
The automatic annotation of
bacterial genomes
Emily J. Richardson and MickWatson
Submitted: 30th September 2011; Received (in revised form): 4th February 2012

Abstract
With the development of ultra-high-throughput technologies, the cost of sequencing bacterial genomes has been
vastly reduced. As more genomes are sequenced, less time can be spentmanually annotating those genomes, result-
ing in an increased reliance on automatic annotation pipelines. However, automatic pipelines can produce inaccurate
genome annotation and their results often require manual curation. Here, we discuss the automatic and manual
annotation of bacterial genomes, identify common problems introduced by the current genome annotation process
and suggests potential solutions.
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BACKGROUND
Prokaryotic genomics has seen an explosion in the

number of genome projects, driven by the advent

of next generation sequencing (NGS), resulting in

a huge reduction in the time and money investment

per project [1]. Microbial genome annotation often

consists of running an automatic annotation pipeline

followed by manual curation of the results [2].

Most annotation pipelines use homology methods

to transfer information from a closely related refer-

ence genome to the new sequence. Automatic pipe-

lines can lead to the introduction and propagation of

poor annotation and errors, and it is the purpose of

the manual curation step to catch and remove these.

However, as it is now possible to sequence multiple

microbial genomes in a single day at low cost using a

single sequencing machine [3], it is no longer feasible

to manually curate the annotation of all sequenced

genomes. Fully-automatic annotation pipelines,

while essential to the modern microbial genomicist,

may introduce and propagate inconsistent and incor-

rect gene annotations.

High-quality annotation goes beyond applying

gene prediction software and transferring the anno-

tation from the genome’s closest relative. We have to

include features other than coding sites (CDS), such

as ribosomal-binding sites (RBSs), termination sites

and conserved motifs/domains. Not only do these

features give a fuller annotation they actually can

rectify errors from earlier parts of the annotation pro-

cess. For example, predicting RBS and termination

sites will give a much clearer idea of a gene’s true

location rather than using gene prediction alone.

Luckily, there are many software tools for the pre-

diction of these features [4–8].

Transferring annotation purely based on the

closest annotated relative does have its limitations.

When we consider the reason the new strain has

been sequenced, often it will be to identify how

this strains differ genetically to its close relatives.

This is paradoxical because we are trying to find

the differences between these strains but using a simi-

larity based method to annotate it. Potential areas of

interest may not be annotated because they are not in

the reference genome.

With this surge in sequencing, we will also see an

increase in the number of annotated genomes sub-

mitted to the public databases. Sequence databases

have introduced more stringent requirements for

submitters meaning that running an annotation
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pipeline alone is not enough to ensure acceptance of

the genome annotation [9, 10]. There has also been a

surge in other next generation techniques such as

RNA-seq, incorporating experimental methods

gives a better indication of a protein’s role and

whether it is functional. These annotations would

be more accurate because they are based on actual

experiment data rather than homology. Currently

genomes can include evidence tags stating how the

annotation was assigned, however, they are often

omitted from the process. Including evidence quali-

fiers gives the user an idea of the reliability of the

reference genome. The concept of assigning a level

of quality to annotation is not novel, but is seldom

used [11, 12].

This article discusses some of the current steps for

prokaryotic genome annotation and offers a guide to

some of the common problems that are encountered

during automatic annotation. It goes on to identify

the limitations of reference genomes and why choos-

ing the closest relative is not always the best option.

We also discuss the rules of the public sequence data-

bases, and go on to suggest possible next steps toward

a more accurate, comprehensive annotation with

minimal propagation of errors.

Annotation of bacterial genomes
Here we describe a very general process used for

bacterial genome annotation (Figure 1). A more

thorough review can be found in Stothard and

Wishart [2]. In many cases there is a closely related

strain/serovar available which has already been

sequenced and annotated. Most annotation pipelines

employ gene prediction software, the most common

of which is GLIMMER [13]. This uses a reference

set of sequences to train a model and then utilizes

that model to predict coding regions in the genome

of interest. Many other ab initio gene prediction

algorithms exist and these are reviewed by Do and

Choi [14]. Alternatively, gene finding can be per-

formed by extrinsic methods, identifying open read-

ing frames directly from comparisons to protein

databases [15, 16].

Once coding regions have been identified, they

are aligned either to a reference genome annotation

or the entirety of UniProt [17] using fast sequence

alignment tools (e.g. FASTA [18] or BLAST [19]),

the top hits are accepted as homologs and the anno-

tation is transferred across for genes displaying high

similarity. Other features such as tRNAs and rRNAs

may then added using other prediction software [20].

A range of automatic bacterial annotation pipe-

lines have been published, including web-based

systems such as RAST [21], BASys [22], WeGAS

[23] and MaGe/Microscope [24]; and systems to be

locally installed, such as AGeS [25], DIYA [26] and

PIPA [27]. There is also MICheck [28] which checks

annotated sequences for syntactic errors. All of these

systems carry out the basic process outlined above,

with various additions to check for errors or add

additional information. It is worth noting that in

order to submit to a genome repository that the

annotation needs to be in a compatible format

(e.g. .tab or .asn). Some pipelines do not output in

this manner as they are designed to either hold the

annotation online or for in-house analysis [22, 23].

Further processing may therefore be necessary before

submission to a public database.

Other feature types
For acceptance to databases such as GenBank or

EMBL, only gene, CDS and structural RNA features

Figure 1: A generic process for bacterial genome
annotation.
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need to be added [9, 10]. However, many other

features should be added. This section gives a

broad overview of some of the other features and

how they can be predicted; a comprehensive guide

is available [29].

Gene prediction software sometimes assigns the

wrong start/termination sites. Glimmer for example

assigns the start site as the most upstream start codon

[5]. By searching for RBS, one can infer and reassign

the start site; RBSFinder does this by looking for

motifs such as the Shine-Dalgarno sequence pattern

[5]. For termination sites, TransTerm searches for

rho-independent transcription terminators to assign

the correct termination site [6]. As well as correcting

start/termination sites these features should be added

to the annotation, using the tags ‘RBS’ and ‘termin-

ator’ respectively.

Regions of conservation within proteins such as

motifs and domains should be added to the annota-

tion after the gene finding step. There are many

databases which store protein families such as

ProSite, PRINTS and Pfam [4, 7, 8]. InterproScan

can perform searches against a range of domain/

motif databases [30]. Hits to motif/domain databases

should be assigned the qualifier ‘db_xref’ within the

corresponding CDS feature [9, 10].

Areas of horizontal gene transfer (HGT) such

as pathogenicity islands and prophage can be pre-

dicted by looking at asymmetries in codon compos-

ition and the GC content as these will often differ

between areas of HGT and the rest of the genome

[31]. They are often associated with the presence

of integrases, transposases and IS elements [31].

Software tools exists to predict these [32, 33], and

these are reviewed and compared by Langille, et al.
[34]. There are clear guidelines for annotating

phage, this should be assigned under the ‘source’

feature with the name of the bacteriophage in

the ‘organism’ qualifier and the type of sequence

in ‘mol_type’ (usually genomic DNA). There is

no specific annotation tag for other GIs so these

should be annotated as miscellaneous features. The

mobile genetic elements themselves use the ‘mobile_

element’ tag.

Sequence repeats such as ‘clustered regularly inter-

spaced short palindromic repeats’ (CRISPRs) and

other tandem repeats are of biological interest. For

example, they can be used to understand the bacter-

ial defense mechanism [35] and to distinguish be-

tween closely related strains [36]. Software tools

exist [37, 38] and databases such as MICdb store

predicted microsatellites as well as offering a predic-

tion tool for user inputted sequence [39].

Identifying a protein’s cellular localization can be

indicative of function and this can be used in the

identification of drug targets. There are many meth-

ods of prediction including homology and keywords

[40], amino acid composition [41–43] and a mixture

of these [44], Gardy and Brinkman [45] have per-

formed a comprehensive review of the many tools

available.

LIMITATIONSOF THE
ANNOTATION PROCESS
In an ideal world this would be the end of the

annotation process. The fact that homology is the

basis for these pipelines means that many genomes

currently available may have been annotated using

old, out of date genomes as a reference which in turn

have been annotated based on even older more out

of date genomes. The misannotations and errors may

perpetuate throughout each new genome, ultimately

propagating into secondary databases such as UniProt

[17] and KEGG [46], and domain-specific databases

such as PATRIC [47].

The public sequence databases have recognized

the need for controlling this replication of errors

and provide validation software for checking

the standard of one’s annotation prior to submission

[9, 10]. This section looks at common errors that are

the product of automated annotation and tries to

address methods of overcoming these.

Inconsistent annotation
Many bacterial genera now have multiple species

and strains with complete genomes, representing

a fantastic resource for comparative genomics.

However, each genome is annotated separately, by

a range of different groups using different protocols,

and this introduces inconsistencies. One particular

problem is that of split/fused genes and domains;

Kummerfield and Teichman [48] found that, of

7116 distinct domain architectures examined across

131 archaeal, bacterial and eukaryotic genomes, 47%

showed evidence of gene fusion/fission events. An

example of this is the eutM/eutN locus in Salmonella.
Figure 2 shows six different models that have been

used to annotate this region in the 17 RefSeq records

for Salmonella at time of publication. In Salmonella
typhi CT18 (NC_003198) and Salmonella typhi Ty2

(NC_004631) there is a single ORF of 690 bp

Automatic annotation of bacterial genomes 3



annotated as eutN (Figure 2A). The protein

sequence maps to two domains in PFAM, a BMC

domain (PF00936) and a EutN_CcmL domain

(PF03319). In all other Salmonella genomes in

RefSeq, stop codons within this region split the

gene, and the domains, in two. In one genome

(NC_012125) the region has been annotated as a

single long pseudogene of 690 bp (Figure 2B); a fur-

ther four genomes annotate two intact gene/CDS

features, eutM and eutN, each �300 bp in length

(Figure 2C). A further three genomes are annotated

with one pseudogene, a 291 bp ORF equivalent to

the eutM gene in Figure 2C, and one intact gene, a

288 bp ORF labeled as eutN (Figure 2D). A further

two genomes annotate two ORFs, 291 bp and

300 bp in length respectively, both annotated as

pseudogenes (Figure 2E), equivalent to the eutM

and eutN genes in Figure2C. Finally, one genome

(NC_006511) includes two intact genes, but has

reversed the order of eutM and eutN (Figure 2F).

The various ways in which the eutN and eutM

genes have been annotated represents a problem for

further genome annotation. We cannot know,

simply from the genome sequences alone, whether

this locus represents a single long gene that has been

split in two, or two shorter genes that have become

fused. All six models represent different interpret-

ations of a locus that is highly conserved at the nu-

cleotide level across Salmonella species, and any novel

genome that is compared to just one of those models

will have annotation heavily influenced by that

model. For example, if a novel genome is compared

only to genomes represented by Figure 2B (two

short ORFs annotated as a single long pseudogene)

the interpretation will be very different than if the

genome were compared to Figure 2C (two short

ORFs annotated as two separate intact genes).

Predicting domains directly, rather than genes,

using tools such as PfamAlyzer [49], may help in

regions with split genes. In the case of eutM/eutN

in Salmonella, a domain search would identify two

intact domains in all cases; however, the question

of whether or not those domains come from the

same or separate genes would remain unresolved.

We are left with two different versions of the eutN

gene from Salmonella in the public databases, one of

690 bp containing two domains, and one of �290 bp

with one domain.

The only way to annotate this region correctly

in silico would be to compare any new genome to

each of the six different models. It is difficult to im-

agine a set of rules that could be given to an auto-

matic annotation pipeline to interpret correctly the

evolution of this region and apply that interpretation

to a newly sequenced genome. To truly get the full

story we would need to look at experimental data

(such as RNA-Seq data) to see what the patterns of

expression are.

In the eutN/eutM example above, we see a case

where genes of vastly differing lengths have been

Figure 2: The six different models present across 17 RefSeq entries for Salmonella species for the eutM/eutN
locus. Green indicates normal gene/CDS features, lighter grey indicates gene features annotated as pseudogenes.
(A) A single intact gene of 690bp; (B) a single pseudogene of 690bp; (C) two short intact genes �300bp in length;
(D) one pseudogene and one intact gene, each �300bp in length; (E) two pseudogenes, each 300bp in length; and
(F) two intact genes with the order reversed.
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given the same gene name in different genomes; in

contrast to this, it is also possible for orthologous

genes to be assigned different gene names. Figure 3

shows a syntenic block of genes annotated in

Escherichia coli K12 MG1655 (NC_000913) and E. coli
O157:H7 Sakai (NC_002695). These two regions

are more than 97% identical at the nucleotide

level; however, the annotation differs considerably.

While E. coliK12MG1655 contains features with gene

names araA, araB and araC, the equivalent features in

E. coli 0157:H7 Sakai do not have those gene names

and have been assigned uninformative locus tags.

Further information is available for the features

with only locus tags, including their involvement

in arabinose metabolism, however, the gene names

remain absent. At the far right of the gene block, two

orthologous features exist, both with gene names,

however, this time the problem is that they are dif-

ferent: thiB in K12 MG1655 and tbpA in 0157:H7
Sakai. A simple search of the NCBI gene database

(search term ‘thiB AND Escherichia coli [Organism]’

versus search term ‘tbpA AND Escherichia coli

[Organism]’) reveals that both features code for a

thiamin(e) transporter subunit, but the gene is

given the gene name tbpA in over 30 E. coli species,

whereas it is given the name thiB in only one.

Luckily, the thiB feature in K12 MG1655 lists tbpA

as a ‘synonym’. Finally, in the centre of the image,

K12MG1655 contains a feature with the gene name

yabI, whereas its ortholog in 0157:H7Sakai only has a

locus tag. This is an example of a y-gene, which we

discuss in greater detail in the ‘Hypothetical proteins’

section.

The major issue here is that not only do differ-

ent genomes annotate orthologous genes differ-

ently, and provide inconsistent information; they

also contain differing amounts of information.

This means that, when annotating a new genome,

it is essential to choose a reference genome that

contains the most accurate and up-to-date infor-

mation, and that it is also preferable to compare

any new genome to multiple references such that

inconsistent annotations can be identified and

resolved.

Spelling mistakes
There are 128 proteins in UniProt that contain

the word ‘syntase’, an incorrect spelling of the

word ‘synthase’. To put this into context,

the RefSeq entry for RhizobiumetliCFN42 (accession

NC_007761) assigns the function ‘dihydrofolate

syntase’ to gene folC. This has propagated into

other databases such as UniProt (accession:

Q2KE79), KEGG (accession: RHE_CH00024),

and xBASE (accession: RHE_CH00024). If a user

was to visit any of these databases and search

for ‘dihydrofolate synthase’ the misspelled entries

would be omitted from the search results. Large

scale detection and correction of spelling mis-

takes in public databases is a difficult task, and so

there is a reliance on the submitter to correct

these. Automatic annotation pipelines simply copy

and propagate what is there already. Spelling mis-

takes may be highlighted by the validation software

provided by the public databases during submission,

however, an alternative correct spelling isn’t offered,

making it difficult to amend the mistakes without

manual intervention.

This can be solved by writing rules to find spelling

mistakes [16]. However, this approach is limited to

spelling mistakes which are explicitly written in the

code. A solution may exist beyond biological sci-

ence. The search engine Google upon receiving

the input ‘syntase’ automatically states ‘Did you

mean: synthase’. There are programming languages

which have classes or plugins to produce such ‘did

you mean’ results [50, 51].

Figure 3: A syntenic block of genes showing inconsistent gene name annotations in E.coli K12 MG1655 and E. coli
0157:H7 Sakai.
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‘Same gene name, different product
name’
This issue occurs when two features, either within

or between genomes, are assigned the same short

gene name yet different product names. The NCBI

validation software specifically highlights when this

occurs intra-genomically with the description ‘Same

gene name, different product name’ [9, 10]. In

the current set of 2696 microbial genome and plas-

mid sequences in RefSeq, we detected 23,843 genes

with at least two different product names (see http://

www.ark-genomics.org/genomeannotation.html for

the full list). The most extreme example of this is

gene ‘tnp’ which has 151 different product names

(‘tnpA’ has a further 97). A more manageable

example can be seen in Table 1. The ‘int’ gene has

a total of 12 different product names across 17

Salmonella RefSeq entries. These product names con-

tain huge variation in terms of information content.

When using an automatic annotation pipeline, there

is a danger that if the top hit is to an entry labeled

‘Hypothetical protein’, then you will capture far

less information than if your top hit is to ‘phage

integrase family site specific recombinase’. In order

to correctly annotate this gene in a new genome, it is

necessary to take into account all of these product

names in the annotation process. It is difficult to im-

agine a set of text-mining rules that could efficiently

interpret the range of annotations and assign the

most suitable one to a new gene.

Hypothetical proteins
The term ‘hypothetical protein’ often refers to a

gene that has been predicted by software but

which finds no homolog of known function in the

databases, and which has no known functional

domain. There are currently 53 035 proteins whose

product name contains both words in UniProt

(search term: ‘name:hypothetical AND name:pro-

tein’) and there are a further 5 178 212 proteins in

UniProt that contain the words ‘uncharacterized’

and ‘protein’ (search term: ‘name:uncharacterized

AND name:protein’). These may be real genes

with no known function or they may be artifacts

of the gene prediction process.

Many bacterial genes of unknown function are

assigned y-gene names based on their orthologous

location in E. coli K-12 [52]. The letters denote the

location in terms of minutes around a circular

genome. This gene annotation has propagated

throughout many strains and species of bacteria,

losing the relevance and context of its name as the

genes are not all in the same relative location to

the original annotation in E. coli K-12. For example

the yabF gene has a known function, ‘glutathione-

regulated potassium-eflux system ancillary protein’.

The gene name yabF is completely meaningless in

all genomes other than the original and actually has

a synonym kefF. With that in mind annotators

should use more informative gene names as a pref-

erence, choosing alternative gene names over the

original y-gene annotation.

Often there are features which are only ortholo-

gous to other hypothetical features and do not

contain any domains. These could either be regions

with no functionality, a relic of the feature prediction

software or the domains present have not been

discovered yet. Whether or not to include them

is often a decision made by the annotation team

and varies between groups. Thus, many artifactual

Table 1: Different product names assigned to features with the gene name ‘int’ across 17 different
RefSeq entries for Salmonella species

Gene name Product name Accession

int bacteriophage integrase NC_003198, NC_004631, NC_015761
int Gifsy-1 prophage Int NC_006905
int hypothetical protein NC_006905
int Integrase NC_003198, NC_004631, NC_006511, NC_012125
int integrase (fragment) NC_003198
int phage integrase family site specific recombinase NC_006905
int putative cytoplasmic protein NC_006905
Int Putative integrase NC_003384
int putative integrase protein NC_006905
int putative P4-type integrase NC_006905
int putative phage integrase protein NC_006905
int site-specific recombinase, phage integrase family NC_012125
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‘hypothetical proteins’ may be annotated, published

and disseminated into the public databases, rein-

forcing the annotator’s belief that their new gene

predictions do indeed have homologs in other

species. It would be more informative to actually

state in the annotation a score for each feature.

This will allow users to make informed assessments

of the features and programmers to easily parse

genomes to handle hypothetical proteins based on

their quality of hits. Gilks, et al. [12] discuss the

possibility of assigning scores based on the source

of annotation.

There are arguments for and against keeping

these proteins in the annotation. If they are indeed

a misannotation by the gene prediction software they

should be removed as they will perpetuate through

secondary and tertiary databases as a recognized

protein awaiting functional discovery. Searching for

conserved domains or motifs in databases such as

Pfam or InterPro can give an indication of whether

a hypothetical protein is functional but this has pit-

falls too. The fact that a protein has a domain

hit doesn’t necessarily convey its function. Pfam

[8], for example, contains over 3000 ‘domains of

unknown function’, or DUFs, representing over

20% of known families [53] and as more novel gen-

omes are sequenced the number of new DUFs

will increase. A hit to a DUF does not inform us

of a feature’s function, but as they are areas of high

conservation they indicate a potential region of

biological interest.

Through computational methods alone there

are no means to conclusively determine whether a

genomic region is functional. With that in mind

conserved features of unknown function should be

kept because in the future they may be recognized as

a true region of interest; however, they should

be annotated differently to discriminate them from

features with stronger evidence. Evidence tags are

available but they are often not present, and are

not a prerequisite for submission to GenBank or

Embl. Evidence qualifiers such as how the feature

was predicted (e.g. glimmer, blast, homology) and

what entries it hits in a given database provide a

clear audit trail for anyone who wants to assess the

quality of a particular annotation. The type of data

source used, that is, whether it is manually curated or

automated should be stated, providing the user with

a clear method of judging the annotation. As experi-

mental data becomes more ubiquitous evidence tags

should play a larger role in annotation.

Experimental methods such as RNA-Seq [54] and

Signature Tagged Mutagenesis (STM) [55] may help

to identify regions of functionality. RNA-Seq data

can help delineate and quantify areas of transcription,

and overlaying this expression data on the genome

may help biologists to identify pseudogenes and the

true locations of features. STM can help identify the

function of genes by monitoring the phenotype of

single-gene mutants.

The most important point is that one’s annotation

is only ever as good as the reference data sources.

In terms of publicly available genome sequences

the quality is varied. It is worth actually looking at

the annotation and assessing the quality. Choosing a

genome because it is the closest relative will give the

most homologous features but might not give the

best quality annotation.

Combining additional data with the original

annotation gives scientists a new way of viewing

the genome. Experimental data could be able to

solve the eutM/eutN problem described above; for

example, RNA-Seq data would show which areas

of the genome are actively transcribed and STM

may indicate whether knocking out either of the

genes alters the phenotype of the mutant.

Distinguishing orthologs from paralogs
The definition of orthologous and paralogous

genes is of great importance when annotating

novel genomes. Whereas ‘homology’ refers to

genes that simply share a common origin, ‘orthology’

refers to genes that arise by speciation and ‘paralogy’

refers to genes that arise by duplication. Figure 4

shows some of the processes that can lead to, and

define, orthologs and paralogs. Beginning with a

single ancestral, a gene duplication event occurs to

create two paralogous genes. After a speciation

event, there are two different organisms that both

contain the paralogous genes from the gene duplica-

tion event. Gene 1a in Organism 1 has three homo-

logs after the speciation event. Gene 1a in Organism

1 and Gene 1a in Organism 2 are orthologs as they

have only been separated by the speciation event.

Gene 1a in Organism 1 and Gene 1b in Organism

1 are in-paralogs, as they have only been separated

by the gene duplication event. Finally, Gene 1a in

Organism 1 and Gene 1b in Organism 2 are

out-paralogs, as they have been separated by the

gene duplication and the speciation event.

These processes are not only crucial in defining

evolutionary relationships, but also functional

Automatic annotation of bacterial genomes 7



relationships, as orthologs tend to retain similar func-

tions, whereas paralogs tend to diverge over time to

perform different functions (reviewed in ref. [56]).

Therefore, when transferring functional annotation

from a sequenced genome to a novel genome, it is

essential that orthologs are accurately defined. There

are several computational approaches which can be

used to accurately define orthologs (reviewed in ref.

[57]). Phylogenetic tree-based approaches attempt to

reconstruct the evolutionary relationship between

gene sequences and thus define orthologs and para-

logs; however, it may be impractical to construct a

phylogenetic tree for every gene in a newly sequence

genome. An alternative is the ‘bidirectional’ or ‘re-

ciprocal’ best-hit approach [58], usually determined

by comparing the top-ranking matches found by a

search algorithm such as BLAST or FASTA [18, 19].

Gene Synteny, the conservation of local gene order,

can also help distinguish orthologs from paralogs in

closely related genomes. However, it is important to

note that a number of processes can lead to the

breakdown of absolute gene synteny, resulting in

genuine orthologs having a different gene order.

These processes include gene duplication or fusion

events, local rearrangements (insertions/deletions)

and translocations. It is important that we model

these processes to allow the correct identification of

orthologs in complex cases, and the MaGe [24]

system attempts to do this. Finally, it has been

observed that orthologs exhibit a greater level of

protein domain architecture conservation than para-

logs [59]. In practice, it may be essential to use a

combination of approaches, and several software

applications exist [57].

THERULESOF THE SEQUENCING
DATABASE
Many scientists go through the process of annotation

with the final aim of submitting to a genome data-

base such as GenBank or EMBL. In order to realize

this goal there are many rules which need to be

followed [9, 10] and often validation software is pro-

vided to verify one’s annotation. These rules

are imposed to ensure a better standard of genome

annotation, however, they do mean that often the

output of an automatic annotation pipeline must be

manually checked and altered prior to publication.

Many of the issues described in the ‘Limitations of

the Annotation Process’ section may be identified

as potential problems and the submitter is provided

with long lists of features that represent these. They

must be checked, and either altered or justified. In

addition to those mentioned above, there are others

described below.

CDS nomenclature
There are many words which may be unacceptable

in protein names, such as ‘binding’, ‘domain’, ‘like’,

‘motif’, ‘gene’ and ‘homolog’. Submitters may be

Figure 4: A diagram displaying the processes that can lead to, and define, orthologs and paralogs.Gene duplication
and speciation events create complex evolutionary relationships between genes.
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encouraged to change these: for example ‘bac-

teriophage replication gene’ can be changed to ‘bac-

teriophage replication protein’ and ‘peptidyl-tRNA

hydrolase domain protein’ can be changed to

‘peptidyl-tRNA hydrolase protein’; a note may be

added to state that the feature contains the afore-

mentioned domain. These rules add complications

if the submitter wants to fully automate the process

of annotation. As a rule of thumb, if a predicted

coding region has homologs in SwissProt these are

the best protein names to transfer across and running

the validation software after using SwissProt initially

can greatly reduce the number of suspect names.

As an aside, ‘probable’ and ‘predicted’ are not flagged

up by the validation software but ‘putative’ is the

preferred alternative.

Some CDSs have the same protein name as the

protein next to them, which can be the sign of either

a disrupted gene or a valid gene duplication event. It

can also be because the protein name is very general

such as ‘hypothetical protein’ or ‘inner membrane

protein’. These features may be flagged up by the

validation software and, if they are not pseudogenes,

need a note stating that they overlap a CDS with the

same protein name.

CDS gene names that appear more than once in

a genome and have different proteins names to

one another (e.g. Table 1) may also be identified as

potential errors. These may be brought to the

submitter’s attention who often has to use their dis-

cretion and knowledge to assign gene names cor-

rectly. This can be as simple as performing a

similarity search and seeing which gene names are

associated with the hits.

Problems with coding regions
The NCBI validation software flags up all instances

where a coding region completely contains another

coding region on the opposite strand. The submitter

is asked to check these coding regions and decide

whether these are true features. If the coding

region only hits hypothetical proteins and doesn’t

contain any domains, it may be either removed or

demoted to a miscellaneous feature.

FUTURE
Gold standard genomes
RefSeq is one attempt to standardize and improve the

quality of genome annotation; however, as we have

shown, problems persist. With the implementation

of stricter rules for submission we should see an

increase in annotation quality. While genomes of

varying quality are available there should be a

means for scientists to see the quality of any given

annotation. Evidence qualifiers such as how the

feature was predicted and what entries in a given

database the feature sequence hit, including the

database version and date, would provide a clear

audit trail for anyone who wants to assess the quality

of a particular annotation. The type of data source

used, that is, whether it is manually curated or auto-

matically generated should also be stated, providing

the user with a clear method of judging the

annotation.

Out of the 1851 publicly available completed

bacterial genomes 102 have a version number of

0.2 or higher [60]. This means that the submitting

group have revisited the original sequence and

changed it. The fact that the sequences have been

changed is indicative of a higher quality sequence.

This, however, does not reflect the quality of the

annotation. It is possible to look at the revision his-

tory of genomes within GenBank, this will give users

an idea of changes on a genome by genome basis, no

small feat when there are 1851 genomes available. In

the literature there have been several papers which

have revisited and reannotated genomes, these

include strains of E. coli, Campylobacter jejuni and

Mycobacterium tuberculosis [61–63]. In terms of what is

currently available these genomes are likely to be the

closest to realizing ‘gold standard genome

annotation’.

Janssen, et al. [11] calculated the number of publi-

cations per gene for all completed genome to calcu-

late a Species Knowledge Index (SKI) for each

genome. They showed that, in bacteria, there is a

pronounced bias toward certain organisms namely

E. coli, Pseudomona aeruginosa and Bacillus subtilis. With

this in mind perhaps there should be a focus

to annotate genomes with a high SKI to the highest

level possible as there is such an abundance of experi-

mental data available. These can then be used as gold

standard genomes for annotations of other species.

As we learn more about genes and protein func-

tion it becomes clear that a simple protein name is

inadequate. Some proteins are multi-functional, per-

forming different tasks depending on the context it

is expressed in. We can say that a protein has a

one-to-many relationship with function, meaning

that assigning a protein name based on the first func-

tion associated with it can be misleading and

Automatic annotation of bacterial genomes 9



inaccurate. The Gene Ontology (GO) may provide a

more flexible way of describing a range of func-

tions explicitly and concisely, and GO annotations

natively include evidence qualifiers. However, GO

terms are not frequently included as part of the initial

annotation of bacterial genomes. The EBI offer

UniProtKB-GOA Proteome Sets [64], GO annota-

tions for all completely sequenced genomes in the

public domain, however, these are not included with

or clearly linked to the original genome submission.

The development and use of GO annotations

is encouraged and these should be included in

genome annotation efforts.

Improving automated annotation
The pipelines currently on offer do not take many of

the pitfalls outlined above into account, meaning

that a lot of manual effort is required to correct

errors and inconsistencies. It is easy to imagine

adjustments to current pipelines that take into

account certain aspects (e.g. common spelling mis-

takes) but not others (e.g. correctly interpreting

pseudogenes). Realistically, completely removing

the manual stage of annotation would be imprudent,

however, improving current automated pipelines

may greatly reduce the time spent manually checking

the annotation.

New data types
There have been a flood of new genome-wide data

types in the post-genomic era, for example micro-

array and RNA-Seq data, many of which can assist

with genome annotation. However, these are often

large, unwieldy, come in a variety of different for-

mats and can be hard to integrate with one another.

Allowing scientists to visualize this data alongside

genome annotation can be hugely powerful [65];

however, genome annotation is often kept in specific

flat file formats where integrating non-text data is

virtually impossible. Secondary and tertiary databases

may include additional data alongside the original

genome annotation [20], but these ‘data warehouse’

approaches employ copies of the original data

which can become out-of-date and out-of-synch

with the original data. The advent of bioinformatics

web services [66] may allow new systems that query

data live over the internet, ensuring the latest data is

displayed.

CONCLUSION
Advances in sequencing technologies are allowing

researchers to sequence microbial genomes at a

huge rate. It is becoming harder to devote time to

manually annotate these genomes, leading to a rise in

automatic annotation pipelines. However, due to a

range of problems, the output of these automatic

annotation pipelines is unsuitable for publication.

Some changes can be made to improve this output;

however, it is difficult to envisage an end to manual

checking and curation.

Additional data from post-genomics experiments

can help improve genome annotation; however, a

line has to be drawn regarding what data should be

included in the annotation and what should be in

separate databases. Tools and services need to be de-

veloped which offer scientists a means of viewing

genome annotation augmented with other experi-

mental data. This will empower the user to make

meaningful judgments on the quality of annotation

and the relevance of a particular region to their

research.

For the foreseeable future bacterial annotation re-

quires both automated and manual steps. Offering

users a measure of quality for the whole genome

and individual genes will allow user to make an in-

formed choice regarding reference genomes and

transferring annotation between genomes. Using

GO terms would improve protein description and

reduce syntactic errors.

Key Points

� Advances in sequencing technology now allow modern
researchers to rapidly sequencemultiple bacterial genomes.

� Automatic annotation pipelines that work via comparison to a
reference database can introduce and propagate errors.

� Manual checking and curation of annotation is essential tomain-
tain a high quality.

� Additional data-sources from post-genomic experiments can
assist in the annotation process.
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