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S Supplementary material

Adverse outcome pathway (AOP)-based computational models provide state-of-the-art pre-
diction for human skin sensitizers and are promising alternatives to animal testing. However, 
little is known about their applicability to pesticides due to scarce pesticide data for evalu-
ation. Moreover, pesticides traditionally have been tested on animals without human data, 
making validation difficult. Direct application of AOP-based models to pesticides may be in-
appropriate since their original applicability domains were designed to maximize reliability 
for human response prediction on diverse chemicals but not pesticides. This study proposed 
to identify a consensus chemical space with concordant human responses predicted by the 
SkinSensPred online tool and animal testing data to reduce animal testing. The identified 
consensus chemical space for non-sensitizers achieved high concordance of 85% and 100% for the cross-validation and independent test, re-
spectively. The reconfigured SkinSensPred can be applied as the first-tier tool for identifying non-sensitizers to reduce. animal testing for pesti-
cides by 19.6%.
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Introduction

Skin sensitization is a key endpoint considered by chemical 
and pesticide regulatory authorities. Small molecules acting as 
haptens can form a complex with proteins that may trigger T 
cell-mediated immune reactions and lead to allergic contact 
dermatitis.1) Until the European Union’s 2013 ban on animal 
testing for cosmetics, assessment protocols for skin sensiti-
zation have long relied on animal tests, such as the guinea pig 
maximization test (GPMT) and the murine local lymph node 
assay (LLNA). Following the 3R (replacement, reduction, and 
refinement) principle, alternative non-animal assays are cur-

rently the preferred method for assessing the skin sensitization 
of chemicals.2–4)

Among the alternative methods, computational models such 
as structural alerts (SAs) and quantitative structure–activity 
relationship (QSAR) models are the most cost-effective meth-
ods and are generally acceptable for regulatory use.4) Novel 
algorithms and software are continuously proposed for improv-
ing the prediction of skin sensitizers.5,6) While SA-based meth-
ods are useful, chemicals without SAs may not be considered 
non-sensitizers. Also, traditional end-to-end QSAR models 
provide no mechanism information. For improving regulatory 
acceptance, the emerging adverse outcome pathway (AOP) 
concept has been integrated into the prediction models of skin 
sensitization for mechanism interpretation and performance 
improvement.

Tung et al. proposed the first AOP-based computation-
al method7) for predicting skin sensitizers by aggregating 
individual read-across results from SkinSensDB8) with three 
key events—protein binding, keratinocyte activation, and the 
activation of dendritic cells. The read-across method offers 
improved prediction with the predicted activation status of the 
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three key events for mechanism interpretation. SkinSensPred9) 
introduced an advanced multitask ExtraTree algorithm to si-
multaneously train the target task of human skin sensitization 
and three relevant learning tasks corresponding to the three 
key events. The knowledge-sharing mechanism among the tar-
get and three relevant tasks along with the incorporation of SA 
information achieved state-of-the-art performance for human 
skin sensitizers.9) Similarly, the Pred-Skin 3.0 online tool pro-
vides improved performance for human skin sensitizers over 
previous models by developing a Bayesian-based meta classifier 
to integrate five QSAR models representing the three key events, 
LLNA, and human skin sensitization.10)

With increased interest in replacing animal testing with com-
putational methods for pesticide regulation, the AOP-based 
computational methods are promising alternatives to animal 
testing. However, most of the datasets are of general chemicals, 
pharmaceuticals, and cosmetics. The predictive performance of 
AOP-based models on pesticides is largely unknown. A previous 
evaluation of skin sensitization for pesticides using traditional 
SA and end-to-end QSAR models showed a low-to-moderate 
predictive performance.11) Therefore, it is interesting to investi-
gate the predictive performance of AOP-based QSAR methods 
on pesticides. Since the existing skin sensitization information 
for pesticides is mostly based on animal testing, which is dif-
ferent from the human response endpoint predicted by modern 
AOP-based tools, the validation and interpretation of the pre-
dictive results and determining the way to incorporate the tools 
for regulatory use are challenging tasks.

This study first evaluated a list of 143 pesticides using 
SkinSensPred. As expected, only 11 pesticides fell within the ap-
plicability domain (AD) of SkinSensPred. Among them, three 
pesticides with corresponding human data from the Hazard-
ous Substances Data Bank (HSDB) are all correctly predicted by 
SkinSensPred. However, other predictions without human data 
are difficult to validate, which impedes their regulatory adapta-
tion. To solve this issue, we proposed to identify the consensus 
chemical space with concordant animal testing data and predict-
ed human responses by reconfiguring the AD of SkinSensPred. 
The 143 pesticides were randomly divided into a training data-
set and a test dataset at a 2 : 1 ratio. Exclusion rules for chemi-
cals outside of the consensus chemical space were derived by 
using a decision tree-based algorithm12,13) with nine different 
fingerprints based on the training dataset, and their predictive 
performance was evaluated using the test dataset. The test result 
showed that the proposed method using standard fingerprints is 
effective in identifying non-sensitizers with a high concordance 
of 100%. The overall coverage of the consensus chemical space 
of 143 pesticides is 19.6%. With the consensus chemical space 
reconfigured, SkinSensPred can be applied as the first-tier tool 
for identifying non-sensitizers, thus reducing animal testing for 
pesticides.

Materials and methods

1. Dataset
In total, 143 active ingredients of pesticides with skin sensiti-
zation data based on animal testing mostly were collated from 
five sources, including 125 pesticides from The Joint FAO/
WHO Meeting on Pesticide Residues (JMPR, https://www.fao.
org/agriculture/crops/thematic-sitemap/theme/pests/lpe/en/), 
six pesticides from the Food Safety Commission of Japan (FSCJ, 
https://www.fsc.go.jp/english/evaluationreports/agrichemicalsl_
e1.html), 11 pesticides from the European Food Safety Authority 
(EFSA, https://www.efsa.europa.eu/en/microstrategy/openfood-
tox), and one pesticide from the International Programme on 
Chemical Safety (IPCS) INCHEM Environmental Health Cri-
teria Monographs (EHCs, https://inchem.org/pages/ehc.html). 
The detailed numbers for different types of pesticides are shown 
in Table 1, and detailed information for the dataset is shown in 
Table S1.

2. Fingerprint
Nine types of chemical fingerprints—including circular 
(ECFP6), standard (StandardFP), extended (ExtendedFP), 
graph (GraphFP), hybridization (HybridizationFP), Molecu-
lar ACCess System (MACCSFP), estate (EStateFP), pubchem 
(PubChemFP), and KlekotaRoth (KRFP)—were evaluated in 
this study to identify the consensus chemical space with con-
cordant animal testing data and predicted human responses. 
Among them, StandardFP, ExtendedFP, GraphFP, Hybridiza-
tionFP, and ECFP6 are hashed fingerprints with a default length 
of 1024 bits, where each bit represents the existence of specific 
substructures. ExtendedFP, GraphFP, and HybridizationFP 
are all similar to the StandardFP. ExtendedFP takes rings and 
atomic properties into account. GraphFP and HybridizationFP 
consider only connectivity and hybridization states, respectively. 
ECFP6 is widely utilized for QSAR model development. Due to 
bit collision issues, the direct structural interpretation of a spe-
cific bit is not possible. In contrast, the bit vectors encoded by 
MACCSFP, EStateFP, PubChemFP, and KRFP, with lengths of 
166, 79, 881, and 4860, respectively, are interpretable. RCDK 
v3.4.7.214) based on the Chemistry Development Kit (CDK) 
library15) was utilized to generate the nine types of chemical 
fingerprint.

Table 1. The type and skin sensitization category of the utilized dataset

Type Category of skin 
sensitization

Number of 
chemicals

Acaricide, miticide insecticide Sensitizer 19
Non-sensitizer 48

Fungicide Sensitizer 22
Non-sensitizer 40

Herbicide Sensitizer 4
Non-sensitizer 10
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3. Consensus chemical space with concordant animal testing 
data and predicted human response

The concept of identifying consensus chemical space with con-
cordant animal testing data and predicted human responses is 
similar to determining the applicability domain (AD) of quan-
titative structure–activity relationship (QSAR) models. In this 
study, we used the state-of-the-art SkinSensPred method9) to gen-
erate skin sensitization predictions in humans. The web server 
is freely available at https://cwtung.nhri.edu.tw/skinsensdb/ 
predict. The AD of the original model aims to identify the chem-
ical space with a reliable prediction of the target endpoint of a 
QSAR model, i.e., a human response. Since our aim is to gener-
ate skin sensitization predictions that can be validated in animal 
models, the idea is to identify the consensus chemical space that 
can maximize the concordance between animal testing data and 
predicted human responses.

The consensus chemical space was determined by using a 
decision tree-based method12,13) to derive classification rules 
for the exclusion of chemicals outside of the consensus chemi-
cal space. To avoid overfitting problems, the determination of 
the consensus chemical space was derived solely from the train-
ing dataset and independently tested using the test dataset. 
First, all testing chemicals were randomly divided into a train-
ing dataset and a test dataset with a 2 : 1 ratio for each pesticide 
class. Second, the human skin sensitization score and category 
(sensitizer or non-sensitizer) for each chemical in the training 
datasets were predicted with SkinSensPred without consider-
ing the original AD of the model. The scores ranged from 0 to 
1. A chemical with a score greater than 0.5 is considered to be a 
sensitizer. In contrast, non-sensitizers are chemicals with scores 
of less than or equal to 0.5. Third, the concordance between 
SkinSensPred results and animal testing data was calculated and 
utilized as the label column. Fourth, the classification and re-
gression tree (CART) algorithm16) was applied to generate rules 
with corresponding concordance for each fingerprint. Fifth, 
rules for conflicts between SkinSensPred and animal testing data 
were utilized as exclusion rules for identifying chemicals outside 
of the consensus chemical space. Finally, the test dataset was ap-
plied to evaluate the exclusion rules. R environment v3.6.0 and 
packages of rpart v4.1-1517) and partykit v1.2-618) were used to 
implement the decision tree-based method.

Results and discussion

1. Application of SkinSensPred to pesticides
The applicability of SkinSensPred to pesticides was first studied 
by utilizing the tool to predict skin sensitizers of the 143 col-
lected pesticides. Due to the data availability issue, most predic-
tion tools, including SkinSensPred, were trained on chemicals 
that are mostly general chemicals, pharmaceuticals, and cosmet-
ics and were expected to have limited applicability to pesticides. 
The analysis results showed that only 11 pesticides fell within 
the applicability domain (AD) of SkinSensPred, with a very low 
coverage of 7.7%. Since SkinSensPred was designed to predict 
human skin sensitizers, it is reasonable to compare its predic-

tions to human data rather than to animal data. Among the 11 
pesticides, only three pesticides of thiophanate-methyl (CASN: 
23564-05-8), ferbam (CASN: 14484-64-1), and carbaryl (CASN: 
63-25-2) were associated with human data based on HSDB. All 
three pesticides are sensitizers and were all correctly predicted, 
which shows the usefulness of SkinSensPred prediction. How-
ever, the other eight predictions without human data conflicted 
with animal testing data. Both species differences and predic-
tion errors could be responsible for the conflicts. For example, 
the abovementioned carbaryl is annotated as a non-sensitizer 
based on guinea pig data that is different from human data. 
Due to potential ethical issues for validating the predicted ef-
fects on human beings,19) it may not be appropriate to directly 
adopt a human-based prediction for regulatory use. The scarcity 
of human data for pesticides makes regulatory adaptation diffi-
cult. To achieve a compromise between the advanced prediction 
model for human responses and a validatable outcome based on 
animal data, we proposed identifying the consensus chemical 
space with concordant animal testing data and predicted human 
responses by reconfiguring SkinSensPred.

2. Identification of the consensus chemical space
To determine the consensus chemical space, a decision tree-
based method was applied to extract rules based on chemical 
fingerprints for identifying chemicals with skin sensitization 
results in which the predicted human response conflicted with 
the animal testing data. Nine chemical fingerprints were evaluat-
ed in this study. The 143 pesticides were randomly divided into a 
training dataset and a test dataset with 97 and 46 chemicals, re-
spectively. An analysis of the concordance between the predicted 
human responses and animal testing data on the training data-
set was conducted first. There are 52 and 45 chemicals predicted 
to be human skin sensitizers and non-sensitizers, respectively. 
Among the 52 predicted human skin sensitizers with a score 
greater than 0.5, only 17 (32.7%) pesticides are sensitizers based 
on animal data. In contrast, 31 of the 45 predicted human non-
sensitizers with scores less than or equal to 0.5 are also non-
sensitizers according to the animal data, with a higher concor-
dance of 68.9%. The results showed that the negative predictions 
of SkinSensPred are more likely to have the same result as that 
by animal testing. Since pesticides could induce skin sensitiza-
tion via different mechanisms, the lack of pesticide data in the 
training set of SkinSensPred could lead to the underprediction 
of sensitizers of pesticides. In contrast, non-sensitizers may 
share the same structural features among pesticides and other 
chemicals.

Based on the preliminary concordance analysis, the identifi-
cation of the consensus chemical space was focused on the pre-
dicted human non-sensitizers. Nine fingerprints, along with a 
decision tree-based method, were applied to identify the rules 
for excluding chemicals with prediction that conflicted with 
animal data. Due to the uncertainty of SkinSensPred prediction 
scores close to the decision threshold (0.5), two cut-off values of 
0.5 and 0.4 were applied to filter out chemicals with a predicted 
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score greater than the values that are considered more likely to 
be sensitizers. The filtered datasets for the cut-off values of 0.5 
and 0.4 consist of 70 and 38 chemicals, respectively. Each dataset 
was randomly divided into a training dataset and a test dataset. 
The numbers of chemicals in the training and test datasets are 48 
and 22 for the cut-off value of 0.5, respectively. As for the cut-off 
value of 0.4, there are 29 and 9 chemicals in the training and test 
datasets, respectively.

To ensure the robustness of the identified consensus chemical 
space, a leave-one-out cross-validation (LOOCV) was applied 
to evaluate the rules defining the consensus chemical space. 
Each pesticide in the training dataset was utilized as a validation 
chemical to assess the performance of the rules derived from 
the remaining chemicals. In this study, the concordance of non-
sensitizer predictions was utilized for the selection of cut-off val-
ues, since only negative predictions were considered by applying 
the cut-off values. Figure 1 shows the concordance based on the 
two cut-off values using LOOCV in the training dataset. Ex-
cept for ECFP6 and HybridizationFP, the utilization of the other 
seven chemical fingerprints showed no improvement in concor-
dance as compared to the original predictions without consid-
ering the consensus chemical space based on the cut-off value 
of 0.5. For the cut-off value of 0.4, StandardFP, KRFP, Hybrid-
izationFP, GraphFP, and ECFP6 showed improvement over the 
original predictions. The highest concordance (85.0%) was ob-
tained by using GraphFP and a cut-off value of 0.4. A consensus 
chemical space was then determined by applying the decision 
tree-based method with GraphFP and a cut-off value of 0.4 to 
the whole training dataset. Four rules were generated for identi-
fying chemicals outside of the consensus chemical space. Twen-
ty of the 29 chemicals in the training dataset were found to be 
within the consensus chemical space with a coverage of 69.0%. 

The inferred decision tree and rules are shown in Fig. S1.
ExtendedFP, GraphFP, and HybridizationFP are specialized 

versions of StandardFP. The performance difference obtained 
from this study may imply that the rings and atomic proper-
ties covered by ExtendedFP and hybridization states considered 
by HybridizationFP are less relevant for defining the consen-
sus chemical space, while GraphFP, which considers only atom 
connectivity without bond order information, is more useful 
for identifying chemicals with concordant predicted human re-
sponses and animal testing results.

3. Independent test of the consensus chemical space
The abovementioned test datasets were applied to assess the 
performance of the determined consensus chemical space. As 
shown in Fig. 2, an excellent 100% concordance was achieved 
by using the consensus chemical space based on GraphFP and 
a cut-off value of 0.4. The four rules of the consensus chemical 
space filtered out five chemicals from the corresponding test da-
taset, resulting in coverage of 44.4% (4/9). For comparison, the 
original prediction showed only 64% (16/25) concordance in 
the corresponding test dataset. ECFP6 and a cut-off value of 0.5 
achieved an 80.0% (12/15) concordance with 68.2% (15/22) cov-
erage in the corresponding test dataset.

To further validate this method for determining the consen-
sus chemical space, 100 runs of random splitting of the dataset 
for the cut-off value of 0.4 were conducted. For each run, the 
corresponding training and test datasets were applied to derive 
rules for identifying chemicals outside of the consensus chemi-
cal space and independently testing the rules, respectively. Re-
sults are shown in Fig. 3. The median and mean concordance 
values are very promising, with values of 100% and 93.8%, re-
spectively. Altogether, the proposed strategy for deriving rules is 

Fig. 1. The concordance between SkinSensPred prediction and animal 
data. The concordance of nine chemical fingerprints and two cut-off val-
ues were compared. GraphFP and the cut-off value of 0.4 had the highest 
concordance.

Fig. 2. Concordance comparison of the predictions in two consensus 
chemical spaces and original predictions. The cut-off values were applied 
to filter out positive or near-decision boundary predictions, resulting in a 
lower coverage of chemicals in the consensus chemical spaces.
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effective in identifying the consensus chemical space.

4. Consensus chemical space based on the whole dataset
For machine learning algorithms, a bigger dataset often leads to 
more robust performance. Therefore, the whole dataset—con-
sisting of 38 pesticides for the cut-off value of 0.4—was utilized 
to derive the final consensus chemical space. Five rules were 
obtained for filtering out chemicals outside of the consensus 
chemical space. The rules are shown in Table S2. The coverage 
of the consensus chemical space is 73.7% (28/38). As compared 
to the original dataset consisting of 143 pesticides, the proposed 
method is expected to reduce animal testing efforts by 19.6% 
(28/143). This method, with a low false negative rate, could be 
deployed as a first-tier tool to identify non-sensitizers without the 
need for animal testing. On the other hand, the remaining pesti-
cides may require testing based on alternative testing methods.

Conclusion

AOP-based prediction models provide promising performance 
for predicting human skin sensitizers. However, their applicabil-
ity to pesticides is largely unknown due to scarce pesticide data 
for model training. This study first evaluated the AOP-based 
SkinSensPred method for predicting human skin sensitiza-
tion for 143 pesticides. Only a limited number of the pesticides 
are associated with human data. Among them, three pesticides 
within the original AD of SkinSensPred were all correctly pre-
dicted by SkinSensPred. While excellent predictions were ob-
tained, the AD of SkinSensPred was designed to maximize the 
reliability of human response prediction based on its training 
dataset with little information of pesticides, which, therefore, led 
to limited coverage. As for the other pesticides with only animal 

testing data, it is difficult to assess the reliability of predictions 
for human responses made by SkinSensPred. Therefore, this 
study proposed identifying the consensus chemical space with 
concordant results between predicted human responses and ani-
mal testing data.

As pesticides may have some skin sensitization proper-
ties different from other types of chemicals, the prediction of 
skin sensitizers based on current models with little informa-
tion of pesticides could be unreliable. However, non-sensitizers 
could still share similar structure features. Our evaluation of 
the concordance between predicted human responses and ani-
mal testing data concluded a low concordance (32.7%) for pre-
dicted human skin sensitizers and a high concordance (68.9%) 
for predicted human skin non-sensitizers. The results showed 
that the AOP-based model could still catch the patterns of non-
sensitizers in both species.

Since species differences could still affect concordance, this 
study utilized a decision tree-based method along with nine 
fingerprints to identify the consensus chemical space for pre-
dicted human skin non-sensitizers. The method extracted 
exclusion rules for identifying chemicals outside of the con-
sensus chemical space. GraphFP with a stringent cut-off value 
of 0.4 was found to be most useful for deriving exclusion rules 
based on the training dataset, with a high concordance of 85.0% 
(LOOCV). A 100% concordance on the test dataset showed the 
usefulness of the proposed method. A final set of five rules was 
derived from the whole dataset to give a more comprehensive 
description of the consensus chemical space that could be useful 
for further reducing animal testing.

While the proposed method effectively identifies non-sensi-
tizers without the need for animal testing, the proposed meth-
od is based on GraphFP, whose encoding is a hashed bit vector. 
Due to potential bit collision issues, the identified rules are not 
interpretable. To make the results useful for the scientific com-
munity, the code implementing the exclusion of chemicals out-
side of the consensus chemical space has been made publicly 
available. Altogether, this study demonstrated a useful method 
for reconfiguring the AOP-based SkinSensPred for pesticides 
that is expected to reduce animal testing by 19.6%. The proposed 
method potentially could be applied to reconfigure other 
computational methods for pesticides.

To date, non-animal testing methods for skin sensitization 
have not gained routine regulatory use for the registration of 
pesticide products in most countries.4,20) Animal testing meth-
ods such as LLNA, GPMT, and the Buehler test remain the stan-
dard tests required for active ingredients or final products for an 
informed hazard assessment of pesticides. Alternative methods 
may be considered in a case-by-case manner or when the data 
meet some acceptable regulatory criteria.4) Furthermore, none 
of the alternative assays is recommended as a stand-alone re-
placement for animal tests. As a recently published approach 
for defining skin sensitization,21) the developed method could 
be further integrated with other alternative methods to inform 
regulatory use.

Fig. 3. Concordance based on 100 randomly divided test datasets. The 
box plot shows the minimum, lower quartile, median, upper quartile, 
and maximum of concordance from 100 experimental runs. The median, 
upper quartile, and maximum are all 100%. The red cross represents the 
mean of concordance.
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Availability

The code for applying the exclusion rules for identifying pes-
ticides outside of the consensus chemical space is available at 
https://github.com/sswang33/SkinSensPred-pesticides.
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