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Abstract
Background.  Although IDH-mutant tumors aggregate to the frontotemporal regions, the clustering pattern of 
IDH-wildtype tumors is less clear. As voxel-based lesion-symptom mapping (VLSM) has several limitations for 
solid lesion mapping, a new technique, whole-lesion phenotype analysis (WLPA), is developed. We utilize WLPA 
to assess spatial clustering of tumors with IDH mutation from The Cancer Genome Atlas and The Cancer Imaging 
Archive.
Methods. The degree of tumor clustering segmented from T1 weighted images is measured to every other 
tumor by a function of lesion similarity to each other via the Hausdorff distance. Each tumor is ranked ac-
cording to the degree to which its neighboring tumors show identical phenotypes, and through a permu-
tation technique, significant tumors are determined. VLSM was applied through a previously described 
method.
Results.  A total of 244 patients of mixed-grade gliomas (WHO II–IV) are analyzed, of which 150 were IDH-wildtype 
and 139 were glioblastomas. VLSM identifies frontal lobe regions that are more likely associated with the presence 
of IDH mutation but no regions where IDH-wildtype was more likely to be present. WLPA identifies both IDH-mutant 
and -wildtype tumors exhibit statistically significant spatial clustering.
Conclusion. WLPA may provide additional statistical power when compared with VLSM without making several 
potentially erroneous assumptions. WLPA identifies tumors most likely to exhibit particular phenotypes, rather 
than producing anatomical maps, and may be used in conjunction with VLSM to understand the relationship be-
tween tumor morphology and biologically relevant tumor phenotypes.

Analysis of morphological characteristics of IDH-
mutant/wildtype brain tumors using whole-lesion 
phenotype analysis
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Key Points

	•	 Spatial clustering patterns of IDH-wildtype tumors are not as well defined as IDH-
mutant tumors.

	•	 Voxel-based lesion-symptom mapping has limitations in solid lesion analysis; whole-
lesion phenotype analysis (WLPA) is an alternate method that overcomes some of 
these limitations.

	•	 We utilize WLPA to demonstrate the existence of statistically significant spatial 
clustering of both IDH-mutant and -wildtype brain tumors.

Spatial clustering of IDH-mutant brain tumors has been 
demonstrated by multiple studies. IDH-mutant tumors tend 
to aggregate to the frontal or temporal lobes.1–3 Some of the 
technically most advanced studies have utilized the voxel-
based lesion-symptom mapping (VLSM)4 or similar anatom-
ical mapping techniques, which allows for the assessment 
of lesions demonstrating a critical relationship between an-
atomical structure and clinical function. Although initially 
developed to map clinical symptoms based on lesion loca-
tion, VLSM has been adapted to perform a more general le-
sion phenotype mapping, including those caused by brain 
tumors.5,6 There are several benefits to this technique:

1.	 It requires no artificial anatomical boundaries that are 
frequently not respected by a given lesion.

2.	 It does not require a priori region of interest delineation.
3.	 It provides a statistical map of anatomical regions that 

are associated with a particular phenotype.

However, there are shortcomings to this methodology, 
some of which are specific to solid lesion imaging:

1.	 There is an uneven spatial distribution of statistical 
power; a relatively large number of lesions are required 
to ensure that a biologically significant region attains a 
sufficient number of voxels.7 In extreme cases, lesions 
that do not have spatial overlap with other lesions are 
not informative and do not contribute to statistical 

power. However, such lesions may still be informative. 
For example, the presence of multiple nonoverlapping 
lesions of a single phenotype over a specific anatomical 
region strongly suggests an association between that 
region and the phenotype.

2.	 There is an assumption of independence of voxels con-
tributing to the association with a phenotype, that is, 
that any spatial location vulnerable to a lesion of a par-
ticular phenotype is equally likely to be affected.8,9

3.	 There is also an assumption of spatial independence, 
that is, that the phenotype of one voxel is independent 
of the phenotype of other voxels. This is not likely the 
case in solid lesions, especially since there is a robust 
spatial correlation for any given phenotype. More insid-
iously, if voxels of certain anatomical locations that are 
not biologically associated with a particular phenotype 
are nonetheless frequently associated with a particular 
phenotype only as a result of anatomical continuity with 
voxels that are biologically associated with the pheno-
type, this may lead to the erroneous discovery that a 
specific brain location is statistically associated with a 
particular phenotype.5

4.	 Phenotypes, particularly clinical ones, are complex and 
may draw on several structural/morphological charac-
teristics; the anatomical location is typically only one 
of many determinants. Even within the radiographic 
realm, several features of lesion morphology may play 
significant roles.

Importance of Study

Voxel-based lesion-symptom mapping (VLSM) 
has been utilized to demonstrate the clustering 
of IDH-mutant tumors to the frontotemporal re-
gions. Although VLSM identifies a relationship 
between anatomical structures and phenotype, 
it makes certain assumptions that may render 
it less applicable to solid lesions. We developed 
an alternate method of assessing spatial clus-
tering, the whole-lesion phenotype analysis 
(WLPA). We demonstrate the utility of this tech-
nique in revealing that IDH-wildtype tumors 
tend to exhibit spatial clustering, which was not 

observed with VLSM. We hypothesize that the 
smaller IDH-wildtype tumors result in anatom-
ically sparse distribution, rendering VLSM less 
effective than WLPA. Although it does not pro-
duce statistical maps like VLSM, WLPA identi-
fies IDH-wildtype tumors that are most likely to 
be spatially associated with other IDH-wildtype 
tumors. WLPA may be utilized in conjunction 
with VLSM to assess the relationship between 
tumor morphology and biologically relevant 
tumor phenotypes.
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Although these reasons may render lesion-based mapping 
methods to be generally difficult to interpret and may lead 
to conflicting or unexpected negative results,10–12 lesion 
mapping strategies may still offer insight into lesions as-
sociated with phenotypes. Rather than attempting to deter-
mine whether phenotypes map to specific brain regions, 
we propose an alternate approach to determine whether 
lesions with predefined measures, such as morphological 
similarity, results in a characteristic phenotype.

Here we describe a simple new analysis technique, 
whole-lesion phenotype analysis (WLPA). The underlying 
principle of this analysis is that there is a clustering of 
lesions associated with a particular phenotype or gen-
otype and that a function of lesion similarity measures 
the degree of clustering. We then rank each of the lesions 
according to the degree to which its neighboring lesions 
show an identical phenotype. Through a permutation 
technique, we determine which of these lesions are sig-
nificantly clustered. Thus, we attempt to analyze on a le-
sion basis, rather than mapping based on brain anatomy, 
which in certain situations may overcome some of the is-
sues with VLSM. We demonstrate this method using The 
Cancer Genome Atlas (TCGA) dataset of brain tumors by 
focusing on a genotype of interest: IDH-wildtype versus 
mutant. We test the hypothesis that tumors display dis-
tinct clustering characteristics according to phenotype. 
Although one may infer anatomical location, this is not 
the basis of the analysis.

Materials and Methods

Patients and Scans

Patients were identified through TCGA glioblastoma 
multiforme (GBM) and lower-grade glioma (LGG) datasets 
and cross-referenced with MRI from The Cancer Imaging 
Archive (TCIA). Both the GBM and LGG datasets were util-
ized. IDH1/2 mutational status was obtained from TCGA. All 
patients with IDH mutational data and preoperative MRI 
scans were included.

Image Processing

Tumors were manually segmented from the MRI by 
blinded raters using standard image processing software 
(3D Slicer, www.slicer.com). The tumor margin was de-
lineated by either the area of contrast enhancement or, 
if nonenhancing, the extent of the abnormal signal on 
T1-weighted images. Tumor margins were also delineated 
by the extent of abnormal signal on T2-weighted images 
for confirmatory analysis.

MR images were transformed into a standardized coor-
dinate space based on the Talairach atlas13 to account for 
differences in brain orientation and intracranial volume. 
Automatic registration using linear affine transformation 
was performed from the T1-weighted images.14 Because 
distortions of the anatomy caused the registration pro-
cedure to fail at times, registration validity was checked 
by selecting 6 points on both the template and the target 

brains (maximal anterior and posterior cortical extent 
along the anterior–posterior commissure (AC-PC) line, 
upper and lower extent along the perpendicular line 
through the AC; left and right extent along the third axis 
formed by the 2 previous lines). If the root mean square 
is greater than 5  mm, registration was reperformed 
using the manually selected coordinates. Tumor volumes 
were calculated after registration (MATLAB, Mathworks, 
Natick, MA). The dataset and Matlab code are available 
on request.

Statistical Analysis

Anatomical Statistical Mapping
Tumor masks were then used to determine the regions 
where patients were more likely to present with or without 
IDH mutation using a previously described voxel-wise 
method adapted to solid lesions.15 Briefly, a χ 2 statistic 
map was calculated at each voxel to determine the devi-
ation from the expected number of IDH-mutant tumors at 
that voxel when compared with the overall population. In 
voxels where the number of patients with IDH mutation 
exceeded the number of patients without IDH mutation, a 
higher value of χ 2 is indicative of a stronger likelihood that 
patients with a tumor at that location would present with 
IDH mutation than at other locations. A complementary χ 2 
map was calculated to determine locations where presen-
tation with IDH mutation was less likely. The significance 
of the χ 2 statistic was then determined by a clustering and 
nonparametric resampling method. Signal clusters were 
obtained through a 6-connectivity model.16 To determine 
the significant clusters without making arbitrary assump-
tions regarding cluster strength threshold, the threshold-
free cluster enhancement (TFCE) technique was first 
applied.17 Thereafter, the labeling of each patient as IDH-
mutant versus wildtype was randomly reassigned, with 
the constraint of preserving the original ratio. From the 
relabeled group, a χ 2-statistic map and TFCE scores were 
calculated, and the maximum TFCE score across all voxels 
was recorded. This was repeated 5000 times to obtain a 
null hypothesis distribution of maximal TFCE.16,18 Clusters 
of the original image whose TFCE scores exceeded signifi-
cance of P < .05 were considered significant.

Whole-Lesion Phenotype Analysis
The basic steps are as follows and are adapted from a pre-
vious methodology measuring differential gene expres-
sion of 2 phenotypes:19

1.	 The similarity score is calculated as follows: between 
each pair of lesions, the Hausdorff distance,20,21 a ro-
bust measure of similarity between 2 images, was 
calculated. Simply, the Hausdorff distance between 2 
sets of planes is calculated by obtaining the set of min-
imum distances from every point of one plane to the 
other and then selecting the maximum of that set (eg, 
Figure 1). To derive a relatively linear unit score (eg, 
scores between 0 and 1), the exponential of the nega-
tion of the Hausdorff distance was utilized as the simi-
larity score (H1..i).

http://www.slicer.com
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An index of tumor volume overlap in space was calculated, 
as it would have been a reasonable proxy of tumor simi-
larity. For tumors A and B:

I =
2∗ (A ∩ B)
A ∪ B

Nonzero values had a high correlation with the trans-
formed Hausdorff distance (ρ  =  0.59). The Hausdorff dis-
tance was utilized as a measure of similarity as it has the 
distinct advantage of every pair of tumors being informa-
tive, whereas nonoverlapping pairs are minimally informa-
tive with the overlap index.

2.	 For each lesion (index lesion), all other lesions are or-
dered in decreasing similarity. Thereafter, an enrichment 
score (ES) is calculated as follows: if the next closest le-
sion encountered has the same phenotype, the ES is in-
creased by

Hiˆp
Nsame

where Nsame is the sum of Hg^p where g is the subset of all 
lesions that have the same phenotype as the index lesion 
(Supplementary Figure).

3.	 If the lesion encountered has the opposite phenotype, 
the score is decreased by 1

Ndiff
 where Ndiff is the number 

of all the lesions whose phenotype is different than the 
index lesion. The omnibus statistic is the maximum ES 
for all lesions in the dataset. If the exponential p = 0, this 
reduces the ES to the Kolmogorov–Smirnov (K-S) sta-
tistic. If p = 1, this is an enriched K-S statistic.

4.	 The membership of the phenotype is permuted while 
keeping the total number of members in each pheno-
type the same. For each permutation, the maximum ES 
is calculated, and the distribution of ES is obtained. The 
original lesions that fall outside 95% of the permutated 
distribution are considered significant.

The primary analysis was performed using T1-weighted im-
ages. Because of the inevitable variability in demarcating 
the tumor, analyses were also performed utilizing 
T2-weighted images; and utilizing T1-weighted images for 
glioblastomas and T2/FLAIR images for LGGs.

Analysis was performed using MATLAB R2015b 
(Mathworks, Natick, MA). Rendering was performed on 
MRIcron.7 The local institutional review board approved 
this study.

Results

A total of 330 patients were included. Of these, the IDH 
status was available in 244 patients (150 IDH-wildtype, 94 
IDH-mutated). Deceased patients were older at the time of 
study than alive patients, and IDH-wildtype patients were 
older than IDH-mutant patients (Table 1). The normalized 
volume of patients with “deceased” status was smaller 
than patients who were alive (Table 1). The tumor volume 
of patients with IDH-mutant tumors was larger than IDH1-
wildtype tumors. There was no difference in gender (Table 
1). The aggregate maps of all IDH-wildtype and IDH-mutant 
tumors are shown in Figure 2 across 3 axial slices.

Anatomical Statistical Mapping (VLSM)

Statistical mapping to determine regions with significantly 
more tumors with IDH mutation status revealed 2 signifi-
cant clusters, both in the deep right/midline frontal region: 
the first was of size 62.3 cc3 and maximal χ 2 of 29.05, while 
the second was of size 0.17cc3 with maximal χ 2 of 14.6. No 
significant regions with more tumors with IDH-wildtype 
were found (Table 2).

Whole-Lesion Phenotype Analysis

Figure 3 illustrates the heat map of the ESs, visually 
demonstrating that tumors with high ESs tend to cluster. 
There appear to be unexpected clusters of tumors with 
low ESs, suggesting the existence of potential distant sec-
ondary clusters.

A total of 35 IDH-wildtype tumors and 28 IDH-mutant 
tumors showed statistically significant aggregation to tu-
mors of the same phenotype when assessed by the tumor 
similarity score when compared with a random distribu-
tion. Visual assessment of the distribution of these tumors 
revealed that IDH-mutant tumors clustered more anteriorly, 
with greater involvement of the insular cortex, whereas the 
IDH-wildtype tumors clustered more posteriorly.

The IDH-mutant tumor with the greatest ES (TCGA code 
FG-A4MT, P  =  .001) is the same left frontal lower-grade 
glioma previously described. This tumor can be considered 

  

A

B

Figure 1.  Example of Hausdorff distance calculation. Line A repre-
sents the maximum of the set of minimum distance from blue to red 
lesion, and line B represents the maximum of the set of minimum dis-
tance from red to blue lesion. The Hausdorff distance is the greater 
of A and B.
  

https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdab088#supplementary-data
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4.	 The membership of the phenotype is permuted while 
keeping the total number of members in each pheno-
type the same. For each permutation, the maximum ES 
is calculated, and the distribution of ES is obtained. The 
original lesions that fall outside 95% of the permutated 
distribution are considered significant.

The primary analysis was performed using T1-weighted im-
ages. Because of the inevitable variability in demarcating 
the tumor, analyses were also performed utilizing 
T2-weighted images; and utilizing T1-weighted images for 
glioblastomas and T2/FLAIR images for LGGs.

Analysis was performed using MATLAB R2015b 
(Mathworks, Natick, MA). Rendering was performed on 
MRIcron.7 The local institutional review board approved 
this study.

Results

A total of 330 patients were included. Of these, the IDH 
status was available in 244 patients (150 IDH-wildtype, 94 
IDH-mutated). Deceased patients were older at the time of 
study than alive patients, and IDH-wildtype patients were 
older than IDH-mutant patients (Table 1). The normalized 
volume of patients with “deceased” status was smaller 
than patients who were alive (Table 1). The tumor volume 
of patients with IDH-mutant tumors was larger than IDH1-
wildtype tumors. There was no difference in gender (Table 
1). The aggregate maps of all IDH-wildtype and IDH-mutant 
tumors are shown in Figure 2 across 3 axial slices.

Anatomical Statistical Mapping (VLSM)

Statistical mapping to determine regions with significantly 
more tumors with IDH mutation status revealed 2 signifi-
cant clusters, both in the deep right/midline frontal region: 
the first was of size 62.3 cc3 and maximal χ 2 of 29.05, while 
the second was of size 0.17cc3 with maximal χ 2 of 14.6. No 
significant regions with more tumors with IDH-wildtype 
were found (Table 2).

Whole-Lesion Phenotype Analysis

Figure 3 illustrates the heat map of the ESs, visually 
demonstrating that tumors with high ESs tend to cluster. 
There appear to be unexpected clusters of tumors with 
low ESs, suggesting the existence of potential distant sec-
ondary clusters.

A total of 35 IDH-wildtype tumors and 28 IDH-mutant 
tumors showed statistically significant aggregation to tu-
mors of the same phenotype when assessed by the tumor 
similarity score when compared with a random distribu-
tion. Visual assessment of the distribution of these tumors 
revealed that IDH-mutant tumors clustered more anteriorly, 
with greater involvement of the insular cortex, whereas the 
IDH-wildtype tumors clustered more posteriorly.

The IDH-mutant tumor with the greatest ES (TCGA code 
FG-A4MT, P  =  .001) is the same left frontal lower-grade 
glioma previously described. This tumor can be considered 

as having the greatest similarity with other IDH-mutant tu-
mors for the given metric. The IDH-wildtype tumor with the 
greatest ES (TCGA code 19-4068, P = .0009) is a small left 

occipital GBM. Figure 4 shows the aggregate cluster maps 
of IDH-mutant (4B) and wildtype tumors (4C) that reached 
significance, along with the 5 tumors with the greatest ES.

  
Table 1.  Demographics

Variable IDH-Mutant IDH-Wildtype Statistic 

Total patients 94 150  

Mean age (SD) 42.5 (13.3) 62.7 (11.4) P < .0001

Female (%) 38 (40.9%) 62 (41.1%) P = NS

The Cancer Genome Atlas database   P < .0001

  Glioblastoma multiforme (%) 10 (10.8%) 128 (85. 3%)  

  Lower-grade glioma (%)a 83 (89.3%) 22 (14.7%)  

    Grade 2 (%) 43 (45.7%) 7 (4.7%)  

    Grade 3 (%) 39 (41.5%) 15 (10.0%)  

Tumor volume cc3 (SD) 89.7 (81.1) 45.1 (33.0) P < .0001

aOne patient with IDH mutation had discrepant grade.
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10 20

Figure 2.  Aggregate tumor map for (A) IDH-mutant and (B) IDH-wild type. Colormap represents aggregate number of patients at each voxel.
  

  
Table 2.  Regions More Likely to be IDH-Mutant

Region Size (cc3) χ 2 Max Voxel/Talairach Coordinates

Right/midline anterior frontal 62.3 29.1 90, 163, 83/1, 36, 10

Right/midline anterior frontal 0.17 14.6 72, 184, 100/19, 57, 27
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The analysis performed utilizing T2/FLAIR resulted in 
20 significant tumors (12 IDH-mutant, 8 wildtype), most 
of which were a subset of the tumors significant on the 
T1-significant tumor set (80%; 9 of 12 for IDH-mutant, 7 
of 8 for IDH-wildtype). The analysis performed utilizing 
T1-weighted images for glioblastomas and T2/FLAIR im-
ages for LGG resulted in a set of 52 significant tumors (28 
IDH-mutant, 24 IDH-wildtype), again most of which were a 
subset of the T1-significant tumor set (77%, 40 of 52 IDH-
mutant, 20 of 24 IDH-wildtype).

Discussion

We analyze the association of anatomical characteristics of 
individual brain tumors based on MR images of a genotype 
of interest, IDH mutational status, using 2 different analysis 
techniques, VLSM and WLPA. VLSM represents a robust and 
powerful technique in determining anatomical correlates 
with phenotype and has been utilized in several studies, 
including brain tumors, but makes several key assump-
tions that may result in both misleading positive findings 
and potentially underpowering others.22,23 Here, we intro-
duce a new WLPA technique that overcomes some of these 
limitations by analyzing the clustering of tumors based on 
tumor similarity, though it does not produce a traditional 
statistical map.

IDH-Mutant Versus Wildtype

We redemonstrate that tumors with IDH mutations 
have a predilection for a frontal lobe location using a 
modification of the VLSM method, a finding previously 
demonstrated in multiple studies. The location of the 
statistically significant clusters was virtually identical to 
the map produced by the study by Tejada Neyra et al., in 
particular.1,2 However, our VLSM results, consistent with 
previous studies, failed to demonstrate any anatomical 
aggregation for IDH-wildtype tumors. Using the WLPA, 
we demonstrate that there is a statistically significant ag-
gregation of IDH-mutant tumors in the frontal region; in 
addition, we also determined significant aggregation of 
IDH-wildtype tumors as well. Thus, we established that 
the distribution of IDH-wildtype tumors is not random 
and exhibits spatial clustering.

The possible influence of IDH mutations on tumor clin-
ical behavior has led to investigations of the relationship 
between the location and shape of gliomas employing 
neuroimaging methods.24,25 Previous studies have 
found that gliomas with IDH mutations tend to be lo-
cated within the frontal or temporal lobes but are rarely 
seen in the diencephalon or brain stem.3 In correlation 
analyses between the IDH status and tumor location 
applying boundaries of the frontal, parietal, occipital, in-
sular, or temporal lobe, prior studies found that tumors 
located in insular, frontal, and temporal lobes presented 
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Figure 3.  Heat map of the Hausdorff distances, ordered by descending enrichment scores. Tumors 1–150 are IDH-wild type, and 151–244 are IDH-
mutant. Tumors clusters are visually apparent, both for IDH-wild type (red circle) or IDH-mutant (purple circle).

  



7Snyder et al. Morphometric characteristics and IDH status
N

eu
ro-O

n
colog

y 
A

d
van

ces

with frequent IDH mutation rates which were 100%, 89%, 
and 72%, respectively, and tumors infiltrating the frontal 
lobe were associated with IDH1 or IDH2 mutations.3 It 
has been proposed that most gliomas originate from a 
population of neural stem/progenitor cells, which are 
isolated from the subventricular zone in the lining of the 
lateral ventricles.26,27 Although the involvement of the 
subventricular zone is not apparent in the IDH-mutant 
aggregate images, this is more apparent with the signif-
icant images produced by WLPA. The clustering tumor 
areas we found are also coincident with the localization 
pattern of gliomas with combined deletions of 1p and 
19q,28 which are associated with IDH1/2 mutations.29

Some studies report greater volume in IDH-wildtype 
WHO grade II gliomas,30 which seems in conflict with 
our findings of larger tumor volumes in the IDH-
mutated group, though the latter cohort included GBM 
patients. IDH mutations induce supraphysiologic D-2-
hydroxyglutarate levels, which are thought to result 
in epigenetic dysfunction, dysregulation of multiple 

enzymes, and pathways shown to contribute to onco-
genesis, and when induced in the subventricular zone of 
a murine model, results in proliferative tumor nodules 
with brain infiltrating cells harboring subventricular 
zone markers.31,32 IDH-mutant tumors have shown a 
proclivity for the frontal lobes, a neuroanatomical site 
with a greater tolerance for mass effect than other re-
gions, which may result in delayed tumor identification. 
Previous studies also note younger age of IDH-mutant 
groups, which is in agreement with our findings (though 
not significant in our cohort), might also contribute to 
the larger volumes of tumors.3

Analysis Strategy

We demonstrate a new analysis strategy, WLPA, which was 
compared with a traditional voxel-based mapping method. 
The advantage of this system is demonstrated in the fact 
that the voxel-based mapping method did not produce any 
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Figure 4.  (A) Regions of statistical significance for tumors with IDH mutation using VLSM. Colormap represents the associated Χ 2 values; (B) 
and (C) Analysis utilizing WLPA. (B) Tumors with IDH mutation. (Upper) Locations of tumors, in order, with the 5 highest ES. (Lower) Aggregate sum 
map of all IDH-mutant tumors that reached statistical significance. (C) Tumors with IDH-wild type. (Upper) Locations of tumors, in order, with the 5 
highest ES. (Lower) Aggregate sum map of all tumors with IDH-wild type that reached statistical significance.
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significant results for IDH-wildtype tumors, whereas WLPA 
was able to detect clustering in this group. This was most 
likely because, in certain regions, the anatomical distribu-
tion is relatively sparse, resulting in few voxels over those 
regions that are still highly significant. The IDH-wildtype 
tumors had substantially lower tumor volumes than IDH-
mutant tumors, likely contributing to this finding. Although 
this does not present an obstacle in studies where every 
voxel is informative, such as fMRI experiments, it likely 
lowers statistical power in any study involving solid lesion 
mapping.

There are some limitations in our study, particularly on 
our statistical techniques.

1.	 Two datasets of the same size drawn from similar popu-
lations examining the same phenotype will necessarily 
result in a differing set of significant lesions that aggre-
gate. By the nature of the technique, the statistically sig-
nificant clustering lesions will not be identical in both 
data sets. However, differences in underlying statistical 
maps can be expected with any mapping technology.

2.	 The technique will not result in a visually distinct map. 
However, we believe that these types of maps may be 
misleading, particularly when applied to solid lesions. 
Examination of the statistically significant clustering le-
sions can be used to inference more biologically rele-
vant hypotheses as to why these lesions resulted in the 
phenotype, of which spatial location may indeed be the 
reason.

3.	 We have limited ourselves to the analysis of a tumor 
phenotype, which is potentially simpler to ana-
lyze than symptom phenotype. Our study could be 
strengthened with additional analysis of clinically 
relevant tumor markers, including IDH-mutant sub-
types such as 1p19q status and glioma-CpG Island 
methylator phenotype,33 as well as symptom pheno-
types such as performance status, seizure control, 
and neurologic deficits that impact quality of life. 
In addition to the issues raised, symptom mapping 
probably needs to take into account the nonlocal ef-
fects of tumors.34,35

4.	 We have used the Hausdorff distance as a measure of 
spatial similarity between any 2 lesions. It is conceptu-
ally sound and easy to calculate, accounting for both 
spatial location as well as gross morphology of the 
lesion. Nonetheless, it likely does not capture the full 
complexity of potential spatial similarity measures.

5.	 Analysis with a confirmatory dataset may provide fur-
ther evidence of the external validity of the presented 
results.

Conclusion

We demonstrate a novel technique, WLPA, to iden-
tify anatomic clustering based on IDH mutation status 
using radiographic images from a large public database. 
WLPA addresses some limitations of VLSM’s underlying 

assumptions that may limit its ability to detect true clus-
ters as well as falsely detect localizing anatomical re-
gions. A difference of WLPA when compared with VLSM 
is that it identifies tumors most likely to exhibit partic-
ular phenotypes or genotypes, rather than producing 
anatomical maps. Thus, these methods may be comple-
mentary in establishing the relationship between tumor 
morphology and biologically relevant clinical and tumor 
behavior.

Supplementary Data

Supplementary data are available at Neuro-Oncology 
Advances online.
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