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ABSTRACT: The electronic structure of nitrobenzene
(C6H5NO2) has been studied by means of the complete active
space self-consistent field (CASSCF) and multi-state second-order
perturbation (MS-CASPT2) methods. To this end, an active space
of 20 electrons distributed in 17 orbitals has been selected to
construct the reference wave function. In this work, we have
calculated the vertical excitation energies and the energy barrier for
the dissociation of the molecule on the ground state into phenyl
and nitrogen dioxide. After applying the corresponding vibrational
corrections to the electronic energies, it is demonstrated that the MS-CASPT2//CASSCF values obtained in this work yield an
excellent agreement between calculated and experimental data. In addition, other active spaces of lower size have been applied to the
system in order to check the active space dependence in the results.

■ INTRODUCTION
Although nitrobenzene (C6H5NO2) is the smallest molecule of
the nitroaromatic compound family, it presents rich chemistry.
Its thermal and photochemical decompositions are important
in several different areas such as combustion, decomposition of
energetic materials, or atmospheric chemistry.1−3 For this
reason, the photophysics, photochemical, and thermal
dissociation reactions of nitrobenzene have been studied by
many different groups, both experimentally1,4−11 and theoret-
ically.11−17 Concerning the theoretical studies, a wide variety of
quantum chemical methods have been employed to elucidate
the excitation and decomposition processes.11−17 Given that
nitrobenzene is a strongly correlated system, the complete
active space self-consistent field (CASSCF) method is one of
the most adequate approaches for studying such a com-
pound.18−21 Unfortunately, due to exponential growth in the
computational cost,22 the application of exact CASSCF is
limited to small size active spaces, whose limit is approximately
20 electrons distributed in 20 orbitals; only when massive
parallelization was implemented,23 it was possible to enlarge
the active space to 22 electrons distributed in 22 orbitals. To
overcome this drawback, new approaches and methods are
being developed with the objective of enlarging the treatable
active spaces or select the optimal minimum of active
orbitals.18−25 On the other hand, until now, the general
tendency was to select by hand the minimal active space in
accordance with the chemical problem under study. However,
this methodology has serious inconveniences when orbitals are
strongly correlated and could lead to inexact results or
erroneous conclusions. In this context, nitro-derivatives are
paradigmatic examples.26−32 In particular, nitrobenzene is at
the limit of the CASSCF capabilities because it demands an

active space of 20 electrons distributed in 17 orbitals.25−31 For
this reason, the application of the CASSCF method to this
system with an active space of this size is a challenging task due
to the huge number of electrons and orbitals that has to be
included. However, the objective of this work is to treat
nitrobenzene with such a large active space. We will
demonstrate in this work that the multi-state second-order
perturbation (MS-CASPT2)/CASSCF method yields excellent
predictions compared with experimental data, that is, vibra-
tionally corrected vertical excitations and dissociation energies.

■ THEORETICAL METHODS

The CASSCF,33−39 the MS-CASPT2,40,41 and multiconfigura-
tion pair-density functional theory (MC-PDFT)42−50 methods
have been applied as implemented in MOLCAS 8.4.51,52 The
MC-PDFT density method has been used as a computationally
economical alternative to MS-CASPT2, which is a type of
density functional theory that combines Kohn−Sham density
functional theory and multiconfiguration wave function
theories by using the electron density and pair density from
a previous multiconfigurational calculation. Thus, any multi-
configurational method that is able to provide one- and two-
electron reduced density matrices can be used as a starting
point to applied MC-PDFT; typically, CASSCF reference wave
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functions are the most commonly used, and for this reason, it
is subjected to the same computational limitations as such a
method. MS-CASPT2 energies have been calculated with the
application of an imaginary shift set to 0.1 in order to avoid the
inclusion of intruder states in the calculations. Equally, the
IPEA empirical correction has been fixed at the standard value
(0.25) in all of the calculations. CASSCF applied with the state
average approximation is noted as SAn-CASSCF where n refers
to the number of states of a given symmetry species. The so-
called atomic natural orbital (ANO)-RCC basis sets,53−55 that
is, extended relativistic basis sets of the ANO-type, have been
used in the multiconfigurational calculations of this work by
applying the following contraction scheme: (C,N,O)-
[4s3p2d1f]/(H)[3s2p1d].
The one-dimensional potential energy surfaces for the

dissociation reaction of nitrobenzene are built with an
interpolation method56−60 using the full space of non-
redundant internal coordinates, which provides an accurate
one-dimensional representation of the potential energy
surfaces in the space spanned by a given set of internal
coordinates. To achieve this end, first, a common set of 3N-6
internal coordinates is defined for the target geometries, the
reactant (R1), and the products (R2). For reactions in which
bond-breaking is involved, our experience61−65 shows that an
internuclear distance of ∼4.7 Å of the bond to be broken (C−
N distance for dissociation of nitrobenzene into phenyl and
NO2) is adequate to reach the asymptotic limit of the potential
energy surface (PES)of interest. Second, the difference
between R2 and R1 yields an interpolation vector (ΔR) that
connects reactants and products. Third, ΔR is divided by n (an
entire number at the choice of the user). Each of the divisions
constitutes what we will call a step. In consequence, each step
m corresponds to a nuclear configuration given by Rm = R1 +
(m/n)ΔR. Because we use internal coordinates (internuclear
distances, valence bonds, and dihedral angles), we cannot give
a unique unit for the reaction coordinate. Therefore, in what
follows, we will indicate them as arbitrary units. Linear
interpolations in internal coordinates present two favorable
characteristics: (i) They are less demanding computationally
than a scan with the relaxation of geometry and (ii) all the
points along the interpolation vector (reaction coordinate) are
disposed in a straight line, which is not true for the scanning of
the potential energy surfaces with geometry relaxation.
To finish this section, the geometries and molecular orbitals

of the chemical species have been analyzed with the Gabedit,66

Molden,67 and MacMolplt programs.68 The charge distribution
has been analyzed with the LoProp method,69 which has the
advantage to avoid the dependence of the computed atomic
charges with the basis sets. The method requires a subdivision
of the atomic basis sets for each atom of the molecule into
occupied and virtual basis functions, which will be orthogon-
alized to yield a localized orthonormal basis set.
Selection of the Active Space. Given that we are mainly

interested in the dissociation of nitrobenzene into phenyl and
NO2 in the ground and excited states, as well as the study of
singlet and triplet excitations, the active space must include 20
electrons distributed in 17 orbitals. The selection of the active
space of the molecule is straightforward in accordance with the
two fragments that compose the molecule (NO2 and phenyl).
These arise as follows: the NO2 moiety demands an active
space of 13 electrons distributed in 10 orbitals,26−32 and other
selection of the active orbitals will lead to symmetry breaking
of the wave function of this radical. In addition, the phenyl

fragment requires an active space of seven electrons in seven
orbitals,62 six electrons, and six orbitals corresponding to the π-
system plus the singly occupied σ-orbital involved in the C−N
bond. Thus, with this active space, we can adequately treat
both the inter- and intra-electronic transitions between the two
fragments plus the C−N bond breaking, avoiding misunder-
standing results.70−72 Figure 1 shows the state-average

CASSCF orbitals of nitrobenzene included in the active
space along with the character assigned to them. They were
optimized under C2v restriction and correspond to the A1
symmetry species.

■ RESULTS AND DISCUSSION
Energetics of the Singlet and Triplet States at the

Franck−Condon Geometry. The gas phase absorption
spectrum of nitrobenzene shows two very weak bands with
maxima at 350 and 280 nm together with two strong bands
with maxima at 240 and 193 nm.1,5−8 Concerning theoretical
studies, vertical excitation energies of the singlet and triplet
excited states of nitrobenzene have been widely studied by
other authors10,13−17 at the CASPT2//CASSCF level.
However, given that they were mainly interested in other
physical and chemical aspects of nitrobenzene, for example,
reactivity in the excited states, they were obliged to work with a
smaller active space than is used in this work. In this work, the
MS-CASPT2 approximation for calculating the singlet and
triplet vertical excitation energies has been applied by taking a
large active space to build the reference wave function (Table

Figure 1. CASSCF/ANO-RCC natural orbitals included in the active
space (20e and 17o) of the ground state CASSCF optimized
geometry of nitrobenzene. In square brackets: occupation numbers.
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1). The weights of the reference CASSCF functions were
≥0.70 for all the singlet and triplet states. Given that vertical
excitations are highly dependent on the molecular parameters
and it is well known that MP2 predicts molecular geometries in
better agreement with the experimental results in comparison
with the data obtained from the CASSCF approach, we have
calculated such vertical excitations on top of the C2v MP2
geometry. Vertical excitations at the CASSCF geometry are
listed in Table S1. The experimental and calculated geo-
metrical parameters are given in Table S2. At this point, it is
convenient to highlight that the average torsional angle of the
nitro group determined by gas-phase electron diffraction
experiments73 amounts to 13.3 ± 1.4°; however, this average
(dynamic) value is not directly comparable with the
equilibrium (static) parameter because two factors absent at
equilibrium operate on the average parameter: (i) the torsional
vibration of the nitro moiety and (ii) the very low barrier to
rotation of such a moiety. Thus, the results reported in Table 1
show a very good agreement between calculated and observed
transitions when vibrational corrections are applied (vibra-
tional energy correction in Table 2). Such corrections are done
by taking the zero-point energies of the ground and the excited
state of each transition. It must be remarked that these
corrections do not correspond to the 0−0 transitions of each
transition. In contrast, the vibrational energy of each excited
state is calculated at the Franck−Condon point after rotation

of the corresponding Hessian matrix, that is, the gradient and
the rotational and translational normal modes are projected
out of the respective excited Hessian matrix before computing
the corresponding vibrational frequencies,74−76 which were
calculated with the CAM-B3LYP functional in conjunction
with the def2-TZVPP basis sets. Fortunately, most of the

Table 1. Vertical Excitation Energies in eV of the Singlet and Triplet States of Nitrobenzene (C2v, MS-CASPT2).a,b

state ΔE fOSC
c configurationd We ΔQf

21A1 5.11 2.94−01 [π3(bz)]
1[π*(NO2)]

1 72 −0.32
31A1 7.60 1.06−02 [π1(bz)]

1[π*(NO2)]
1 33 −0.21

[π3(bz)]
0[π*(NO2)]

2 15
11A2 3.83 <1.0−05 [nσ]1[π*(NO2)]

1 68 +0.14
21A2 7.00 <1.0−05 [nσ]1[π3(bz)]

1[π*(NO2)]
2 27 +0.18

[nσ]1[π3*(bz)]
1 32

31A2 7.36 <1.0−05 [σ1(NO2)]
1[σ2*(NO2)]

1 55 +0.35
11B2 4.30 1.01−04 [σ1(NO2)]

1[π*(NO2)]
1 66 +0.08

21B2 7.02 1.13−05 [nσ]1[π2*(bz)]
1 49 +0.29

[nσ]1[π2(bz)]
1[π*(NO2)]

2 17
31B2 7.51 3.59−04 [σ1(NO2)]

1[π3(bz)]
1[π*(NO2)]

2 21 +0.16
[σ1(NO2)]

1[π3*(bz)]1 37
11B1 4.72 4.83−03 [π3(bz)]

1[π2*(bz)]1 20 −0.06
[π2(bz)]

1[π*(NO2)]
1 45

21B1 5.81 3.97−02 [nπ]1[π*(NO2)]
1 47 +0.15

[nπ]1[π3(bz)]
1[π*(NO2)]

2 12
31B1 7.04 8.03−02 [π3(bz)]

1[π2*(bz)]1 17 −0.18
13A1 4.03 [π3(bz)]

1[π*(NO2)]
1 61 −0.03

[π2(bz)]
1[π2*(bz)]1 16

23A1 4.75 [π2(bz)]
1[π2*(bz)]1 59 −0.02

[π3(bz)]
1[π*(NO2)]

1 15
33A1 6.88 [π1(bz)]

1[π*(NO2)]
1 37 −0.06

[π1(bz)]
1[π1*(bz)]1 23

13A2 3.63 [nσ]1[π*(NO2)]
1 73 +0.12

13B2 4.18 [σ1(NO2)]
1[π*(NO2)]

1 67 +0.08
13B1 3.53 [nπ]1[π*(NO2)]

1 59 +0.12
23B1 4.57 [π2(bz)]

1[π*(NO2)]
1 29 −0.05

[π3(bz)]
1[π2*(bz)]1 23

33B1 6.03 [π3(bz)]
1[π2*(bz)]1 42 −0.11

[π2(bz)]
1[π*(NO2)]

1 22
aC2v MP2/def2-TZVPP optimized geometry. bSA3-CASSCF reference wave function, IPEA = 0.25. Imaginary shift = 0.1. cOscillator strength.
dMS-CASPT2 main electronic configurations of the excited states referred to the ground state configuration. eWeight of the configuration in %.
Only contributions greater than 15% are included. fExcess of charge on the nitro moiety with respect to the ground state.

Table 2. Vibrational Corrected MS-CASPT2 Low-Lying
Singlet Vertical Excitations (in eV) of Nitrobenzene at the
Ground State C2v geometry and Comparison With Gas-
Phase Experimental Results

state ΔE VCa ΔE(Corr)b ΔE(obs)c refs

1A2 3.83 −0.22 3.61 3.65d 5, 7
1B2 4.30 −0.16 4.14
1B1 4.72 −0.23 4.49 4.38−4.43 1, 7
2A1 5.11 −0.17 4.94 5.11−5.00 1, 7
2B1 5.81 −0.29 5.53
2A2 7.00 −0.22 6.78
2B2 7.02 −0.27 6.75
3B1 7.04 −0.53 6.51 6.42 1, 6, 7
3A2 7.36
3B2 7.51
3A1 7.60 7.56 7

aVibrational energy correction. bCorrected excitation energy:
ΔE(Coor) = ΔE + VC. cObserved absorption peaks. dRegistered in
n-hexane solution.
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observed transitions in the experiments correspond to single
excitations, which allows for the application of the standard
density functional theory to support the vibrational correction.
In addition, our calculations correctly predict the intensity of
the bands, except the one localized at the shortest wavelength.
The reason for this behavior of the calculations probably lies in
the nature of the band, which is a transition where the
breathing vibration of the benzenic ring is involved.1 Thus,
given that the C−C sigma orbitals of the benzenic ring were
not included in the active space, this transition is not well
described.
For the sake of completeness, the vertical excitation energies

of the triplet states are included in Table 1. In accordance with
Kröhl et al.,10 there are no calculated transitions below 3.0 eV,
which agree with the results obtained in the electron energy
loss spectra of nitrobenzene. However, the calculated vertical
transitions of the triplet states differ notably from the values
reported by the cited authors.
Dissociation of nitrobenzene into phenyl and nitro-

gen dioxide. Decomposition of simple nitro compounds can
occur by a number of possible dissociation pathways. For
example, the primary photolysis pathways are2

→ +C H NO C H NO6 5 2 6 5 2 (1)

→ +C H NO C H NO O6 5 2 6 5 (2)

→ +C H NO C H O NO6 5 2 6 5 (3)

Here, we describe the dissociation potential energy surfaces
(Figure 2) that would lead to the dissociation of nitrobenzene
into phenyl radical and nitrogen dioxide [eq 1], that is, the
main coordinate is located on the C−N bond. According to
the curves that are represented in Figure 2, the population of
the excited states at wavelengths close to the corresponding
vertical excitations would not lead to dissociation of the
molecule because the energy profiles of such curves are not
dissociative. However, it is known14,15 that there are several
different surface crossings, internal conversions, and inter-
system crossings around the Franck−Condon region, for

example, it is known that, after excitation into the S1 state,
nitroaromatic compounds experience ultrafast decaying into
the triplet manifold,14,15 which competes with internal
conversion to the ground state.14 To the best of our
knowledge, higher internal conversions than S1/S0 or singlet-
triplet intersystem crossings higher than S0/T0 have not been
explored; however, in analogy with other benzene deriva-
tives,62−65,77,78 we hypothesize that there will be a multitude of
surface crossings between higher excited states, which, in turn,
will favor intersystem crossings. In consequence, such spin-
forbidden crossings will lead to dissociation on triplet excited
states, that is, will allow the C−N bond breaking to be the
primary decomposition channel. The dissociation curves
including the triplet states are shown in Figure S1. Given
that the surface crossings observed in this figure are above the
excitation energy applied in the experiments, it is likely that
reactive crossings occur at geometrical rearrangements where
the C−N bond is compressed instead of enlarged as shown in
Figure S2 and at geometries where the C2v symmetry is broken.
This is the case for a related compound (nitrosobenzene)
recently studied by us.62

Concerning dissociation on the S0 state, given that the
ground state surface is well separated from the other states, the
S0 (11A1) curve shown in Figure 2 can be considered as a
faithful representation of the process leading to the
dissociation of nitrobenzene into phenyl and nitrogen dioxide
on the ground state. The profile of the S0 dissociation
corresponds to a typical dissociation of a singlet molecule into
two doublet fragments. The enthalpy of dissociation calculated
from this calculation (ΔrH°(0 K) = 307.2 kJ mol−1) agrees well
with the experimental value79−81 (within experimental
uncertainty, Table 3). To highlight the importance of the
right selection of the active space, we have computed the
dissociation surface with two smaller active spaces, that is,
CASSCF(16e and 13o) and CASSCF(14e and 11o). While
dissociation enthalpy is slightly underestimated by CASSCF-
(16e and 13o), the same magnitude is hugely overestimated by
CASSCF(14e and 11o). More importantly, the profiles
obtained with such active spaces, which are shown in Figures

Figure 2. MS-CASPT2/ANO-RCC potential energy curves of the low-lying singlet states of nitrobenzene leading to dissociation into phenyl
radical and nitrogen dioxide. Reference wave function: SA3-CASSCF(20e and 17o). A1 states (blue lines); A2 states (orange dotted lines); B1 states
(green lines); and B2 states (orange solid lines).
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S2 and S3, indicate unphysical behavior of the dissociation
process; the reason lies in a change in the orbitals that
compose the active space. In addition, we have applied the
MC-PDFT approximation42−50 to calculate the dissociation
curves, as shown in Figure 2, where the SCF reference wave
function is CASSCF(20e and 17o).
The obtained results are plotted and shown in Figure S4. In

this case, the profiles resulting from these calculations are
similar to the MS-CASPT2 ones; however, the dissociation
enthalpy is underestimated by ∼18 kJ mol−1.

■ CONCLUSIONS
In this work, the electronic structure of nitrobenzene is studied
in order to understand the low-lying singlet and triplet vertical
excitation energies and dissociation energies of the molecule
on the ground state. This is done at the MS-CASPT2//
CASSCF level with a reference active space of 20 electrons
distributed in 17 orbitals. The molecule has five singlet valence
states in the 4.0−6.0 eV energy range, which correspond to
single excited configurations. The calculated vertical excitation
energies and dissociation enthalpy agree well with the
experimental values in the gas phase [ΔrH°(0 K) = 307.2 kJ
mol−1]. In addition, it is shown that the reduction of the active
space can lead to erroneous results, especially, at the
dissociation region because orbital rotations cause a change
of the active space along the dissociation reaction coordinate.
This fact is a serious drawback and must be taken into account
in applying automated procedures for the selection of the
active spaces or CASSCF-like methods, which alternately
permit the automatic reduction or enlargement of the active
spaces.
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