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Abstract: Mold-active azole antifungals are commonly prescribed for the prevention of invasive
fungal infections in lung transplant recipients. Each agent exhibits a unique pharmacologic profile,
an understanding of which is crucial for therapy selection and optimization. This article reviews
pharmacologic considerations for three frequently-used azole antifungals in lung transplant recipi-
ents: voriconazole, posaconazole, and isavuconazole. Focus is drawn to analysis of drug-interactions,
adverse drug reactions, pharmacokinetic considerations, and the role of therapeutic drug monitoring
with special emphasis on data from the post-lung transplant population.

Keywords: antifungal drugs; azoles; lung transplant; interactions; adverse reactions; therapeutic
drug monitoring

1. Introduction

Lung transplant recipients are at substantial risk for developing invasive fungal
infections (IFIs), with a reported cumulative incidence of 8.6% in the first year after trans-
plantation. In contrast to other solid organ transplant types, in which infections due to
Candida spp. predominate, Aspergillus spp. (44%), in particular Aspergillus fumigatus, and
other molds (19.8%) cause the majority of IFIs in lung transplant recipients [1]. Candida spp.,
mainly Candida albicans, while less frequently observed, also cause a substantial proportion
of IFIs. Molds generally cause invasive pulmonary disease, while Candida can cause anasto-
motic tracheobronchitis as well as extrapulmonary infections such as early post-transplant
pleural space infection [2,3]. As a result, guidelines from the International Society for Heart
and Lung Transplantation (ISHLT), Infectious Diseases Society of America (IDSA), and
American Society of Transplantation Infectious Diseases Community of Practice (AST)
all recommend post-transplant prophylaxis with a spectrum inclusive of Aspergillus spp.
Consensus on strategy (targeted vs. universal) and preferred agent (inhaled amphotericin
B preparations, systemic mold-active azole agents, or a combination thereof) has not been
reached. Guidelines recommend an extended duration of prophylaxis (3–6 months) when
it is employed [4–6], and in patients who do develop invasive mold infection (IMI), therapy
duration can range from 6 weeks to lifelong [5].

The focus of this review is on pharmacologic considerations with the use of mold-
active azole antifungals voriconazole, posaconazole, and isavuconazole in lung transplant
recipients, given their frequency of use in this population and often extended durations.
Thus far, development of azole resistance in Aspergillus in lung transplant recipients is
uncommon. Given often prolonged durations of azole prophylaxis/treatment, however,
resistance may be inevitable and eventually mandate other approaches [7]. Itraconazole is
not included as it is not recommended for treatment of aspergillosis and its use is limited
by toxicity and pharmacokinetic concerns [5]. The echinocandin antifungals (anidula-
fungin, caspofungin, and micafungin) are not discussed given their intravenous route of
administration and sparse data in lung transplant recipients. Finally, the reader is referred
elsewhere for information pertaining to inhaled amphotericin B [8]. Areas addressed
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include drug–drug interactions, short- and long- term toxicities, and the role of therapeutic
drug monitoring.

2. Drug–Drug Interactions

All three azole agents are inhibitors of the CYP3A4 enzyme system, and thus are
implicated in many drug–drug interactions. Voriconazole additionally inhibits CYP2C8/9
and CYP2C19. Table 1 presents the drug interaction potential and magnitude of effect of
these agents.

Table 1. Drug interaction potential and magnitude of effect in lung transplant recipients [9–13].

CYP2C8/CYP2C9 CYP2C19 CYP3A4 P-Glycoprotein

Inhibitor Substrate Inhibitor Substrate Inhibitor Substrate Inhibitor Substrate

Isavuconazole − − − − + ++ + −
Posaconazole − − − − +/++ − ++ ++

Voriconazole ++ + ++ ++ ++ ++ − −

Understandably, most research has focused on the impact of azole antifungals on the
plasma concentrations of cyclosporine, tacrolimus, and sirolimus, given that these agents
are metabolized by CYP3A4. The reader is referred to comprehensive reviews regarding
interactions in transplant populations for detailed recommendations for management of
drug–drug interactions with these agents [9,13]. However, general characteristics can
be deduced. First, the magnitude of azole-mediated metabolic inhibition differs among
immunosuppressants. In general, cyclosporine is impacted less than tacrolimus and
(especially) sirolimus. For example, it is recommended to decrease cyclosporine, tacrolimus,
and sirolimus doses by 50%, 66%, and >90%, respectively, when voriconazole is initiated.
In fact, voriconazole and sirolimus co-administration is contraindicated [13]. Second,
while the above serves as general guidance regarding empirical immunosuppressive dose
reduction, there is significant interindividual variability in the magnitude of interaction,
precluding a confident, universal approach to management of drug–drug interactions
with these agents [14]. Rather, empirical adjustments should be made, as appropriate,
for immunosuppressants followed by close therapeutic drug monitoring. Third, while
all three azoles inhibit CYP3A4, isavuconazole appears to be a more modest inhibitor
compared to the strong inhibitory effect of voriconazole and posaconazole [13]. In fact,
investigators at the University of Pittsburgh found a very mild impact on tacrolimus dosing
and concentrations when isavuconazole prophylaxis was discontinued in 55 solid organ
transplant recipients [10]. As such, while plasma concentrations should be monitored,
empirical dose reductions are not recommended with isavuconazole initiation [13].

As isavuconazole and voriconazole are substrates of important CYP3A4 enzyme
systems, and posaconazole is not, it may be expected that isavuconazole and voriconazole
pharmacokinetics would be impacted by concomitant administration with other inhibitors
or inducers of the CYP enzyme system. However, with co-administration of competitive
inhibitors, it appears that azole agents more often inhibit the metabolism of other therapies,
rather than the reverse [15]. However, significant metabolic inducers can impact all agents,
including posaconazole. For example, rifampin decreases voriconazole and isavuconazole
area under the curve (AUC) by >90%, but also reduced posaconazole serum concentrations
(likely due to induction of metabolism by uridine diphosphate glucuronosyltransferase
enzymes) by >50% in a case report [16–18].

In conclusion, isavuconazole, posaconazole, and voriconazole are prone to many
drug–drug interactions. As such, a robust assessment of potential interactions should be
undertaken any time these agents are initiated or discontinued in lung transplant recipi-
ents. Tertiary drug reference resources, such as Lexicomp® or Micromedex®, provide drug
interaction analysis tools that can facilitate such assessment. Transplant and infectious
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diseases pharmacists can also be consulted to assess the impact of such interactions, as well
as therapeutic steps to take to resolve significant concerns. For example, while rifampin
co-administration is untenable with voriconazole, rifabutin is a significantly less potent
enzyme inducer and a case report describes an approach to enable co-administration with
voriconazole [19]. In another example, while voriconazole inhibition of CYP3A4-mediated
metabolism of inhaled/intranasal corticosteroids such as fluticasone may result in Cush-
ing syndrome in some patients, alternative corticosteroids less dependent on CYP3A4
metabolism (such as beclomethasone), or switching to isavuconazole, are likely safe [20].
Similarly, while simvastatin and atorvastatin AUCs increase >100% when co-administered
with some azoles, empirical dose reductions of 50% with subsequent monitoring is rec-
ommended by some authors to be safe. Alternatively, other statins such as pravastatin
do not undergo significant CYP3A4-mediated metabolism and thus can be substituted [9].
Finally, while voriconazole-omeprazole combination can result in increased exposure to
both agents via competitive CYP2C19 metabolism, administration with pantoprazole is
less likely to be problematic [21].

3. Adverse Reactions

The extended duration of antifungal prophylaxis predisposes lung transplant patients
to a broad range of toxicities. Table 2 provides a summary of azole-associated adverse
reactions grouped by organ system.

Table 2. Organ system-based adverse reactions potential and magnitude of effect in lung transplant recipients [22–28].

Hepatic CentralNervous Cardiovascular Integumentary Musculoskeletal Endocrine

Isavuconazole + − − (decreases QT) − − −
Posaconazole + − +/− (may increase QT) − − +

Voriconazole ++ ++ + (increases QT) ++ ++ −

3.1. Hepatic

All azole antifungals can generate some degree of hepatocellular, cholestatic, or
mixed liver injury, which can occur at any point during therapy [15,22,23]. The reader is
encouraged to reference in-depth reviews of azole-induced hepatotoxicity for additional in-
formation [22,23]. Incidence of azole-related hepatotoxicity among lung transplant patients
ranges from 5–63% with voriconazole use whereas <10% of patients develop hepatotoxicity
on isavuconazole and posaconazole [3,29–36]. When directly compared, voriconazole has
demonstrated significantly higher rates of hepatotoxicity versus isavuconazole both for the
treatment of invasive mold disease in patients with mostly hematologic diseases (16% vs.
9%, p = 0.016), as well as for antifungal prophylaxis in lung transplant recipients (18% vs.
5%, p < 0.0001) [33,36]. Moreover, voriconazole-induced elevated liver function enzymes
is commonly listed as a reason for azole discontinuation due to side effects. In a study
examining reasons for discontinuation of prophylactic azoles in lung transplant recipients,
54.5% of voriconazole exposure episodes resulted in early therapy discontinuation due
to side effects, with LFT abnormalities listed as the cause of discontinuation in 18.1% of
cases [35]. Fortunately, azole-induced hepatotoxicity is generally considered reversible
upon therapy discontinuation or replacement with another azole antifungal. A case report
and two retrospective studies demonstrated improvement in liver function test abnormal-
ities after switching from voriconazole to posaconazole in patients requiring continued
antifungal therapy [37–39]. Thus, transition to either isavuconazole or posaconazole can be
considered for patients who develop voriconazole-related hepatotoxicity. A discussion of
the correlation, or lack thereof, between azole serum concentrations and hepatotoxicity can
be found in Section 4 of this publication.



J. Fungi 2021, 7, 76 4 of 16

3.2. Central Nervous System and Visual Disturbances

Voriconazole also demonstrates unique central nervous system (CNS) side effects not
routinely seen among patients receiving other azoles. The exact mechanism of voriconazole
neurotoxicity has not been elucidated. Visual disturbances, comprising blurred or abnormal
vision, color vision change, and photophobia, are side effects specific to voriconazole and
occur in ~30% of patients [40–43]. Less common (~4–16%) are voriconazole-induced visual
and/or auditory hallucinations [24,40,43,44]. In a study comparing isavuconazole versus
voriconazole for antifungal prophylaxis in lung transplant patients, 13 of 151 patients
on voriconazole (9%) discontinued therapy due to neurotoxicity versus zero patients on
isavuconazole [33]. Both visual disturbances and hallucinations associated with voricona-
zole use tend to present in the setting of elevated levels (see Section 4 for discussion) and
within the first weeks of therapy but resolve after continued use, dose decrease, or drug
discontinuation [24,40–46]. Patients should be warned prior to starting voriconazole of the
risks of neurotoxicity as well as reassured that side effects are reversible.

3.3. Cardiovascular System

A potential concern post-transplant is the risk of azole-mediated corrected QT interval
(QTc) prolongation and subsequent life-threatening cardiac arrhythmias including Tor-
sades de Pointes. In general, drug-induced QTc prolongation is the result of an intrinsic
ability to block cardiac hERG-mediated potassium channels resulting in delayed cardiac
repolarization and/or mechanisms which increase the exposure of co-administered QTc
prolonging drugs [47]. In a study of healthy volunteers, administration of increasing doses
of voriconazole showed negligible impact on QT interval with mean changes of less than
10 ms [48]. A similar study conducted among patients on posaconazole found no correla-
tion between increase in QTc and posaconazole exposure [49]. Thus, azoles alone are not
considered high-risk for QTc prolongation. Rather, it is the combination of posaconazole
and voriconazole with other risk factors, including increased age, electrolyte abnormal-
ities, heart disease, and other QTc prolonging medications, especially those affected by
azole-mediated CYP3A4 enzyme inhibition, that may yield an increased risk of serious QTc
changes [47,50,51]. Even in such settings, however, most studies are able to elucidate risks
for QT prolongation but not for cardiac events such as Torsades de Pointes. For example,
in a retrospective study of patients with hematological malignancies, the mean change
in QTc from baseline to post-addition of fluoroquinolone-azole combination therapy in
94 patients was 6.1 ms (95% confidence interval (CI) 0.2 to 11.9). One patient experienced a
change deemed to be of ‘major clinical significance’, defined as a QTc change of >60 ms
or a follow-up QTc measurement of >500 ms, while 20 patients experienced a change of
‘moderate significance’, defined as a QTc change of >30 ms but <60 ms, or a follow-up
QTc of >470 ms (men) or 480 ms (women). On univariate analysis, hypokalemia and an
ejection fraction <55% were significantly associated with major/moderate clinical changes.
No cases of arrhythmia were recorded [50]. In a retrospective study of 46 patients who
had received monotherapy with either voriconazole or amiodarone and then subsequent
combination therapy, investigators reported a mean change in QTc from baseline of 49.0 ms,
with 39.1% of patients having a QTc ≥ 500 ms. In multivariate analysis, lower serum potas-
sium was independently associated with a follow-up QTc ≥500 ms. Again, however, no
cardiac events were noted [51]. As such, although azole antifungals have been implicated
in case reports of patients developing serious arrhythmias, predicting which patients will
progress from an increase in QTc with therapy to an arrhythmia is not feasible, and is both
exceedingly rare and perhaps idiosyncratic [52]. In addition, default QT-interval correction
formulas in electronic health records may overestimate QTc in patients with prolonged QRS
intervals or tachycardia [53]. As such, when initiating posaconazole/voriconazole therapy,
while due diligence should be performed to assess for risk factors and to correct modifiable
risk factors as feasible (electrolyte abnormalities, concomitant medications that can be
changed/discontinued), it is unreasonable to expect patients (especially transplant recipi-
ents) be devoid of risk factors when initiating such therapies. In the setting of multiple risk



J. Fungi 2021, 7, 76 5 of 16

factors, or significant risks such as long QT syndrome, history of drug-induced Torsades de
pointes, or concomitant use of dofetilide or sotalol, isavuconazole can be considered as an
alternative agent. Isavuconazole simultaneously blocks hERG-mediated potassium and the
L-type calcium channels in the myocardium thereby shortening, as opposed to lengthening,
the QTc interval [25,54]. In a case report of a lung transplant patient, voriconazole-induced
QTc prolongation was reversed after initiation of isavuconazole [25].

3.4. Integumentary System

Voriconazole-related photosensitivity and phototoxicity are well described side effects
of drug administration [26,55–57]. The exact mechanism for voriconazole phototoxicity
is not well defined with theories including amassing of a voriconazole metabolite with
chromophore properties in skin epidermal layer and voriconazole-inhibition of vitamin A
metabolism [57–59]. In either case, phototoxoticity acutely manifests as painful erythema
on areas of sun- and/or ultraviolet (UV)-light exposed skin, typically occurring within the
first year of therapy [26,55,56]. Patients should receive counseling to avoid prolonged sun
exposure, wear appropriate sun-protective clothing, and apply broad-spectrum sunscreen
to prevent sun damage. Unfortunately, when unchecked, phototoxocity can progress
to actinic keratosis and ultimately keratinocyte carcinomas after years of voriconazole
use [26]. Solid organ transplant patients in particular are at increased risk for skin cancers
compared to the general population, with squamous cell carcinomas (SCC) predominating
among lung transplant patients [60–62]. In a large cohort study, voriconazole use among
non-Hispanic white lung transplant recipients compared to no voriconazole was associated
with a greater incidence of SCC with 4–7 months (adjusted hazard ratio (AHR) 1.42, 95%
CI 1.16 to 1.73), 8–15 months (AHR 2.04, 95% CI 1.67 to 2.50), and more than 15 months
(AHR 3.05, 95% CI 2.37 to 3.91). Male sex, increasing age, second or greater transplant,
and history of smoking also yielded additional risk of SCC [62]. Thus, in patients with
multiple risk factors for voriconazole-induced phototoxicity, azole alternatives such as
isavuconazole or posaconazole may be preferred as neither are currently considered to
have a significant effect on the development of phototoxocity and SCC.

3.5. Musculoskeletal System

Another toxicity primarily associated with long-term voriconazole administration is
the development of periostitis. Periostitis, inflammation of the connective tissue surround-
ing bone, presents as myalgias, diffuse bone pain, elevations in serum alkaline phosphatase,
and exostoses with an onset of months to years after voriconazole initiation [63–65]. In vitro,
voriconazole has uniquely demonstrated an ability to induce osteoblast activity which
may contribute to the development of both periostitis and exostoses [66]. Voriconazole-
associated periostitis is also considered to be the result of increased fluoride levels and
subsequent accumulation into mineralized tissues including bone [27,67–69]. Excess flu-
oride exposure is likely due in part to the azoles’ chemical structure. Voriconazole con-
tains three, whereas, posaconazole and isavuconazole contains two fluoride atoms [27,69].
When measured in patients on long-term azoles for treatment of coccidioidomycosis,
mean voriconazole plasma fluoride concentrations were over double that of posaconazole
(9.17 vs. 4.06 µmol/L) and approximately five-fold higher than that of the non-fluoride
containing azole itraconazole (9.17 vs. 1.74 µmol/L) [67]. Another study of patients with
hematologic malignancies demonstrated a median serum fluoride level of 156.5 µg/L for
patients receiving voriconazole, well above the normal range of <30 µg/L and median
serum fluoride levels observed in patients on posaconazole (<30 µg/L) [69]. Of those
patients who experience periostitis, symptoms are generally reversible upon voriconazole
discontinuation, however, complete resolution may take months [27,64,68,69]. Alterna-
tively, voriconazole dose reductions have been effective in reducing symptoms and may be
an option in patients who cannot transition to other antifungal therapies [68].
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3.6. Endocrine System

Lastly, prolonged posaconazole use has been noted to cause toxicity associated with
mineralocorticoid excess. As a drug class, azoles exert a pharmacologic effect by inhibiting
the enzyme 14-alpha-demethylase and thus preventing the conversion from lanosterol to
ergosterol [70]. Posaconazole is hypothesized to additionally inhibit 11-beta-hydoxylase
and/or 11-beta-hydroxysteroid dehydrogenase type II both of which result in an accumula-
tion of steroid hormones with mineralocorticoid effects [71–75]. This phenomenon, referred
to as posaconazole-induced pseudohyperaldosteronism (PIPH), commonly presents as
hypertension, hypokalemia, and alkalosis with low renin and aldosterone levels [28,71–75].
Originally, information on PIPH were limited to case reports [71–75]. However, a recent
single-center, retrospective study conducted by Nguyen and colleagues demonstrated
PIPH incidence may be as high as 23% [28]. PIPH was found to be associated with
older age, hypertension prior to posaconazole initiation, and higher posaconazole levels
(see Section 4) [28]. PIPH appears to be reversible either upon dose adjustment or dis-
continuation [71–74]. It is unclear at this juncture if PIPH is limited to posaconazole use.
Two patient cases of resolution of PIPH after switch from posaconazole to isavuconazole
provides clinical evidence to support the safety of this agent, although additional research
is needed [74,76].

4. Pharmacokinetic Considerations and the Role of Therapeutic Drug Monitoring

Each azole differs in terms of pharmacokinetics and need for therapeutic drug monitor-
ing to optimize drug efficacy and minimize toxicities. Table 3 summarizes therapeutic drug
monitoring considerations for isavuconazole, posaconazole, and voriconazole including
established serum targets for efficacy and toxicity reported in primary literature.

Table 3. Strength of evidence for therapeutic drug monitoring and defined efficacy and toxicity serum targets [3–6,28,33,41,45,77–84].

Evidence for
Therapeutic Drug

Monitoring

Proposed Serum Target
for Efficacy

Proposed
Serum Target
for Toxicity

Guideline Recommendations for Serum Targets

Prophylaxis Treatment AST IDSA ISHLT

Isavuconazole −/+ * * * 2000–3000 ng/mL
** * *

Posaconazole
Oral suspension: +++

Delayed-release
tablet: ++

>700 ng/mL
trough

>1250 ng/mL
trough *** Treatment:

>1000–1250 ng/mL *

Prophylaxis:
>700 ng/mL
Treatment:

>1250 ng/mL

Voriconazole +++ ≥1000 ng/mL
trough

≥1000 ng/mL
trough

≤5500 ng/mL
trough

Treatment:
1000–5500 ng/mL

****

Treatment:
>1000–1500 to

<5000–6000 ng/mL

Prophylaxis and
Treatment: 1000–2000
to 4000–5000 ng/mL

Abbreviations: AST, American Society of Transplantation Infectious Diseases Community of Practice; IDSA, Infectious Diseases Society
of America; ISHLT, International Society for Heart and Lung Transplantation. * Not defined; ** Levels within this range ensure similar
exposure as that seen in clinical trials and have not been shown to correlate with response or toxicity; *** Preliminary data from Nguyen et al.
suggests a correlation with posaconazole levels >4000 ng/mL and posaconazole-induced pseudohyperaldosteronism (PIPH); **** Higher
target ranges are recommended in setting of poor disease prognosis and/or microbiological evidence of resistance (e.g., elevated minimum
inhibitory concentrations (MICs)).

Significant inter- and intra-patient pharmacokinetic variability is observed with
voriconazole use. Figure 1 demonstrates the wide range of reported voriconazole serum
trough levels in a sample of lung transplant recipients. Unlike other azoles, voricona-
zole exhibits non-linear pharmacokinetics, with increasing oral and intravenous doses
resulting in non-proportional increases in exposure (as expressed by AUC) [41]. For ex-
ample, a study of voriconazole in allogenic hematopoietic stem cell transplant recipients
showed a 50% increase in dose, 200 mg twice daily to 300 mg twice daily, resulted in a
0.4–7.7-fold increase in serum trough levels [85]. This effect is attributed to saturable hepatic
metabolism [41]. Moreover, CYP2C19 has proven to play a significant role in voriconazole
exposure. CYP2C19 is highly polymorphic, with varying alleles conferring a spectrum of
activity from poor to increased function [86]. Specifically, patients with one or two of the
CYP2C19*17 alleles are considered rapid or ultra-rapid CYP2C19 metabolizers whereas
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the presence of the CYP2C19*2 and/or CYP2C19*3 allele can confer intermediate or poor
metabolism [86]. Several studies have identified the presence of the CYP2C19*17 allele
with lower serum concentrations compared CYP2C19 normal metabolizers [87–90]. Con-
versely, voriconazole serum concentrations are elevated in CYP2C19 intermediate and
poor metabolizers compared to normal metabolizers, potentially increasing the risk of
drug toxicity [87–91]. Frequency of CYP2C19 phenotypes vary based on racial-ethnic
groups, with ultra-rapid metabolizer status seen more frequently in white (31.2%) and
African-American populations (33.3%), whereas intermediate and poor metabolizers are
more common among the Asian community (43–46% and 14–19%, respectively) [92]. In
patients with sub- or supra-therapeutic voriconazole levels, a thorough review of drug–
drug interactions, potential absorption issues, and concerns for non-adherence should all
be evaluated prior to examination of possible CYP2C19 polymorphisms. If no other factors
are identified as the cause of non-therapeutic serum troughs, confirmatory genetic testing
may be performed. However, genotyping currently provides limited value in the clinical
setting where dose adjustments are based on routine therapeutic drug monitoring.
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Highly variable voriconazole pharmacokinetics are of particular concern given the
drug’s narrow therapeutic index. One of the first studies to assess the relationship between
voriconazole serum levels and efficacy when used for treatment of IFIs was conducted by
Pascual and colleagues in 2008. In their analysis, voriconazole trough levels of less than
or equal to 1000 ng/mL were associated with greater lack of response to therapy, defined
as persistent disease after 14 days of voriconazole treatment, progressive disease after
7 days of therapy or breakthrough IFI, (46% vs. 12%, p = 0.02) as well as reduced incidence
of complete or partial response (54% vs. 88%, p = 0.02) [45]. However, other studies
have suggested alternative threshold values or demonstrated no correlation between
voriconazole serum trough and efficacy [77,78]. Regarding prophylaxis, in a prospective,
observational study of lung transplant recipients receiving voriconazole prophylaxis, a
threshold of 1500 ng/mL was proposed as a cutoff for efficacy, as IFIs or colonization
were significantly more common in patients with no trough >1500 ng/mL. Importantly,
81% of outcomes were due to new colonization, not invasive infection, and all invasive
infections were characterized as anastomotic tracheobronchitis [3]. In 2016, two meta-
analyses, which combined treatment and prophylaxis studies, concluded that a therapeutic
window could be defined [77,78]. In the analysis by Luong, a threshold of 1000 ng/mL
was significantly associated with successful outcome, defined by the respective studies
(odds ratio (OR) 1.94, 95% CI 1.04–3.62, p = 0.04) [77]. Jin and colleagues defined treatment
success as complete response, partial response, stable response or beta-D-glucan value
improvement by greater than or equal to 50%. As compared to concentrations >500 ng/mL,
they identified concentrations of ≤500 ng/mL as being associated with decreased treatment
success (risk ratio 0.46, 95% CI 0.29–0.74, p = 0.001) [78]. Given the available data, current
Infectious Diseases Society of America guidelines recommend achieving a voriconazole
trough of greater than 1000 to 1500 ng/mL for efficacy with trough values less than
1000 ng/mL yielding greater risk for treatment failure [5]. Similar thresholds appear
appropriate for voriconazole use in prophylaxis.

Moreover, certain serious voriconazole toxicities, particularly hepatotoxicity and neu-
rotoxicity, may exhibit a concentration-dependent effect. In an early open-label, multicenter
study, voriconazole serum concentrations greater than 6000 ng/mL resulted in increased
rates of hepatotoxicity (abnormal liver function or liver failure) [93]. However, a retro-
spective analysis of phase II and III trials failed to find a voriconazole level associated
with the incidence of hepatotoxicity [94]. Mitsani and colleagues described a correlation
between voriconazole serum troughs and serum aspartate transferase (AST) level yet
found no relationship between serum levels and alanine transaminase (ALT), alkaline
phosphatase, or total bilirubin [3]. Lastly, in their review of predominantly hematologi-
cal malignancy patients receiving voriconazole for treatment of invasive fungal disease,
Pascual and colleagues reported no significant correlation between a specific voriconazole
serum trough concentration and drug-induced hepatotoxicity [45]. It is possible voricona-
zole serum levels may be elevated in patients with hepatic impairment due to reduced
drug metabolism via hepatic CYP enzymes. Nonetheless, current data do not support a
threshold for which patients would be at high risk for voriconazole-induced hepatotoxicity.
Conversely, a voriconazole serum trough level of less than or equal to 5500 ng/mL has been
proposed to minimize the incidence of voriconazole-induced neurotoxicity [45]. Pascual
and colleagues reported a statistically significant increase in incidence of encephalopathy
with voriconazole serum trough levels above 5500 ng/mL compared to levels less than
or equal to 5500 ng/mL (31% vs. 0%, p = 0.002) [45]. Interestingly, a specific voriconazole
serum trough threshold for CNS toxicity (identified in 3 patients) was not demonstrated
among lung transplant recipients on voriconazole prophylaxis [3]. Regarding findings
from meta-analyses, Luong and colleagues identified a voriconazole toxicity threshold of
6000 ng/mL (OR 4.60, 95% CI 1.49–14.16, p = 0.008) with toxicity events including hepa-
totoxicity and neurotoxicity as well as gastrointestinal intolerance, cutaneous reactions,
cardiotoxicity, and metabolic disturbances [77]. Jin and colleagues identified concentra-
tions less than or equal to 3000 ng/mL as resulting in less hepatotoxicity (risk ratio 0.37,
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95% CI 0.16–0.83, p = 0.02), and the strongest association for neurotoxicity occurring at a
threshold of 5500 ng/mL [78]. Given the erratic pharmacokinetic profile and association
between drug levels and efficacy and safety, routine therapeutic drug monitoring is rec-
ommended for all patients on voriconazole therapy. An initial level should be obtained
approximately five days after therapy initiation. Repeat levels are recommended after dose
adjustment, initiation or discontinuation of interacting medications, or other changes in
patient condition that may affect drug absorption or metabolism. If dose modification
is warranted, adjustments should be mild and incremental due to unpredictable results
post-modification.

Posaconazole pharmacokinetics are formulation-dependent. The oral solution demon-
strates significant variation in pharmacokinetic parameters based on gastric pH and timing
of the dose relative to a meal [79]. In a phase I study posaconazole oral solution AUC was
significantly increased with the administration of an acidic carbonated beverage compared
to posaconazole alone (AUC 5600 ng h/mL vs. 9610 ng h/mL) [79]. Concomitant adminis-
tration of a proton pump inhibitor reduced exposures by approximately one-third (AUC
5600 ng h/mL vs. 3700 ng h/mL) and, importantly, the reduction in AUC was not signifi-
cantly improved with the addition of an acidic beverage (AUC 4180 ng h/mL vs. 3700 ng
h/mL) [79]. Furthermore, serum drug concentrations are highest when posaconazole oral
solution is administered with a fatty meal, with approximately four-fold reduction in AUC
when taken in the fasted state [79]. Lastly, posaconazole oral solution displays saturable ab-
sorption, thus divided doses are recommended to increase serum drug concentrations [95].
In comparison, posaconazole delayed-release tablets are not impacted by gastric pH, as the
product is formulated to bypass the stomach. It may be taken with a high-fat meal of ap-
proximately 70 g of fat to increase AUC by 1.5 fold compared to the fasted state [80]. When
directly compared, the posaconazole oral solution consistently displays lower exposures
versus the delayed-released tablet, with a switch from oral solution to tablet resulting in as
high as an approximate 3-fold increase in posaconazole serum trough concentration [96,97].
Therapeutic levels (as defined below) are achieved in >75% of lung transplant recipients
receiving a standard dose of posaconazole tablets (300 mg daily) [96,98], and posaconazole
tablets exhibited lower intrapatient variability compared to voriconazole and posaconazole
oral solution [96]. As a result, posaconazole tablets are preferred over the oral solution.

Given concerns about poor absorption with posaconazole oral solution and possible
sub-therapeutic levels, therapeutic drug monitoring should be performed among patients
receiving this product and may also be considered with the delayed-release formulation.
Ensuring adequate exposure in patients being treated for invasive infection is advisable.
As such, clinicians should target a posaconazole trough goal of greater than 700 ng/mL
to ensure efficacy when administered for antifungal prophylaxis. The proposed cut-off
was determined by an analysis of two, phase III posaconazole prophylaxis trials among
allogenic hematopoietic stem cell transplant recipients and neutropenic patients diagnosed
with acute myelogenous leukemia or myelodysplastic syndrome [81,99,100]. Importantly,
the target concentration was determined using a composite endpoint of successful clinical
outcomes. Clinical failure was defined as the occurrence of proven or probable IFI, a
need to administer greater than 5 days of empirical treatment with a systemic antifungal
other than the study drug during the primary time period of the study, all-cause mortality,
study drug discontinuation during the primary time period, or a patient lost to follow-
up. Of the patients with breakthrough IFI, 80% (12/15) had a posaconazole steady-state
average serum concentration less than 700 ng/mL [81,99,100]. Smaller studies, including
an analysis of lung and heart transplant recipients, have suggested a lower target threshold
of 500 ng/mL [101,102]. A serum trough level greater than 1250 ng/mL is recommended
for treatment with posaconazole. This threshold was first defined in a trial of posaconazole
for treatment of invasive aspergillosis in patients refractory or intolerant to conventional
therapy [82]. In the study, average and maximum plasma concentrations were divided
into quartiles with the highest quartile average plasma concentration of 1250 ng/mL
yielding the greatest response rate, defined as resolution or improvement in clinical signs
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and symptoms of infection and radiological and mycological abnormalities, of 75% [82].
Historically, posaconazole serum levels were not predictive of toxicity, however, there
are emerging data to suggest a correlation between levels and PIPH [28]. Specifically,
Nguyen and colleagues demonstrated a positive correlation between incidence of PIPH
and posaconazole serum level in patients receiving drugs for treatment or prophylaxis, with
low PIPH occurrence (6.5%, 3/46) at serum levels less than 2000 ng/mL, 57% (13/23) PIPH
incidence with serum levels greater than or equal to 2000 ng/mL, and 100% (5/5) of patients
with serum levels greater than or equal to 4000 ng/mL meeting criteria for PIPH [28]. In
summary, while current data suggests a correlation between posaconazole serum levels
and incidence of PIPH, additional evidence is needed to recommend a toxicity cut-off at
this time. Additionally, while studies have not utilized a single time point for measuring
posaconazole concentrations, trough concentrations are recommended, as this would
ensure that all concentrations are above thresholds identified. In addition, posaconazole
has a half-life of ≥24 h [79], so that while there may not be significant variability at steady-
state within an every 6- to 8- hour suspension dosing regimen, variability will be more
pronounced within the tablet 24 h interval.

Isavuconazole has demonstrated limited pharmacokinetic variability, thus questioning
the necessity of routine therapeutic drug monitoring. Data from the SECURE clinical trial
indicates no relationship between exposure and therapeutic response, with greater than 97%
of patients attaining serum trough concentrations between 1000 and 7000 ng/mL [83,84].
Similar levels were also observed in a study of solid organ transplant recipients [103]. In
their analysis of isavuconazole concentrations in clinical practice, Andes and colleagues
found serum levels to be nearly identical to those seen in clinical trials, further supporting
the lack of necessity of routine therapeutic drug monitoring with isavuconazole [104]. An
analysis of 264 isavuconazole blood concentrations from 19 patients over a median duration
of 90 days yielded a suggested target serum trough concentration range between 2500 and
5000 ng/mL [105]. The authors identified no clear threshold for efficacy given low numbers
of isavuconazole failure. However, the cut-off for toxicity based on receiver operating
curve (ROC) curve analysis demonstrated increases in patient-reported gastrointestinal
toxicities at serum levels above 5000 ng/mL [105]. The authors did not identify an associ-
ation between isavuconazole serum levels and hepatotoxicity assessed via ALT, alkaline
phosphatase, and serum total bilirubin [105]. Data on serum targets for prophylaxis is
limited. In a retrospective study comparing isavuconazole to voriconazole for antifungal
prophylaxis in lung transplant recipients, serum trough levels of the four patients with
breakthrough IFIs were 700–1700 ng/mL. However, data on serum levels for patients
without breakthrough disease is not available [33]. Given the lack of both pharmacokinetic
variability and well-established correlation between drug levels and efficacy or toxicity,
routine therapeutic drug monitoring may not be necessary for all patients. It may be
considered in unique scenarios such as concomitant administration of CYP3A4 inducers,
concerns for toxicity, disease progression, and/or non-adherence. If monitoring is per-
formed, it is reasonable to target trough concentrations of at least 1000 ng/mL to meet
typical concentrations seen in clinical trials.

Patients with cystic fibrosis (CF) demonstrate unique pharmacokinetic profiles, in-
cluding impaired gastric absorption and enhanced drug clearance, that may require special
considerations when administering azoles post-lung transplantation. In an analysis of
35 CF lung transplant recipients on voriconazole, 30% of patients had initial levels less
than 500 ng/mL [106]. Moreover, in Mitsani and colleagues’ study of voriconazole pro-
phylaxis for lung transplant recipients, CF patients, as compared to non-CF patients, were
more likely to have initial voriconazole trough concentrations of less than or equal to
1500 ng/mL based on univariate analysis [3]. Lastly, CF was identified as a risk-factor for
sub-therapeutic voriconazole levels using regression analyses in a study including 64 lung
transplant recipients, 14 with CF, on voriconazole primarily for treatment [96]. Several stud-
ies have also demonstrated reduced posaconazole serum levels in lung transplant patients
with CF compared to non-CF patients [96–98,107,108]. In a study of 20 patients receiving
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posaconazole oral solution, serum average posaconazole levels at steady state (median
233 ng/mL vs. 594 ng/mL, p = 0.03) and AUC (median 7 vs. 20 h ng/mL, p = 0.02) were
significantly reduced in the seven patients with CF compared to the non-CF cohort [107].
Furthermore, in a study of posaconazole delayed-release tablets administered to CF lung
transplant, non-CF lung transplant, and non-transplant recipients, patients with CF yielded
lower mean trough concentrations (1100 vs. 1900 vs. 2400 ng/mL, p < 0.00001) compared
to other study participants [108]. In another study, when posaconazole oral solution and
delayed-release tablet serum levels were assessed in lung transplant recipients, switching
from oral solution to tablets resulted in an increase in trough levels, as expected. However,
CF was associated with 48% lower trough values in patients receiving the tablet formu-
lation, while no such association was identified for patients receiving oral solution [97].
Similar findings were reported by Stelzer and colleagues [96]. Finally, a case report by
Kabulski and colleagues described serum trough levels less than 1000 ng/mL on days
16 and 28 of isavuconazole therapy in a patient with cystic fibrosis after bilateral lung
transplant [109]. Such studies emphasize the need for routine therapeutic drug monitoring
to guide dose adjustments in this specific patient population.

5. Conclusions

As the use of mold-active azole antifungals continues to expand among lung transplant
recipients, a thorough understanding of azole pharmacology is necessary to optimize drug
safety and efficacy in this patient population. Each azole demonstrates unique drug
interactions, short- and long-term adverse drug reactions, and pharmacokinetic properties
including need for routine therapeutic drug monitoring. It is imperative these factors, in
addition to efficacy data, are taken into account when determining optimal therapy for
post-lung transplant antifungal prophylaxis.
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