL5, CXCL11, and CX3CL1 are associated with dry 
eye disease, and CXCL6 is associated with dry age-related 
macular degeneration [26-28]. Moreover, Abu and colleagues 
found that CCL20 and CXCL13 might be novel biomarkers 
of specific endogenous uveitic entities [29]. However, there 
are extremely limited published studies on the CC chemokine 

ligands and CXC chemokine ligands mentioned above 
(CCL7–8, CCL13, CCL15, CCL20–27, CXCL5, CXCL6, 
CXCL11, and CXCL13) in RVO or even in ophthalmic fundus 
disorders, and their roles in ischemic retinal diseases warrant 
further study.

CX3CL1 is the sole member of the CX3C chemokine 
family, and it is a chemoattractant and adhesion molecule for 
leukocytes [30]. An experimental study showed that CX3CL1 
is able to induce endothelial cell chemotaxis, endothelial cell 
tube formation, and corneal neovascularization, indicating 
that it may be a mediator of ocular angiogenesis [31]. 
Regarding MIF, Wang et al. found that areas of vascular 

Figure 1. A STRING pathway demonstrating the relationships of the 29 chemokines. CSF-2, colony-stimulating factor; GM-CSF, granulocyte 
macrophage colony-stimulating factor; IFN-γ, interferon-gamma; CXCL, C-X-C motif ligand; IL, interleukin; CCL, C-C motif ligand; 
TNF-α, tumor necrosis factor-alpha; MIF, macrophage migration inhibitory factor.
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obliteration increased by 49%, sprouting tips reduced by 
27%, and preretinal angiogenesis inhibited by 35% were 
observed in an MIF knockout mice model with oxygen 
induced retinopathy, indicating that MIF has proangiogenic 
and proinflammatory properties in retinal neovascularization 
[32]. Considering that CX3CL1 and MIF was found to be 
associated with angiogenesis in other ischemic retinopathies, 
we assume that they may play a role in the progression of 
ischemic RVO. Further investigations are needed to verify the 
roles of CXCL3 and MIF in the progression of RVO. In the 
present study, we found that the levels of three chemokines 
(IL-8, CXCL9, and TNF-α) were elevated more than five 
times in the RVO group compared with the control group, 
and CXCL9 expression showed the greatest change of all 
tested chemokines. A previous study reported that the levels 
of aqueous IL-8 and TNF-α were statistically significantly 
higher in the ischemic RVO group than in the nonischemic 
RVO group [3]. Noma et al. found that the number of 
intravitreal ranibizumab injections was positively correlated 
with the baseline aqueous level of IL-8 in patients with 
BRVO, suggesting that IL-8 may influence the recurrence 
of macular edema [33]. In a pig model of BRVO, neural cell 
death occurred early and was accompanied by upregulation 
of IL-8 and glial acidic fibrillary protein, indicating that 
therapeutic strategies aimed at preservation of retinal neural 
cells were important in the management of RVO [19]. CXCL9 
is known to be a monokine induced by gamma interferon, 
which may bind its receptor CXCR3 to exert an effect on 
neuroinflammation, and neurodegeneration in the central 
nervous system [34]. There are limited studies in CXCL9 
and ocular conditions including RVO. Given that the present 
study revealed CXCL9 as the most increased chemokine in 
the vitreous of RVO, the role of CXCL9 in the pathogenesis 
of ischemic RVO warrants further study.

The elevated vitreous chemokines in ischemic RVO 
indicated that a complex chemokine network was involved 
in the retinal vascular occlusive disease, which may 
contribute to the impairment of neurovascular structures. 
Although anti-VEGF agents are effective in the management 
of patients with RVO complicated with macular edema or 
neovascularization, many inflammatory factors are also 
related to the pathological status, and anti-VEGF agents 
are not effective in lowering the intraocular concentrations 
of the inflammatory factors [35]. The study showed that 
variations in VEGF levels were responsible for about 30% 
of the variance in retinal thickness in patients with macular 
edema due to BRVO or CRVO, indicating that about 70% 
of the contribution is from factors other than VEGF [36,37]. 
The intraocular levels of chemokines have found to be 
associated with morphological changes in patients with 
RVO [3,38]. Blocking the actions of inflammatory cytokines 
and chemokines using steroids is also effective in reducing 
inflammation in patients with RVO [15]. For patients with 
RVO complicated with unresolved vitreous hemorrhage, 
pars plana vitrectomy and retinal photocoagulation are the 
major treatment options [8]. However, such procedures may 
worsen the inflammation due to trauma and thermal damage. 
In the present study, dozens of chemokines were elevated, 
suggesting that the inflammation in ischemic RVO was 
severe, and postoperative anti-inflammation therapy using a 
steroid such as dexamethasone implant or steroid eye drops 
is important. Identifying the inflammatory biomarkers of the 
complications in RVO could allow us to know more about 
different phenotypes of the disease, and may provide us with 
valuable information on modulating the therapeutic strategy.

There are several limitations in the present study. It 
would be better if the sample size had been larger. In addition, 
we did not collect serum samples; thus, we could not study 
the systemic circulating chemokines and compare them with 

Figure 2. Box plots of chemokines in the RVO group (n=25) and control group (n=20). A: IL-8, B: CXCL9 and C: TNF-α. *=Statistically 
significant (Mann-Whitney U test, all p<0.001).
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ocular chemokines. In clinical practice, vitreous humor of 
healthy subjects is not available because of the invasive nature 
of the procedures and ethical issues. The vitreous humor of 
patients with idiopathic preretinal membranes and idiopathic 
macular holes are commonly used as controls in experiments, 
because the changes in vitreous components in these 
conditions are relatively lower than those in other oculopathy 
[39-42]. This is truly a weak point of the investigation, 
but these samples are the best choice we have in clinical 
practice. Hemorrhage is the one of the signs of ischemic 
RVO. The ischemic condition may lead to hemorrhage, and 
in contrast, the blood may exacerbate the inflammation when 
in contact with the retina. Thus, further studies concerning 
the association of serum and vitreous levels of chemokines 
in ischemic RVO, as well as the association of vitreous 
hemorrhage with and without ischemia (such as in traumatic 
retinal hemorrhage), may be needed to resolve this question.

In conclusion, we investigated vitreous levels of 
chemokine profile in eyes with ischemic RVO using one 
of the most comprehensive panels in the study. Dozens of 
chemokines were found to be elevated in the vitreous of 
patients with RVO complicated with vitreous hemorrhage, 
suggesting that inflammation is severe in the ischemic retina. 
The elevated chemokines might be used as treatment targets 
in the future, and further investigations are needed to verify 
the roles of chemokines in the progression of RVO.
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