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ABSTRACT

The accumulation of Ab (amyloid b-protein) is one of the
major pathological hallmarks in AD (Alzheimer’s disease).
Gangliosides, sialic acid-containing glycosphingolipids
enriched in the nervous system and frequently used as
biomarkers associated with the biochemical pathology of
neurological disorders, have been suggested to be involved in
the initial aggregation of Ab. In the present study, we have
examined ganglioside metabolism in the brain of a double-
Tg (transgenic) mouse model of AD that co-expresses mouse/
human chimaeric APP (amyloid precursor protein) with the
Swedish mutation and human presenilin-1 with a deletion of
exon 9. Although accumulation of Ab was confirmed in the
double-Tg mouse brains and sera, no statistically significant
change was detected in the concentration and composition
of major ganglio-N-tetraosyl-series gangliosides in the
double-Tg brain. Most interestingly, Chol-1a antigens
(cholinergic neuron-specific gangliosides), such as GT1aa
and GQ1ba, which are minor species in the brain, were found
to be increased in the double-Tg mouse brain. We interpret
that the occurrence of these gangliosides may represent
evidence for generation of cholinergic neurons in the AD
brain, as a result of compensatory neurogenesis activated by
the presence of Ab.
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INTRODUCTION

AD (Alzheimer’s disease) is a progressive degenerative disease

of the brain. It is the most common form of dementia and is

characterized clinically by progressive loss of cognitive

functions such as memory and learning and eventual death.

Neuronal loss and brain atrophy are major hallmarks of AD,

particularly in the basal forebrain cholinergic nuclei and their

targets in the cortex and hippocampus. Neuropathologically,

AD is characterized by the occurrence of amyloid deposits

or ‘senile plaques’ in the brain, which consist mainly of an

aggregated variant of Ab (amyloid b-protein) (Ariga et al.,

2008). Ab undergoes a conformational transition from ran-

dom coil to ordered structure rich in b-sheets and fibrils

(Selkoe, 2002). Thus, although earlier views were that

the appearance of Ab is a marker of disease progression,

accumulating evidence has indicated that they actually play a

role in the neurodegenerative process (Yankner and Lu, 2009).

Among the many possible mechanisms, there have been

reports indicating that Ab may become ‘seeds’ for the

formation of fibrils after the addition of lipid vesicles

containing GM1 (Yanagisawa, 2007).

Gangliosides are sialic acid-containing glycosphingolipids

expressed primarily in the outer leaflet of the plasma mem-

brane of all vertebrate cells and are particularly abundant

in neurons of the nervous system (Yu, 1994). Several earlier

studies showed changes of ganglioside expression in AD

brain. For example, ganglioside levels decreased in most of
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the brain regions, including the cerebral cortex, hippocam-

pus, and basal telencephalon, and especially in the frontal

cortex and white matter (Crino et al., 1989; Svennerholm

and Gottfries, 1994). Svennerholm and Gottfries (1994)

reported that the concentration of gangliosides was

reduced to 58–70% of the control level in all four grey

matter areas and to 81% in frontal white matter of AD type

I (early-onset or familial) cases, whereas it was only

significantly reduced in temporal cortex, hippocampus,

and frontal white matter in AD type II (late-onset or

sporadic) cases. Clearly, the reduced ganglioside levels are

correlated with the severe loss of neurons in the affected

brain. The major brain ganglio-N-tetraosyl-series ganglio-

side species (GT1b, GD1b, GD1a and GM1) are significantly

decreased in the frontal and temporal cortices and basal

telencephalon of the brains of patients with AD compared

with the respective areas in control brains (Kracun et al.,

1990; Kracun et al., 1992). Brooksbank and McGovern

(1989) and Crino et al. (1989) also reported changes of

ganglioside composition in AD brains in which

b-series gangliosides, such as GT1b and GD1b, showed a

significant decrease, in contrast with a slight increase in

GT1a, GD3, GM1 and GM2. Since gangliosides have a strong

affinity for Ab (Ariga et al., 2001), they could possibly

participate in conformational changes of Ab (Choo-Smith

et al., 1997). For this reason, ganglioside metabolism has

been considered to be closely associated with the

pathogenesis of AD (Mutoh et al., 2006; Ariga et al., 2008).

To further examine whether this association is present

in animal models of AD whose pathology is well defined, we

investigated the ganglioside composition of the brain in a

double-Tg (transgenic) mouse model of AD that co-expresses

mouse/human chimaeric APP (amyloid precursor protein)

with Swedish double-mutation (K595N/M596L) (APPswe)

and human PSEN1dE9 [PSEN-1 (presenilin-1) with a deletion

of exon 9], and compared it with that of age-matched

WT (wild-type) controls. Since their introduction two

decades ago (Hsiao et al., 1996; Hsiao, 1998), AD model

mice overexpressing APP have been proven to be useful in

testing hypotheses of AD pathogenesis and testing rational

therapeutic strategies. On the other hand, these Tg models

overexpressing human APP only develop a partial AD-like

phenotype and only recapitulate certain features of human

AD. Pathologically they show amyloid plaque deposits,

elevated Ab levels, neuritic changes, phosphorylated tau

protein epitopes, a-synuclein-positive neuritis, gliotic reac-

tions and inflammatory responses (for a review, see Turner,

2001). It is also interesting to note that cholinergic

abnormalities exist in the immediate vicinity of amyloid

plaques of these mutants (Sturchler-Pierrat et al., 1997;

Wong et al., 1999). Given the salience of neuropathology in

the cholinergic pathways mediating cognition in AD and the

relative lack of information about ganglioside concentrations

in these areas, we made additional efforts to examine

gangliosides that may serve as biomarkers of cholinergic

neurons in the present paper.

MATERIALS AND METHODS

Materials and animals
Authentic Chol-1a gangliosides, GT1aa and GQ1ba, were

isolated from bovine brains (Ando et al., 1992; Hirabayashi

et al., 1992). The double-Tg mouse model of AD [B6.Cg-Tg

(APPswe,PSEN1dE9)85Dbo/J] co-expressing APPswe and

PSEN1dE9 (Jankowsky et al., 2001; Jankowsky et al., 2004)

was purchased from JAX Mice and Services (Bar Harbor, ME,

U.S.A.). Double-Tg and age-matched WT mice were maintained

for 1 year according to the guidelines of the Institutional

Animal Care and Use Committee of the Medical College of

Georgia. Genotypes of mice were confirmed by PCR of genomic

DNAs using specific primer sets for APPswe, PSEN1dE9 and

mouse prion protein promoter. For serum preparation, blood

samples were collected immediately by heart puncture after

mice were anaesthetized. Mice were then killed by cervical

dislocation, and the brains were quickly removed. The middle

third of brains was sliced using a brain matrix (Braintree

Scientific, Braintree, MA, U.S.A.) to prepare brain slices for

immunohistochemical and biochemical analyses. For ganglio-

side analysis, the brain slices were stored at 280 C̊ until use.

Immunohistochemistry of Abs in brain sections
Coronal sections (12 mm thick) were prepared from brain slices

using a cryostat and were mounted on frost-free glass slides. Each

section was pretreated with 1% BSA in PBS for 15 min to block

non-specific binding and then incubated with biotinylated

monoclonal antibody against human Ab (clone 82E1; IBL-

America, Minneapolis, MN, U.S.A.; 1:100 in 1% BSA in PBS)

overnight at 4 C̊. The 82E1 antibody detects soluble and fibrillar

Ab1–42 and Ab1–40. After washing with PBS, the section was

incubated in 1% BSA in PBS containing rhodamine-conjugated

anti-mouse IgG antibody for 2 h, followed by nuclear staining

with Hoechst 33258 (Sigma–Aldrich, St. Louis, MO, U.S.A.) for

10 min. The slide was mounted and covered with a coverslip. The

section was then examined using a fluorescence microscope.

Quantification of Ab1–42 in sera
The concentrations of serum Ab1–42 in double-Tg and age-

matched WT mice were determined using a Human b Amyloid

(1-42) ELISA kit, High-Sensitive (Wako Chemicals USA,

Richmond, VA, U.S.A.). In brief, 100 ml of serum, prepared

from blood samples by centrifugation (10000 rev./min for

10 min) and diluted to an appropriate titre in PBS, was placed

into a well of a 96-well microtitre plate coated with anti-

human Ab1–16 antibody and then incubated at 4 C̊ overnight.

After washing with a wash solution, the sample was

incubated for 1 h in 100 ml of horseradish peroxide-

conjugated anti-human Ab35–43 antibody (Fab9 fragment).

The sandwiched Ab1–42 was visualized with a TMB (3,39,5,59-

tetramethylbenzidine) solution and the absorbance was
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measured at a wavelength of 450 nm using a microtitre plate

reader after the addition of a stop solution.

Ganglioside isolation and HPTLC (high-
performance TLC)
Gangliosides were isolated from brain slices containing

hippocampal/cortical tissue (150–210 mg wet weight) of

double-Tg and age-matched WT mice as previously described

(Ariga et al., 1988). In brief, total lipids were extracted

sequentially with 5 ml each of chloroform/methanol (1:2, 1:1

and 2:1, by volume) and chloroform/methanol/water

(30:60:8, by volume; solvent A). The combined lipid extracts

were evaporated and redissolved in 5 ml of solvent A and

applied to a diethylaminoethyl-Sephadex A-25 column

(acetate form, 2 ml bed volume), followed by elution with

20 ml of solvent A to remove neutral lipids. The acidic lipids,

including gangliosides, were then eluted with 20 ml of

chloroform/methanol/0.8 M sodium acetate in water

(30:60:8, by volume), followed by desalting using Sep-Pak

Cartridge column chromatography (Waters, Milford, MA,

U.S.A.; Kubo and Hoshi, 1985). Lipid-bound sialic acid

contents in the acidic lipid fraction were determined by the

resorcinol/hydrochloric acid reagent (Svennerholm, 1957). A

portion of the acidic lipid fraction, containing a ganglioside

sample with 5 mg of sialic acid, was applied to an HPTLC plate

and developed with chloroform/methanol/0.2% calcium

chloride in water (50:45:10, by volume). After development,

gangliosides on HPTLC plates were visualized by spraying the

orcinol/sulfuric acid reagent and heating at 100 C̊ and then

quantified by densitometric analysis. Statistical comparison

of the data was performed by the Student’s t test.

HPTLC immunostaining
HPTLC immunostaining was performed as previously

described (Ngamukote et al., 2007). After developing the

HPTLC plate as described above, the plate was coated with an

n-hexane solution containing 0.4% polyisobutylmethacrylate

(polymer; Sigma–Aldrich) for 1 min. After drying, the plate

was incubated for 2 h at room temperature with an anti-

Chol-1a monoclonal antibody (GGR-41; IgG; Kusunoki et al.,

1993) diluted with 1% BSA in PBS. The plate was then

incubated for 1 h with horseradish peroxide-conjugated anti-

mouse IgG secondary antibody (Jackson ImmunoResearch

Laboratories, West Grove, PA, U.S.A.) diluted with 1% BSA in

PBS. Bands recognized by the antibody were detected using

the Western Lightening Western Blot Chemiluminescence

reagent (PerkinElmer Life and Analytical Sciences, Boston,

MA, U.S.A.). Chol-1a antigens were quantified by densito-

metric analysis. After the plate was dipped in chloroform to

remove excess polymer, ganglioside bands were visualized by

spraying orcinol/sulfuric acid reagent and heating at 100 C̊.

RESULTS

Immunohistochemical detection of Ab in double-
Tg mouse brains
First, we confirmed whether our double-Tg mice co-

expressing APPswe and PSEN1dE9 represent a valid model

of the plaque formation in AD. Figure 1 shows immuno-

histochemical localization of Ab in the cortex of AD double-

Tg mice. It has been reported that these double-Tg mice

develop substantial Ab deposits in their brains by 6 months of

age (Jankowsky et al., 2004). Consistently, the appearance

of Ab staining (shown in red) was massive and mostly in the

cortical region of the brains of 1-year-old double-Tg mice,

and was confined to the extracellular areas, except in the

cerebral vessels where it lined the vessel wall (Figure 1). There

were no gender-related differences in the immunostaining

(results not shown), consistent with the notion that Ab

deposits in the brain are a general pathological hallmark in

AD (Selkoe, 2002). As expected, the WT mice did not show any

evidence of Ab staining (results not shown).

Concentration of Ab1–42 in double-Tg mouse
sera
Figure 2 shows the concentrations of serum Ab1–42 in double-

Tg and age-matched WT mice determined by ELISA using anti-

Ab1–16 antibody and anti-Ab1–42 antibody. The Ab1–42 level

Figure 1 Immunohistochemical localization of Ab in the cortex of
double-Tg mice co-expressing APPswe and PSEN1dE9
The coronal brain sections are 12 mm thick. Nuclei (blue) and Ab (red) were
stained with Hoechst 33258 and anti-human Ab antibody respectively. (a)
Low-magnification view; (b) high-magnification view. Scale bar: (a) 20 mm
and (b) 5 mm.

Expression of Chol-1a antigens in AD mouse brains
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was significantly high in sera of double-Tg mice, but not in sera

of WT mice. In human AD, elevated levels of serum Ab were

reported to be associated with vascular risk factors of AD

(Sundelof et al., 2008; Abdullah et al., 2009). Longitudinal

evaluations of serum Ab should provide a better understanding

of the significance of this association in AD aetiology (Abdullah

et al., 2009). Using these double-Tg mice as a model of AD, we

then evaluated the metabolism of brain gangliosides.

Composition of major gangliosides in double-Tg
mouse brains
In human AD, several earlier studies documented abnormal

ganglioside metabolism in brain regions of demented patients, in

which the ganglioside levels were significantly reduced (Crino

et al., 1989; Svennerholm and Gottfries, 1994). In addition,

analysis of the ratios of a- and b-series gangliosides revealed that

b-series gangliosides were preferentially decreased in brain

regions of demented AD patients (Crino et al., 1989).

The decreased levels of gangliosides are consistent with the

degradation of cortical neurons, especially in the frontal cortex

(Kalanj et al., 1991), and a reduced density of nerve endings in

the brain regions of demented AD patients (Svennerholm and

Gottfries, 1994). Hence, these findings suggest that abnormal

ganglioside metabolism coincides with the affected cortical areas

of neurodegeneration that afflicts AD.

In contrast with these human studies, we found no

significant differences in the lipid-bound sialic acid content

in the brain slices containing hippocampal/cortical tissue

prepared from double-Tg and age-matched WT mice

(Table 1). In addition, there was no significant difference in

the expression levels of major ganglio-N-tetraosyl ganglio-

sides (GM1, GD1a, GD1b and GT1b) in the brains between

double-Tg and age-matched WT mice (Figure 3a and Table 1).

This is consistent with the report by Sawamura et al. (2000)

who also did not detect notable changes in major ganglioside

patterns in the brains of mutant PSEN-2 double-Tg mice

despite the remarkable increase in the level of Ab1–42 and

significantly lower levels of glycerophospholipids and sphin-

gomyelin. In addition, Bernardo et al. (2009) did not find

significant differences in a- or b-series gangliosides between

WT and double-Tg mice expressing APPswe and PSEN1dE9.

These studies as well as our present results indicate no

significant changes in major brain ganglioside metabolism in

AD model mice, despite the presence of massive accumulation

of Ab deposits in the brains of these animals.

Composition of minor gangliosides in double-Tg
mouse brains
Several investigators have documented alteration of minor

gangliosides in human AD. Kracun et al. (1990) and Kalanj

et al. (1991) reported that the levels of simple gangliosides,

such as GM2 and GM3, were elevated in the frontal and

parietal cortices in AD brains; the elevation of GM2 and GM3 in

these areas may correlate with an accelerated lysosomal

degradation of gangliosides occurring during neuronal death

and astrogliosis respectively. Barrier et al. (2007) also

reported an increase in GM2 and GM3 within the cortices of

Tg mice expressing human APP751 with Swedish and London

mutations and human PSEN-1 (M146L). In the present study,

GM3 was slightly increased in double-Tg mouse brains

compared with WT mouse brains (Table 1); the increase was

statistically significant for GM3 in female double-Tg mouse

brains. We attribute the small and significantly elevated GM3

to the gliotic reactions or invading macrophages that occur

more prominently in female Tg mice than in the males. We

did not find any significant difference in the content of GM2

between double-Tg and WT mouse brains (Table 1).

Increase of Chol-1a antigens (GT1aa andGQ1ba)
in double-Tg mouse brains
The most consistent and interesting finding of the present

study, however, is the increased expression of Chol-1a

antigens, GT1aa and GQ1ba, in the brain of double-Tg mice

(Figures 3b and 4). These gangliosides are normally minor

species in the brain and serve as markers of cholinergic

neurons (Ando et al., 1992; Hirabayashi et al., 1992). The

expression of Chol-1a antigens in rat brain regions such as

the hippocampus is developmentally regulated, and their

concentrations increase with aging (Derrington and Borroni,

1990). Chol-1a antigens are first detected between days 10

and 20 of postnatal age, reaching adult levels on day 50 in

normal rat brains (Derrington et al., 1990). In the present

study, we found that the expression levels of Chol-1a

antigens, especially GQ1ba, were elevated in double-Tg

mouse brains as compared with those in WT mouse brains

(Figures 3b and 4). The increase was especially significant in

female double-Tg mouse brains. No significant differences

were found in the expression of GT1aa and GQ1ba between

male and female WT mouse brains. These observations may

reflect a change in specific ganglioside metabolism associated

with the pathological processes underlying AD.

Figure 2 Serum Ab1–42 concentration in double-Tg and age-matched
WT mice
Serum Ab1–42 concentrations were quantified using a Human b Amyloid
(1–42) ELISA kit, High-Sensitive (Wako Chemicals USA); n53–4.
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DISCUSSION

In this study, we examined ganglioside metabolism in the

brains of double-Tg mice expressing APPswe and PSEN1dE9, a

model of amyloid aggregation and associated neuropathology

of AD. No statistically significant change in major brain

gangliosides was detected, as reported previously (Sawamura

et al., 2000). Among minor brain gangliosides, however, the

expression of GM3 exhibited a slight increase in the female

double-Tg mouse brains. Most importantly, an increase in the

cholinergic neuron-specific gangliosides, GT1aa and GQ1ba,

also known as Chol-1a antigens, was found in the double-Tg

mouse brains. In AD patient sera, the presence of antibodies

Table 1 Lipid-bound NeuAc contents in gangliosides in double-Tg and age-matched WT mouse brains (mean¡S.D.; n53–7)

Ganglioside

WT Tg

Male Female Male Female

Expressed in terms of a percentage
GM3 1.3¡0.1 1.0¡0.4 1.6¡0.3 3.1¡0.3*
GM2 0.6¡0.1 0.6¡0.3 0.9¡0.3 1.0¡0.4
GM1 19.8¡0.5 18.3¡1.1 18.0¡2.0 20.3¡0.9
GD3 1.3¡0.2 0.9¡0.4 0.7¡0.3 0.8¡0.4
GD1a 28.3¡0.4 32.2¡1.4 26.5¡1.6 30.4¡0.6
GD2 2.7¡0.4 2.6¡0.8 1.9¡0.4 1.7¡0.5
GT1a 1.7¡0.1 1.6¡0.4 1.5¡0.2 1.8¡0.5
GD1b 17.0¡0.1 15.4¡1.4 18.0¡0.7 14.6¡0.5
GT1b 24.0¡0.4 23.3¡0.8 26.2¡1.1 23.0¡1.3
GQ1b 3.2¡0.2 3.8¡0.9 4.0¡0.8 3.3¡0.8

Expressed in terms of mg/g of
wet weight

NeuAc 341.9¡35.4 347.3¡60.7 340.7¡33.5 344.2¡11.0

* P,0.05.

Figure 3 Expression of gangliosides in double-Tg and age-matched WT mouse brains
Lanes 1–3, male WT mouse brain gangliosides; lanes 4–6, female WT mouse brain gangliosides; lanes 7–11, male double-Tg mouse
brain gangliosides; lanes 12–14, female double-Tg mouse brain gangliosides; lane 15, authentic GT1aa (4 ng) and GQ1ba (20 ng).
Gangliosides were separated by HPTLC with a solvent system of chloroform/methanol/0.2% CaCl2 (55:45:10, by volume) and
visualized by (a) orcinol/sulfuric acid staining or (b) immunostaining with an anti-Chol-1a monoclonal antibody (GGR-41).

Expression of Chol-1a antigens in AD mouse brains
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that bind specifically to cholinergic neurons has been

reported (Chapman et al., 1988). The increase in these

antibodies in the patients may be attributed to the increase in

Chol-1a antigens in AD brains found in the study. As

discussed below, it is possible that these Chol-1a antigens are

involved in the aetiology of AD by preferentially affecting

cholinergic neurons.

Chol-1a antigens are marker glycolipids of mature choli-

nergic terminals (Richardson et al., 1982; Derrington and

Borroni, 1990). These antigens are expressed relatively late

during the maturation process of the cholinergic synapse in rat

brains (Derrington and Borroni, 1990). In vitro, their expression

levels were found to be significantly higher in the rat

hippocampus and septum slices treated with nerve growth

factor, which stimulates the maintenance of cholinergic

neurons (Derrington et al., 1990; Gahwiler et al., 1990).

Consistent with these reports, Chol-1 antigens were found to

co-localize with choline acetyltransferase in the human central

nervous system (Whittaker et al., 1992). In addition, Chol-1a

antigens have been suggested to play functional roles in

cholinergic neurons. For instance, it has been reported that

treatment with anti-Chol-1a monoclonal antibody inhibited

the release of acetylcholine from synaptosomes prepared from

rat brains (Ando et al., 2004). Also, administration of the anti-

Chol-1a antibody to rats markably suppressed the memory and

learning abilities. On the other hand, treatment with Chol-1a

antigens induced choline uptake by synaptosomes; as a result

of increased choline uptake, acetylcholine synthesis was

enhanced. These findings indicate that Chol-1a antigens can

ameliorate decreased functions of synapses in aged brains,

suggesting that Chol-1a antigens play a pivotal role in

cholinergic synaptic transmission and participate in cognitive

functions (Ando et al., 1998). Presynaptic degenerative

changes in basal forebrain cholinergic nuclei have been

observed in AD brain. Similarly, Ab1–42 has been suggested to

induce the death of basal forebrain cholinergic neurons in mice

via p75 neurotrophin receptor (Sotthibundhu et al., 2008). It

was expected that up-regulation of Chol-1a antigens in

cholinergic neurons represents evidence of a compensatory

mechanism for the decline of cholinergic function in the AD

model mouse brains. This interpretation is particularly relevant

in light of the fact that there is little if any neurodegeneration in

the double-Tg mouse.

On the other hand, there also is a possibility that Chol-1a

antigens are involved in neurogenesis in AD brains. Although

the occurrence of neurogenesis in brains in human AD

patients is still controversial (Waldau and Shetty, 2008), a

growing body of evidence has accumulated indicating an

increase of adult neurogenesis not only in APP-overexpres-

sing mouse model brains, but also in AD patient brains (Jin

et al., 2004b, 2004a; Lopez-Toledano and Shelanski, 2004). It

has been consistently reported that Ab is capable of

stimulating the proliferation of neural stem cells and adult

neurogenesis (Lopez-Toledano and Shelanski, 2004;

Sotthibundhu et al., 2009). In contrast, other studies have

suggested that Ab has cytotoxic effects on neural stem cells

and disrupts neurogenesis (Haughey et al., 2002a, 2002b;

Millet et al., 2005). It has also been reported that Ab1–40 and

GM1 co-operatively induce cell death in mouse neural stem

cells (Yanagisawa et al., 2010). These reports clearly suggest

neurogenic or neurotoxic effects of Ab in neurogenesis in AD

brains, which needs to be resolved. In light of our finding that

there is an increase in the level of Chol-1a antigens in the Tg-

model animals, it is tempting to suggest that the increase is

associated with neurogenesis. Although we have no direct

evidence of this association, Chol-1a antigens, GT1aa and

GQ1ba, have been reported to be expressed in mouse neural

stem cells (Ngamukote et al., 2007). This report can be taken

as indirect evidence that Chol-1a antigens are involved in

neurogenesis. Further, neurogenesis may also be involved

in the compensatory mechanism for the decline of choliner-

gic function in AD brains as discussed above. There is the

intriguing possibility that degeneration of the cholinergic

pathways in early stages of the disease could result in a

rebound of neurogenesis at later stages of the disease, which

is expected to be reflected by the appearance of Chol-1a

antigens in the brain. If this possibility were true, it would

open a window of opportunity for the treatment of the

disease by promoting neurogenesis. We fully realize that

increased neurogenesis alone is not sufficient to produce

new, functional neurons. It would be important, therefore, to

Figure 4 The content of Chol-1a antigens, GT1aa (a) and GQ1ba (b), in
double-Tg and age-matched WT mouse brains
GT1aa and GQ1ba were quantified by densitometric analysis of HPTLC
immunostaining; n53–8. Statistical analyses were performed by the
Student’s t test. For GT1aa, P,0.01 (Tg male compared with WT male);
P,0.04 (Tg female compared with WT female); P,0.05 (Tg male compared
with Tg female) respectively. For GQ1ba, P,0.03 (Tg male compared with WT
male); P,0.02 (Tg female compared with WT female); P,0.02 (Tg male
compared with Tg female) respectively.
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determine whether the new neurons migrate and incorporate

properly into the hippocampal formation. In this regard, the

discovery of adult neurogenesis raises the possibility that

the nervous system has an intrinsic capacity for repair.

Perhaps more controversially, it raises the question as to

whether impaired or failed neurogenesis may contribute

to the decline in neurodegenerative diseases (Abdipranoto

et al., 2008). Future studies are clearly needed to examine

whether it is possible to promote neurogenesis to achieve

functional recovery in AD.

In the present study, the increase in Chol-1a was

significantly higher in female double-Tg mice. It has been

generally recognized that the prevalence of AD is also higher

in women. However, the aetiology of high risk of AD in

women is unknown. A role for oestrogen, by influencing brain

development (pre- or post-menarche) or senescence (post-

menopause), is a leading hypothesis. Some studies suggest a

protective effect of oestrogen replacement therapy in the risk

of developing AD (Turner, 2001). In addition to the preva-

lence of AD, virtually all cholinergic characteristics have been

reported to be affected by sex differences. Berger-Sweeney

(2003) has reported that sexual dimorphism in the develop-

ment of the cholinergic basal forebrain system could have

significant consequences for cognitive performance in sex

differences during development and aging. In normal

animals, basal acetylcholine concentrations, high-affinity

choline uptake and choline acetyltransferase activity are

different between females and males (Rhodes and Rubin,

1999). Cholinergic areas, such as amygdala and hippocampus,

are larger in male than those in female (Madeira and

Lieberman, 1995). Oestrogen, which may be involved in the

high prevalence of AD in women, can modulate neurogenesis,

differentiation, growth and survival of neurons in develop-

ment and throughout the life of animals (Tanapat et al., 1999;

Schaevitz and Berger-Sweeney, 2005). In fact, it has been

reported that female mice have more proliferative cells in

dentate gyrus than male mice in an oestrogen-level-

dependent manner (Tanapat et al., 1999). It is expected that

the increase in Chol-1a gangliosides in female double-Tg

mice compared with male double-Tg mice is attributable to

neurogenesis and the increase in cholinergic neurons in the

high levels of oestrogen. The intriguing possibility that a

higher neurogenesis occurs in female Tg mice certainly merits

further experimentation.

Finally, AD model animals with disrupted ganglioside

biosynthesis have also been used to examine the relationship

between ganglioside metabolism and aspects of AD. For

example, Bernardo et al. (2009) analysed the AD model of Tg

mice expressing APPswe and PSEN1dE9 crossbred with mice

deficient in GD3-synthase, which catalyses the synthesis of

b-series gangliosides. In the triple mutant mice, b-series

gangliosides, including GD3, were completely absent, but GM1

and GD1a were significantly increased by 63.8% and 50.8%

respectively. On the other hand, Oikawa et al. (2009) crossbred

Tg mice expressing human APP having Swedish and London

mutations with GM2-synthase-knockout mice in which GM1,

GD1a, GD1b and GT1b were completely missing but GM3 and

GD3 were abundantly expressed (Takamiya et al., 1996). The

mutant mice expressing no GM1 showed a significant increase

of Ab accumulation in vascular tissues and formation of

dysphonic-form amyloid angiopathy in the brain. These results

suggest that b-series gangliosides derived from GD3-synthase

could contribute to Ab accumulation in the brain of these

mutants. Indeed, Ariga et al. (2001) showed a strong

correlation between the number of sialic acid residues on a

ganglioside and its affinity for Ab. In this model system the

more complex b-series gangliosides had higher affinity for Ab

than the a-series gangliosides. Thus inhibition of GD3-synthase

can be a novel therapeutic target to combat the cognitive

deficits, amyloid plaque formation and neurodegeneration

seen in AD. Targeting GD3-synthase would also have the effect

of reducing levels of GQ1ba and GT1aa. It would be interesting

to examine how this pattern of changes affects neurogenesis,

AD-related neuropathology and cognitive functions.
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