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Abstract

There are no universally accepted methods for assessing tumour response in skeletal sites with metastatic disease;
response is assessed by a combination of imaging tests, serum and urine biochemical markers and symptoms assess-
ments. Whole-body diffusion magnetic resonance imaging excels at bone marrow assessments at diagnosis and for
therapy evaluations. It can potentially address unmet clinical and pharmaceutical needs for a reliable measure of
tumour response. Signal intensity on high b-value images and apparent diffusion coefficient values can be related to
underlying biophysical properties of skeletal metastases. Four patterns of change in response to therapy are described
this review. Therapy response criteria need to be tested in prospective clinical studies that incorporate conventional
measures of patient benefit.

Keywords: Diffusion MRI; DW-MRI; WB-DWI; bone metastases; therapy response.

Background

Metastatic bone disease is a common manifestation of
advanced cancers with autopsy studies indicating a prev-
alence of 30�40% in thyroid, lung and renal cancers[1].
There is a greater prevalence of bony metastases in breast
and prostate cancers (more than 70%)[1�3]. Bone metas-
tases cause much of the morbidity and disability in
patients suffering from tumours. Osteolytic disease in
particular causes pain, impairs mobility, leads to hyper-
calcemia effects, results in pathological fractures and
spinal cord compression. In patients with metastatic
bony disease, survival rates vary by tumour type and
can be months for lung cancer but can be years for hor-
mone receptor positive disease in breast and prostate
cancers[3].

Once bony metastases occur, cancer cure becomes
impossible and therapy is instituted with palliative
intent. Therapy goals are to delay progression, palliate
symptoms, improve quality of life and achieve a modest
survival benefit if possible. In general, systemic therapies
(including chemotherapy, endocrine therapy and bispho-
sphonates) are given for disseminated disease and local
treatments (e.g. radiotherapy, surgery and spine cement

augmentation) to control pain and treat complications.
Bisphosphonates reduce the frequency of skeletal-related
events in breast cancer by 17�40%[4]. However, metasta-
ses do become refractory to bisphosphonate treatment
and osteonecrosis and renal failure are recognized com-
plications[5]. The recently introduced agent zoledronic
acid, can reduce the incidence of skeletal-related events
in both lytic and sclerotic disease[6]. The treatment of
bony metastatic disease by targeting molecular mechan-
isms is an active research area[7]. Molecular targeted
agents including HER2-neu inhibitors (trastuzumab)
and RANK ligand inhibitors (denosumab) are helpful
for the treatment of bony metastases[8].

Skeletal therapy assessment
tools: comparison of methods

There are overwhelming clinical needs to develop and
validate non-invasive response biomarkers for bone
metastases[7�9]. There are, however, no universally
accepted methods for assessing tumour response in skel-
etal sites with disease. Response is estimated by a com-
bination of imaging tests, serum and urine biochemical
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markers, and clinical evaluations[10,11]. Symptom assess-
ments (including analgesic requirements) and develop-
ment of skeletal-related events are frequently used
markers of therapeutic efficacy in clinical trials[10].

Serum markers of response are not available for the
vast majority of tumours that metastasize to bone. Even
serum prostate specific antigen (PSA) is not a completely
reliable biomarker in late stage prostate cancer, especially
in patients with hormone-refractory prostate disease[10].
A serum PSA flare phenomenon in responding patients
has been noted[10]. Serum CA15-3 has moderate sensi-
tivity for the detection of metastatic breast disease
(60�65%)[12]. Similar to serum PSA, a CA15-3 flare reac-
tion has been noted in responding breast cancer
patients[13]. There are a number of serum and urinary
markers of osteoblastic and osteoclastic activity that
monitor bone response to the presence of metastatic dis-
ease[14], and thus only indirectly reflect disease activity of
the metastatic bone marrow. Circulating tumour cells
(CTCs) are emerging as powerful response biomarkers
for breast, colorectal and prostate cancers[15]. Correla-
tions of CTCs with tumour measurements on computed
tomography (CT) and fluorodeoxyglucose (FDG)-
positron emission tomography (PET) scans have been
poor[16,17]. Correlations between CTCs and bony meta-
static disease burden on FDG-PET have begun to
emerge[18].

Bone scintigraphy ([99mTc]methylene diphosphonate
(MDP) bone scans) with plain radiographs or cross-sec-
tional imaging, such as CT or magnetic resonance ima-
ging (MRI), remain the commonest imaging methods
used to characterize and follow up bone marrow metas-
tases. Unfortunately, bone scintigraphy reflects only on
the osseous component of bone, and suffers from poor
spatial resolution and limited diagnostic specificity,
despite advances in single-photon emission computed
tomography (SPECT). A positive bone scan occurs due
to an osteoblastic response occurring secondary to an
underlying bone abnormality and is thus an indirect indi-
cator of metastatic bone marrow activity. Bone scintigra-
phy maybe unsuitable for the therapy assessment of
predominantly lytic disease without an associated osteo-
blastic response such as typically seen in myeloma, renal
or thyroid cancers (i.e. cold spots on bone scans cannot
be followed for progression). Similarly patients with
metastatic superscans on bone scans cannot be followed
for progression. As a result, drug trials utilizing bone
scans have criteria for progression (2 categories only:
no new lesions/new lesions) but not for response; appar-
ent progression need to be confirmed by follow-up bone
scans after more than 6 weeks, when new focal hot spots
have to be documented[10]. The latter observation raises
the issue of timeliness of the bone scan readouts in
patients who have to be continued on potentially ineffec-
tive therapies before progression can be documented.
Scintigraphic/healing flare is also a well-recognized
problem with bone scans occurring in 30% of patients

usually within 3 months in patients responding to
treatment[19,20].

CT scans are also limited in their ability to assess ther-
apy response of bony disease. RECIST (v 1.1) criteria do

allow individual osteolytic or mixed osteolytic/osteoblas-

tic metastases to be measured but diffuse disease and

osteoblastic bone metastases are considered as non-mea-

surable[21,22]. The MD Anderson Cancer Center criteria

(2004) introduced the concept of osteoblastic reaction as

a response criterion when there are other signs of

response and in the absence of progressive bony dis-

ease[11,21,23]. The appearance of new or worsening bone

sclerosis on CT in patients with prostate cancer may

therefore be erroneously classified as disease progression

(CT flare response) and caution should be exercised in

order to avoid over interpretation[24].
A number of PET tracers have been evaluated for

their ability to monitor bony therapy response[25].
These include [18F]sodium fluoride ([18F]NaF),
[18F]fluorodeoxyglucose ([18F]FDG), [11C]/
[18F]choline (for prostate cancer), [18F]fluoroestradiol
([18F]FES); for hormone positive breast cancer),
68Ga-labeled analogues of octreotide (e.g. [68Ga]�
DOTATOC; for neuroendocrine tumours)[26,27]. A
number of studies have shown that lytic bony disease is
usually FDG avid and that many osteoblastic lesions are
less FDG avid[28,29]. As a result FDG-PET scans may
perform better in patients with breast cancer than in
prostate cancer. FDG flare reactions occurring 7�10
days after tamoxifen therapy in estrogen receptor positive
breast cancers can indicate eventual success[30]. An FDG
flare reaction after growth colony stimulating factor
(G-CSF therapy; given to prevent neutropenia-related
complications) has been described and potentially may
be difficult to distinguish from increasing bone marrow
infiltration.

There are a number of MRI methods that can evaluate
the bone for metastasis detection and response assess-
ments[31,32]. Sequences relevant to the evaluation of
bony metastases include T1-weighted (T1W) spin echo,
T2-weighted (T2W, with fat suppression) and short tau
inversion recovery (STIR) sequences, which are sensitive
to the cellular, fat and water content of the bone
marrow[33]. Gradient echo T1 sequences (in- and
opposed phase imaging) can be used to evaluate the rel-
ative fat/water content of bone marrow. Susceptibility
weighted (T2*) sequences can be made sensitive to sus-
ceptibility dephasing induced by trabecular bone[33].
Recently, ultrashort echo time sequences have been uti-
lized to image trabecular bone structure in healthy and
metastatic disease[34]. A number of studies have evalu-
ated bone marrow vascularization using dynamic con-
trast-enhanced MRI techniques[35]. In the context of
bone marrow assessment by metastatic disease, diffu-
sion-weighted (DW) MRI is increasingly being used
because it is sensitive to bone marrow cell density, the
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relative proportions of fat and marrow cells, water con-
tent and bone marrow perfusion[35].

Whole-body DW imaging (WB-DWI) is emerging as an
accurate bone marrow assessment tool for detection and
therapy monitoring of bone metastases[32,36]. The major
advantages of WB-DWI include the fact that no ionizing
radiation is administered and no injection of isotopes or
any contrast medium is necessary. Importantly, whole-
body examinations are possible in reasonably short data
acquisition times. The information obtained can be quan-
tified and displayed as parametric maps, thus enabling
spatial heterogeneity of tissues/tumours to be analyzed,
before and in response to treatment. DW-MRI-derived
parameters, such as the apparent diffusion coefficient
(ADC), are theoretically independent of magnetic field
strength and the relative simplicity of data acquisition
facilitates multicenter and longitudinal studies[37]. In
the rest of this article the imaging observations and
mechanisms underlying the assessment of bony meta-
static response to therapy with DW-MRI are discussed
in depth[38].

DW-MRI correlations with bone
marrow cellularity

Unlike the inverse correlations between ADC and cell
density seen in many soft tissue tumours[39�49], ADC
alterations in bone marrow as a consequence of meta-
static disease are not inverse (Fig. 1) but the explanation
for this observation is incompletely understood[50�53].
Yellow fatty marrow has lower cell density with an

Figure 2 Variable normal bone marrow signal intensity in women without and with metastatic disease. b900 3D-MIP
(inverted scale) WB-DWI images of 4 middle-aged women with a history of breast cancer without metastatic bony disease
(left 3 images) and with bony metastases (right side image). Ages are indicated (yo, years old). The first image shows a
clearly outlined spinal cord with low signal intensity from the ribs and pelvic bone marrow indicating yellow bone marrow
atrophy. The 4th right hand side image shows a woman with extensive bony metastases with multiple focal high signal
intensity lesions in the axial skeleton. Asymmetry in the depiction of axillary nodes is due to nodal dissections. Other
normal structures (kidneys, spleen, bowel, gall bladder) and soft tissue metastases (liver in the 1st image) are visible but
not specifically annotated in these images.

Figure 1 Relationship between bone marrow diffusion
signal intensity and ADC before and in response to success-
ful therapy. An abundance of yellow bone marrow (YBM)
fat causes low signal intensity on high b-value DW images.
Increasing bone marrow cellularity of red bone marrow
(RBM) and water content increases signal intensity and
paradoxically increases ADC values also. Further
increases in bone marrow cell density can cause lowering
of ADC values although this is incompletely documented.
Successful therapy results in increases in ADC values and
decreases in signal intensity consistent with decreasing cel-
lularity but T2-shine through effects following therapy
would increase both signal intensity and ADC values.
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abundance of fat cells compared with red bone marrow
or metastatic disease. Yellow bone marrow has low signal
intensity and low ADC values[50,54] probably because of
the reduced proton density, the hydrophobic nature of fat
and lower bone marrow perfusion (compared with red
bone marrow)[55]. With increasing bone marrow cellular-
ity (which displaces fat cells and increases the vascularity
of the bone marrow), the signal intensity on high b-value
images increases, and appears to paradoxically return
higher ADC values compared with yellow bone
marrow[52�54,56,57]. However, once all bone marrow fat
cells are displaced, increasing bone marrow cell density
within the confines of a fixed marrow space may cause
ADC reductions (as in non-bone marrow tissues) but this
latter effect has not been comprehensively documented.

WB-DWI: appearance of normal
bone marrow

In order to use visual inspection of high b-value images
for bone marrow metastasis detection, lesion character-
ization and for therapy assessments, it is necessary to
be familiar with normal bone marrow distribution
appearances on WB-DWI and to correlate findings with
morphological sequences. Visual inspection of WB-DWI
is excellent at demonstrating the variability of the normal
bone marrow distribution. Variations in the cellularity of
bone marrow are reflected in the signal intensity of the
bones on high b-value images (Fig. 2). Because yellow
bone marrow has low water content (10�20%)[58�60] its
signal intensity on WB-DWI is reduced. On the other
hand, red bone marrow has increased cellularity and
water content (40�60%)[60,61], resulting in higher signal
intensity on WB-DWI. The normal adult bone marrow
distribution becomes established by 25 years of age with
red bone marrow found predominantly in the axial skel-
eton and yellow bone marrow in the peripheral skeleton.
There is variable red bone marrow atrophy and trabecu-
lar bone loss after 40 years of age[62] particularly in
women (possibly related to estrogen deficiency and

osteoporosis[63]), resulting in increased adiposity and
thus lowering signal intensity of bone marrow on WB-
DWI with increasing age.

There are many causes of bone marrow hypercellular-
ity and hypocellularity observed in cancer patients too
numerous to be elucidated in this article[36]. Common
causes of bone marrow atrophy include chemotherapy
and radiation treatment. A potential area of difficulty
in assessing the bone marrow is the effect of haemopoetic
growth factors such as granulocyte colony stimulating
factor (G-CSF). G-CSF administration during chemo-
therapy results in increased signal intensity on WB-
DWI that can mimic disease progression[64]. This is
due to increases in bone marrow cellularity and water.
The effects on bone marrow signal can occur within 2
weeks of the first G-CSF dose[65] but it is unclear
whether additional doses further alter bone marrow
signal intensity or whether there is resolution of
changes on cessation of therapy. It is therefore poten-
tially challenging to differentiate between new patho-
logical bone marrow infiltrations and the benign red
marrow reconversion changes related to G-CSF.
Furthermore, bony metastases can become less conspic-
uous with increasing background bone marrow signal
intensity due to G-CSF, making therapy assessments
more difficult.

WB-DWI for skeletal metastasis
detection

WB-DWI is an attractive lesion detection technique
because it enables at a glance assessments, immediately
drawing attention to potential abnormal skeletal regions
(Fig. 2) and thus helping to reduce image interpretation
times of anatomic WB-MRI[66]. WB-DWI can be con-
sidered to be a supplement for anatomic WB-MRI
for improving skeletal lesion detection[67]. WB-DWI
excels at lesion detection in the bone marrow, being
better than CT scans and bone scans for detect-
ing bony disease[54,68�70]. Skeletal metastases are

Table 1 Proposed DW-MRI response criteria for bone marrow lesions early after starting cytotoxic chemotherapya

Signal intensity/
extent on high
b-value images

ADC changes in relation to tumour-specific cut-off
valuesb

Possible biological explanation and interpretation

" ADC values decrease, remain unchanged or
increase but remain less than cut-off

Persistent hypercellularity ! no evidence of response

" ADC values increase with most pixels greater than
cut-off

Necrosis, hypocellularity, T2-shine through ! evidence
of response

# ADC values increase with most pixels greater than
cut-off

Hypocellularity ! evidence of response

# ADC values decrease or remain unchanged with
most pixels less than cut-off

Possible sclerotic or fibrotic reaction ! indeterminate
for response

aCriteria may not apply to non-cytotoxic therapies. The timelines for the applicability of these criteria are undefined.
bADC change needs to be judged in relation to cut-off values defined from untreated patients examined using the same imaging protocol. Cut-off
values are likely to be dependent on tumour type.
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Figure 3 Disease progression in multiple myeloma. A 69-year-old man with multiple myeloma. Disease progression
despite treatment with lenalidomide and dexamethasone. (a) Serial b900 3-MIP (inverted scale) images. There are
progressive increases in signal intensity over time despite therapy, particularly noticeable in the bony pelvis. New areas of
bony disease involvement are also seen (ribs, left femur, pelvis). There is extra-osseous soft tissue disease at the right
renal hilum and around the expanding left iliac bony lesion (arrows). General signal intensity reductions of the back-
ground bone marrow suggesting atrophy are also noted. (b) Serial whole spine sagittal T1W and T2W images. The
subtle textural change of the D3 vertebral body seen on the January 2011 (arrow) study enlarges considerably in May
2011, signifying progression of disease (middle panel arrow). Other lesions remain relatively stable in appearance apart
from some loss in height of D5. By July 2011, there is marked loss in height of D3 (last panel, top arrow) and increasing
myelomatous infiltration at L2 (last panel, lower arrow). There is a collapse of the L5 vertebral body. (c) Axial b900 (left
column) and ADC maps (right column) through the pelvis showing disease progression of the left iliac bone lesion. In
January the lesion shows high signal intensity on the high b-value image and on the ADC maps (mean ADC 1915 mm2/s;
SD 252) consistent with T2-shine through (arrows). Progressive increase in tumour signal intensity extent can be seen
with extra-osseous soft tissue tumour associated with decreases in ADC values (middle and lower rows; May: mean ADC
1133 mm2/s (SD 420) and July 1040 mm2/s (SD 285)).
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recognized by focal/multifocal or diffuse, irregular-
shaped high signal intensity regions within the bone
marrow.

In a recently published meta-analysis, the ability of WB-
DWI to improve sensitivity for bony metastasis detection
was shown to be at the expense of a slight reduction
in specificity[71]. Causes of false-positive increases in
skeletal signal intensity on DWI images include bone
marrow oedema caused by trauma[72], degenerative
joint disease, bone infarction, infection and hemangio-
mas. Other causes of false-positive focal increases in
signal intensity on DWI include isolated red bone
marrow islands within yellow marrow and treated, but
inactive metastatic lesions (T2-shine through). In order
to avoid misinterpretations arising from signal intensity
assessments alone, it is necessary to correlate high b-value
images with corresponding ADC values taking into
account morphologic features on other MRI sequences.
T2-shine though effects can be reduced by increasing the

strength of b-value gradients but this is at the expense of
increasing image noise.

There are skeletal blind spots where lesion detection is
impaired (potentially leading to false-negative results).
These include metastatic lesions in the bone marrow of
the anterior ribs and within the sternum which are some-
times relatively less conspicuous than lesions found in the
spine and paraspinal regions. At these sites, complex
incoherent motion contributes to signal losses on high
b-value images. Other causes for false-negative results in
bone marrow tumour detection include low levels of
tumour infiltration, skull vault and skull base metastases
(due to the adjacent high signal intensity of the brain)
and when metastases develop within hypercellular bone
marrow. As a general rule, lytic bony metastases are
better seen than pure sclerotic metastases because of
lower water and cellular content of sclerotic and treated
lesions[54,73]. As a result, purely sclerotic bone metastases
that are not visible on WB-DWI are not assessable for

Figure 3 Continued.
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Figure 4 Disease response in breast cancer. Successful therapy causes decreases in signal intensity on high b-value
images and increases in ADC values. A 38-year-old woman with triple negative breast cancer treated with gemcitabine
and carboplatin chemotherapy and bisphosphonates. (a) Serial b900 3-MIP (inverted scale) images (left panel before
therapy, middle panel after 3 months and right panel after 5 months of treatment). There is extensive bony metastatic
disease throughout the skeleton at baseline with a diffuse pattern of disease. Serial reductions in the bony marrow signal
intensity are observed indicating an overall excellent response to treatment. (b) Serial whole spine sagittal T1W and
T2W images. Widespread infiltration of the vertebral bone marrow is evident on T1W images. An increase in signal
intensity on T2W images is seen at several levels after 3 months of treatment. It is impossible to tell on T1W imaging
whether a response has occurred in the bone marrow. After 5 months of treatment the presence of small amounts of fat
within several vertebral bodies (arrows) is observed on T1W images consistent with a healing response. Interval loss of
vertebral height at T12 is observed. (c) Axial b900 (left column) and ADC maps (right column) showing marked
increases in ADC values of the pelvic bone marrow after treatment. The top panel shows metastatic disease involving
the sacrum and iliac bones with a pretherapy mean ADC of 823 mm2/s (SD 162) of the left iliac bone (arrows). The
middle panel, 3 months after therapy, shows a mean ADC of 1769mm2/s (SD 149) at the same level and the lower panel
after 5 months shows a mean ADC of 1926mm2/s (SD 207).
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response. The appearance of bony sclerosis within ini-
tially lytic disease in response to therapy can be used to
advantage because hyperintense lesions lose signal inten-
sity on WB-DWI. This is because many systemic treat-
ments for osteolytic disease (including denosumab and
zoledronic acid) work by inhibiting osteoclastic action,
thus converting osteolytic to sclerotic lesions[4,6,8] (and
in so doing reduce the frequency of adverse skeletal-
related events).

DW-MRI for bone marrow therapy
monitoring: mechanisms

Therapy assessments are made by observing changes
in the extent, symmetry and intensity of signal on high
b-value images, corresponding alterations in ADC values,
seeking correlations on morphological sequences. When
serial studies are being compared across time, then it is
important to normalize the signal intensity of the thick
maximum intensity projections (MIP) images for effec-
tive comparisons to be made. Such normalization may be
undertaken by setting the window level to a tissue that is

assumed to be unchanging between examinations, then
maintaining the window width between examinations.
Normalization to the kidney or brain signal is often
undertaken for this purpose. Lesion-by-lesion signal inten-
sity and ADC value changes should be interpreted using
the guidance given in Table 1. Four general patterns
of treatment-induced change can be recognized on
WB-DWI.

(1) Disease progression can be determined by obser-
ving an increased extent of previously documented
disease, as new areas of abnormal signal intensity, or
by increases in the intensity of abnormalities on high
b-value images (Fig. 3). Importantly, bony metastases
that progress can have variable changes in ADC values.
We have noted slight increases, unchanged or even slight
decreases in ADC values compared with pretherapy
values[74]. In the setting of disease progression, stability
or reductions in ADC values have rational biophysical
mechanisms (more tumour of the same type increasing in
geographic extent, and increasing tumour cell density
(greater number of tumour cells per high power field,
limited within a fixed bone marrow space).

Figure 4 Continued.
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Figure 5 Disease response in breast cancer. T2-shine through indicating successful response to therapy. A 42-year-old
woman with metastatic breast cancer treated with capecitabine and bisphosphonates. (a) Serial b900 3-MIP (inverted
scale) images. Left panel before therapy, middle panel after 3 months and right panel after 5 months of treatment.
Widespread bony metastatic disease within the vertebral column, ribs, pelvis and proximal femora. No significant
alterations in signal intensity of individual lesions are observed post-therapy despite a clinical response to treatment.
(b) Serial whole spine sagittal T1W and T2W images. An increase in signal intensity on T2W images within lesions
involving the upper dorsal vertebrae at both 3 and 5 months after therapy in keeping with an increase in water content
(arrows, middle panel). Lesions appear to have sharper margins on T1W images and have increasing fat content
consistent with a healing response (arrow last panel). (c) Axial b900 (left column) and ADC maps (right column)
showing marked increases in ADC values of the pelvic bone marrow after treatment. The top panel shows hypercellular
metastatic lesions within the sacrum (right-sided arrow) and left iliac bone (left-sided arrow) before therapy shown by
increased signal intensity and low ADC values. For example, the mean ADC of the sacral lesion is 882 mm2/s (SD 137)
before therapy. The middle and lower panels at 3 and 5 months after treatment demonstrate sustained increases in signal
intensity on b900 images but increases in ADC values are seen. The mean ADC within the sacral lesion at 3 months after
therapy is 1592 mm2/s (SD 110) and at 5 months is largely unaltered at 1461 mm2/s (SD 209).
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The causes for slight increases in ADC values have
been discussed earlier. In brief, increasing bone marrow
tumour infiltration displaces fat cells and increases vas-
cularity, thus returning higher ADC values compared
with yellow or mixed bone marrow[52�54,56,57]. The
important point to note is that increases in ADC values
with progression tend to be of small magnitude provided
that the metastatic lesions remain non-necrotic. This is in
contrast to bony metastases that respond to treatment,
which have much larger increases in ADC values[74]. A
practical way of dealing with the variable change in ADC
values in order to distinguish response from non-response
is to define an upper limit cut-off value of untreated
lesions as illustrated in Fig. 1. Readers should note that
such cut-off values are likely to be dependent on b-value
choice and probably on the tumour type.

(2) When bone marrow disease is treated successfully,
then tumour cell death results in initial increased water
diffusivity manifested as higher ADC values[38,74].

As already mentioned, the magnitude of ADC increases
are usually greater than the smaller increases in ADC
change seen in disease progression. The extent of ADC
increases may be related to the mechanism of tumour cell
death induced by the treatment given. It would be
expected that ADC increases would be greater for thera-
pies that result in tumour cell kill acting via necrosis
mechanisms rather than via apoptosis, although this
has not been definitively shown. This is because necrotic
cell death is associated with an inflammatory response
which is generally not found in tumour cell apoptosis[75].
Regardless of the mechanism of tumour cell death, in
the majority of lesions responding to therapy, signal
intensity changes on high b-value images show decreases
(Fig. 4).

(3) Occasionally when there has been a successful
response to therapy, marked rise in ADC values are
seen but no signal intensity changes are observed. In
this situation, bony lesions are of high signal intensity

Figure 5 Continued.
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and have high ADC values; this is termed T2-shine
through. This pattern has been noted particularly in
patients with multiple myeloma, lymphoma and occasion-
ally in other solid metastatic neoplasms as illustrated in
Fig. 5. The development of T2-shine through in bony
lesions should indicate successful therapy response, re-
emphasizing the need to always interpret high b-values
images with corresponding ADC maps, correlating with
other imaging findings as necessary. Sometimes, serial
follow-up studies are needed to reveal the true nature of
response by observing the time course of changes.

(4) The rarest pattern observed is the finding of
signal intensity decreases on high b-value images with
unchanging or slight decreases in ADC values. We
have observed this pattern in patients who are clinical
responders (Fig. 6) and occasionally in non-responding
patients also (Fig. 7). The biophysical mechanisms and
therapy implications for these changes early after

instituting therapy are unclear with an absence of guid-
ance in the literature. By observing changes in morpho-
logical sequences and on CT scans we have noted that
increasing calcification of metastases does lead to this
appearance (Fig. 7). Since this pattern can be seen in
responders and non-responders, these appearances
should be considered as indeterminate and currently we
resort to morphological and clinical assessments to cate-
gorize response.

As already pointed out, the patterns described above
are seen soon after instituting therapy. The long-term
changes observed on WB-DWI are not well described.
At this point it is important to recall that bone marrow
disease responding successfully to therapy ultimately
results in long-term reductions of signal intensity on
high b-value images accompanied by reductions in
ADC values. This occurs via a number of mechanisms
including removal of dead tumour cells, the development

Figure 6 Clinical response with decreases in signal intensity on high b-value images and unchanged ADC values. A 60-
year-old woman with metastatic breast cancer treated with capecitabine and bisphosphonates. (a) Serial b900 3-MIP
(inverted scale) images. Scans at intervals of approximately 2�3 months after therapy. Reductions in signal intensity in
the majority of lesions within the vertebral column and pelvis imply a response to treatment. (b) Serial whole spine
sagittal T1W and T2W images. Reduced signal intensity of several vertebral body lesions on T2W imaging on treatment
indicates reduced water content and increasing sclerosis of lesions (arrows) consistent with therapy response. (c) Axial
b900 (left column) and ADC maps (right column) through the pelvis show reducing signal intensity after therapy of the
sacral lesion and of the left iliac lesion (arrows) after therapy. ADC values remain essentially unchanged (left iliac lesion:
November 2010, mean 1168 mm2/s (SD 243); March 2011, mean ADC 1164 mm2/s (SD 200); January 2011, mean
ADC 1134 mm2/s (SD 137); June 2011, mean ADC 1192mm2/s (SD 247)).
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of bone sclerosis, re-emergence of yellow marrow, loss of
tissue water (Fig. 6), secondary myelofibrosis and
decreased tissue perfusion[32]. These water diffusivity
changes occur slowly, becoming visible many months
after starting therapy[76,77], depending on the tumour
type and type of therapy administered. Of course, if
tumour relapses within the bone marrow then signal
intensity on high b-value images has corresponding
appearances as described above (pattern 1).

DW-MRI for bone marrow
therapy assessments: literature

review

When bone marrow disease is treated successfully, then
tumour cell death results in initial increased water diffu-
sivity manifested as decreases in signal intensity on
high b-value images and increased ADC values[74,76�80].
DW-MRI of patients with leukaemia have showed
marked increase in ADC values and increased diffusivity
in areas of necrotic tissue, which suggest successful treat-
ment[79]. A recent study evaluating DW-MRI monitoring
of treatment response of vertebral metastatic deposits
showed convincing changes from pre-chemotherapy b-

value hyperintensity to hypointensity following ther-
apy[80]. This study compared DW-MRI with conventional
spin echo imaging. The T1W and T2W spin echo follow-
up images of spinal metastases revealed no significant
interval changes, indicating that they are of limited use
in the evaluations of monitoring response to therapy.
However, in patients with clinical improvement, the
corresponding b-values showed demonstrable conversion
to hypointensity on subsequent follow-up DW-MRI at
the end of therapy. Equally, patients with no clinical
improvement demonstrated persistent bone marrow
b-value hyperintensity suggestive of persistent tumour
hypercellularity causing persistent restriction of water dif-
fusion. The clear clinical value of DW-MRI over and
above that achieved by conventional T1W and T2W
spin echo sequences, perhaps best highlights the advan-
tages of adding DW-MRI sequences to routine protocols.

Conclusions

WB-DWI excels for bone marrow assessments at diagno-
sis and for therapy evaluations where it can potentially
address unmet clinical and pharmaceutical needs for
a reliable measure of tumour response. Potentially,

Figure 6 Continued.
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Figure 7 Disease progression with decreases in signal intensity on high b-value images and unchanged ADC values. A
52-year-old man with metastatic prostate cancer treated with docetaxol. (a) b900 3D-MIP (inverted scale), whole spine
sagittal T1W and T2W sequences and sagittal reconstructed CT images before therapy. There is widespread lytic and
sclerotic bony disease throughout the spine. Metastatic disease involving the pelvis, spine, proximal femora and scapulae
are seen. Marked spinal canal narrowing at L1 also. (b) b900 3D-MIP (inverted scale), whole spine sagittal T1W and
T2W sequences and sagittal reconstructed CT images 4 months after treatment. Decreases in signal intensity are seen in
the majority of lesions on b900 images and increasing bony marrow infiltration on T1W scans. Increasing sclerosis
within the vertebral bodies is seen on the CT images. (c) Right scapular images before therapy. Top row: axial STIR,
T1W and CT. Bottom row: axial ADC map, b900 and volume-rendered CT image. Metastatic disease involving the right
scapula causes bony expansion. The periphery of the lesion is highly cellular (high signal intensity on b900 image and
low ADC (mean ADC 1247mm2/s (SD 263)) with central necrosis. The lesion shows some calcification on the CT
images. (d) Right scapular images before therapy 4 months after therapy. Top row: axial STIR, T1W and CT. Bottom
row: axial ADC map, b900 and volume-rendered CT image. Reductions in signal intensity on b900 images with
unchanging ADC map appearances (mean ADC 1230 mm2/s (SD 403)). The CT study clearly demonstrates increasingly
dense calcification of the scapular lesion and bony expansion, indicating sclerotic progression of disease.
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WB-DWI could make a significant impact in the therapy
assessments of patients with metastatic breast and pros-
tate cancer as well as for patients with myeloma. Signal
intensity on high b-value images and ADC value changes
can be related to underlying biophysical properties
of skeletal metastases and therapy-induced effects. WB-
DWI findings need to be correlated with other comple-
mentary anatomic imaging techniques. Therapy response
criteria need to be established so that they can be then
be tested in prospective clinical studies that incorporate
conventional measures of patient benefit. The use of

WB-DWI has not yet been proven to impact meaningful
health outcomes in patients with skeletal metastases.
Thus, although the roles of WB-DWI in patient manage-
ment are yet to be completely defined, the technology is
certainly interesting enough to begin to pursue in the
clinic.
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