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Providing low-dimensional 
feedback of a high-dimensional 
movement allows for improved 
performance of a skilled walking 
task
Kevin A. Day1,2 & Amy J. Bastian1,3*

Learning a skilled movement often requires changing multiple dimensions of movement in a 
coordinated manner. Serial training is one common approach to learning a new movement pattern, 
where each feature is learned in isolation from the others. Once one feature is learned, we move on to 
the next. However, when learning a complex movement pattern, serial training is not only laborious 
but can also be ineffective. Often, movement features are linked such that they cannot simply be 
added together as we progress through training. Thus, the ability to learn multiple features in parallel 
could make training faster and more effective. When using visual feedback as the tool for changing 
movement, however, such parallel training may increase the attentional load of training and impair 
performance. Here, we developed a novel visual feedback system that uses principal component 
analysis to weight four features of movement to create a simple one-dimensional ‘summary’ of 
performance. We used this feedback to teach healthy, young participants a modified walking pattern 
and compared their performance to those who received four concurrent streams of visual information to 
learn the same goal walking pattern. We demonstrated that those who used the principal component-
based visual feedback improved their performance faster and to a greater extent compared to those 
who received concurrent feedback of all features. These results suggest that our novel principal 
component-based visual feedback provides a method for altering multiple features of movement 
toward a prescribed goal in an intuitive, low-dimensional manner.

Complex movements can be broken down into their constituent parts that vary over position and time in a coor-
dinated manner. Whether it is the rotation of the shoulders, hips, and torso at specific times during a golf swing 
or the flexion/extension of the knee, shoulder, elbow, and wrist joints needed to execute a free throw shot in bas-
ketball, movements on a whole-body scale require coordination on the individual joint scale. A challenge when 
trying to alter these types of multi-jointed movements is that interactions between individual joints prevent us 
from manipulating one joint in isolation without impacting the others. Indeed, the principle ‘the whole is greater 
than the sum of its parts’ applies to complex movements, as a multi-jointed movement is not simply derived from 
the summation of the motor commands necessary to control individual joints1–3. When manipulating a walking 
pattern specifically, these principles must be taken into consideration as lower-limb sagittal plane kinematics (e.g. 
hip/knee angles) are closely coupled4–6.

Previous studies have used visual feedback to allow healthy participants as well as orthopaedic and neu-
rological patients to modify specific aspects of their walking patterns7. Visual feedback relies on the real-time 
measurement (via motion capture, electromyography, force plates, etc.) of a targeted parameter and providing 
quantitative information beyond what is typically available to the user. It allows for an individual to self-correct 
abnormal features of gait8,9. For example, visual biofeedback of kinematic/kinetic parameters has been shown to 

1Center for Movement Studies, Kennedy Krieger Institute, Baltimore, MD, 21205, USA. 2Department of Biomedical 
Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA. 3Department of 
Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA. *email: bastian@
kennedykrieger.org

OPEN

https://doi.org/10.1038/s41598-019-56319-9
mailto:bastian@kennedykrieger.org
mailto:bastian@kennedykrieger.org


2Scientific Reports |         (2019) 9:19814  | https://doi.org/10.1038/s41598-019-56319-9

www.nature.com/scientificreportswww.nature.com/scientificreports/

be an effective tool for improving lower-limb mechanics in patients following total knee arthroplasty10,11, anterior 
cruciate ligament reconstruction12 and stroke13–16. Furthermore, healthy participants can use visual feedback to 
alter step length asymmetry17, foot placement18, and knee or hip flexion angles19 while walking as well as improve 
lower-limb mechanics during long distance running20,21. Still, these studies provide feedback of just one aspect 
of gait and focus only on endpoint or peak measurements without prioritizing temporal specificity. Because gait 
deficits often involve multiple abnormalities that occur at specific points in the gait cycle, it is difficult to deter-
mine which would be the most effective to target for rehabilitation. Additionally, previous studies using visual 
feedback were not concerned with how the manipulation of one aspect of gait impacted walking kinematics 
globally. To constrain these interactions, it would be necessary to provide simultaneous visual feedback of mul-
tiple aspects of walking. Delivering additional streams of visual feedback, however, comes at the cost of added 
attentional load22–24, which has been shown to hinder walking performance25–27. The purpose of this study is to 
determine how we can most effectively deliver multiple channels of kinematic information to alter a walking 
pattern in a temporally-specific manner.

A series of studies has shown that people can use multiple dimensions of kinematic information to control a 
low-dimensional external device (e.g. visual cursor, wheelchair joystick, etc)28–32. Here, we look to utilize simi-
lar dimensionality reduction principles to change multiple facets of a walking pattern simultaneously. We have 
created a novel feedback system that uses principal component analysis (PCA) to weight multiple channels of 
kinematic information and display the participant’s performance as a simple one-dimensional ‘summary’ of their 
walking pattern relative to a prescribed goal pattern. We focused on sagittal ankle position trajectories such that 
participants had to alter their kinematics along the AP and vertical axes within each stride in order to match a 
prescribed goal stride. Thus, the feedback combined four dimensions of information (i.e. two for each ankle) to 
produce a one-dimensional summary of walking performance.

To evaluate the utility of this novel feedback, we compared performance to participants who received four 
concurrent streams of one-dimensional, Cartesian-based visual feedback (i.e. one for each dimension) to learn 
the same goal pattern. Cartesian feedback is similar to conventional gait training in which a single stream of visual 
feedback contains information of one aspect of gait. We investigated the rate and extent to which healthy partic-
ipants could use these two types of feedback to alter their walking pattern with the hypothesis that reducing the 
dimensionality of the visual feedback using principal component analysis will allow for improved performance 
in this skilled walking task.

Methods
Participants.  Thirty young, healthy adults (10 per condition; PC feedback, Cartesian feedback, and PC 
match) were recruited for this experiment (15 men, 15 women; mean age ± SD: 23.5 ± 4.0 yr). All participants 
provided written, informed consent before taking part in the experiment. The experimental protocol was 
approved by the Johns Hopkins Medicine Institutional Review Board and all experiments were performed in 
accordance with relevant guidelines and regulations. All participants were free of any neurological and muscu-
loskeletal conditions.

Motion analysis.  We recorded participants’ kinematics using an Optotrak Certus motion capture system 
(Northern Digital, Waterloo, ON) as they walked on an instrumented treadmill (Woodway, Waukesha, WI) that 
allowed us to detect right and left foot contacts. The belt speed was set to 1 m/s for the entirety of the experiment. 
Kinematic data were collected at 100 Hz from 12 infrared-emitting diodes placed bilaterally on the foot (fifth 
metatarsal head), ankle (lateral malleolus), knee (lateral joint space), hip (greater trochanter), pelvis (iliac crest), 
and shoulder (acromion process; Fig. 1a).

Experimental paradigm.  Participants walked on a custom-built treadmill which was also controlled 
through Vizard. Walking speed was set to 1 m/s for all walking trials (the belts were always tied at the same speed). 
Participants were instructed to stand in the middle of the treadmill with one foot on each belt so that we could 
detect heel strikes from the force plates for visual feedback display. They wore a safety harness that was suspended 
from the ceiling to protect against the risk of falling. The harness did not provide any body weight support. While 
walking, participants were instructed to walk with their arms across their chest.

All groups experienced the same experimental paradigm that consisted of six blocks: (1) Baseline, (2) 
Familiarization, (3) No Feedback, (4) Feedback 1, (5) Feedback 2, and (6) Feedback 3 (Fig. 1b). The groups dif-
fered by the type of visual feedback given (i.e. PC or Cartesian, described below in ‘Visual Feedback’). During the 
Baseline block, participants walked naturally at 1 m/s for 2 minutes. From this baseline walking, we calculated the 
goal stride, variable weights, and metronome cadence as detailed below in ‘Goal Walking Pattern Calculation’ and 
‘Visual Feedback’. During the Familiarization block, participants walked with the visual feedback for 3 minutes 
to get accustomed to the visual display and metronome as they walked. The ‘target’ line(s) were set to the partic-
ipants’ baseline walking so that if they walked naturally, their visual feedback was close to the goal. Participants 
were informed that their performance did not matter during this block. Thus, they were free to explore the feed-
back and gain experience walking in beat with the metronome. During the No Feedback block participants were 
instructed to walk naturally in beat with the metronome. This block was designed to gather baseline performance. 
Next, participants experienced three identical, 5-minute Feedback blocks. During these blocks, participants 
responded to the visual feedback such that they had to alter their natural walking pattern toward a goal walking 
pattern to improve task performance. As the participants improved performance in the task, their walking kine-
matics progressed toward the goal walking pattern.

Goal walking pattern calculation.  The purpose of this study was to assess how to best deliver visual feed-
back containing information of multiple kinematic dimensions to instruct a new walking pattern. The desired 
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walking pattern was calculated from each participant’s baseline walking (collected during the ‘Baseline’ block) 
such that the vertical dimension of the ankle position was increased relative to baseline and the antero-posterior 
(AP) dimension of the ankle position was decreased relative to baseline (Fig. 2b,c). All kinematics were computed 
in a hip-centered coordinate system to ensure that any whole-body translation on the treadmill did not affect 
the output. We focused the goal kinematics on the swing phase (i.e. subjects had to take shorter, higher steps) 
rather than the stance phase because stance is largely constrained by the speed of the treadmill belts. To avoid 
discontinuities in the kinematics at the stance-swing transitions, the goal kinematics were calculated by applying 
a Gaussian weighted gain over the swing phase. The gains applied to the vertical and AP dimensions were 2.5 and 
0.75, respectively.

This algorithmically generated goal was used in the first condition to bias the participants’ kinemat-
ics in the direction of the goal. We refer to the participants who received this walking goal and the principal 
component-based visual feedback as the PC feedback group. It should be noted that the algorithmically gener-
ated goal proved to be difficult to fully reach. In a control condition, we tested how a separate set of participants 
performed if we gave them a more natural goal ankle trajectory instead of one that was generated algorithmically. 
We refer to this new set of participants as the PC match group. Participants in the PC match group received a goal 
pattern consisting of the average pattern of ankle kinematics that participants in the PC feedback group reached 
at the end of training in the original condition. The PC match group allowed us to observe if participants could 
use the principal component-based feedback to match an exact set of goal kinematics that we have previously 
observed from another group of healthy, young participants.

Visual feedback.  Participants received one of two forms of visual feedback designed to help them achieve 
a prescribed goal walking pattern: (1) principal component-based visual feedback that used PCA to combine 
four dimensions of kinematic information (Fig. 2a, left) into a single stream of performance feedback or (2) four 
concurrent streams of Cartesian-based visual feedback (Fig. 2a, right). Two groups (PC feedback and PC match) 
were tested using principal component based feedback while one group (Cartesian feedback) was tested using 
Cartesian-based feedback of sagittal plane ankle kinematics.

Position of the left and right ankles in the AP and vertical axes were sampled from the Optotrak software 
and fed into a custom Python program at real-time. Visual feedback was displayed using a Vizard development 
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Figure 1.  Experimental set up and paradigm visual feedback display. (a) Marker placement and general set 
up for motion capture. Left and right ankle position was recorded in the sagittal plane. (b) We calculated the 
goal walking pattern and goal cadence from the 2 minutes of baseline walking at 1 m/s. Participants were given 
3 minutes of familiarization where the goal ‘target’ line corresponded to their baseline walking. During No 
Feedback, participants were instructed to walk naturally in rhythm with the metronome but did not receive 
performance feedback. In Feedback 1–3, participants were instructed to minimize the deviation from the goal 
target line(s) by altering their walking pattern. The goal target line(s) corresponded to the modified walking 
pattern. Participants were instructed to walk in rhythm with the metronome during these blocks. Each feedback 
block was 5 minutes.
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environment (WorldViz, Santa Barbara, CA) and reflected the participants’ step-by-step deviation from the 
desired pattern. This real-time information was displayed in a simple format, such as a trace that moves in and 
out of the prescribed goal zone(s) on a screen (Fig. 2a). The feedback reflected the participants’ deviation from 
a white ‘target’ line on the TV screen and we instructed subjects to change their pattern such that this deviation 
was minimized. The visual feedback was updated upon each heel strike (i.e. two new data points per stride) and 
tracked across the TV screen so that participants had information of their current and past performance.

For participants to use the visual feedback, it was necessary to standardize their stride time. This was because 
we needed to set a length of time for the goal stride from which to compare real time performance. Thus, we 
used a metronome to standardize the participants’ walking cadence. Participants were instructed to heel strike 
in rhythm with the beat from the metronome. The goal stride time was calculated from each individual’s average 
time between successive heel strikes during baseline walking (Fig. 3a).
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Figure 2.  (a) Visual feedback display for PC feedback and Cartesian feedback. Participants were instructed to 
change their walking pattern so they minimized the distance from the target line(s). PC feedback had one target 
line while Cartesian feedback had four target lines (one for each kinematic dimension). Dashed lines around 
the target line correspond to the success zone. (b) Calculation of the prescribed goal ankle kinematics. The pink 
trace denotes the left ankle while the cyan trace denotes the right ankle kinematics. AP and vertical dimensions 
were multiplied by Gaussian gains with maximum magnitudes of 0.75 and 2.5, respectively, over swing phase. 
Cartesian feedback displayed the difference between goal and real-time kinematics, displayed as the colored 
shaded regions during mid-swing on each leg. The gray shaded regions denote where this difference was 
averaged for visual feedback display (i.e. the rewarded time windows). We ran principal component analysis on 
the goal kinematics to calculate loadings. These loadings were used to calculated a goal PC1 for the PC feedback 
as well as a real-time PC1 using the normalized real-time kinematics. PC feedback displayed the difference 
between the goal and real-time PC1, displayed as the red shaded region during mid-swing on each leg. (c) Goal 
and baseline sagittal plane ankle kinematics for the left ankle. Participants had to take shorter, higher steps to 
improve performance in both dimensions. The right ankle had an identical goal pattern.
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The principal component-based feedback contained one stream of performance feedback around one target 
line (Fig. 2a, left). The position of the feedback relative to the target line in the principal component-based feed-
back was the difference in the first principal component (PC1) of the normalized real time stride and PC1 of the 
goal stride. As such, a participant who matches the goal pattern exactly (i.e. difference of zero) would receive feed-
back on the white target line. Weights for the real time principal component were calculated by applying PCA to 
the z-scored goal stride. Importantly, these weights were calculated from a given participant’s baseline kinematics 
collected prior to training and kept constant across the entirety of the experiment so that the participants had a 
constant mapping between their change in kinematics and their feedback performance.

The Cartesian-based feedback contained four streams of performance feedback, each containing information 
specific to a given dimension, around four target lines (Fig. 2a, right). The position of the feedback relative to 
each target line in the Cartesian-based feedback was determined by the difference between each of the z-scored 
dimensions in real time and their corresponding goal dimensions (i.e. vertical and AP ankle positions).

Participants were informed of the dimensions (AP and vertical positions of their ankles) that they could 
manipulate to alter their performance. For the principal component-based feedback, participants were informed 
that it was some combination of these dimensions that determined their feedback performance. For the 
Cartesian-based feedback, participants were explicitly informed which dimension corresponded to which stream 
of visual information. Importantly, all participants were not informed of the goal pattern; therefore, improvement 
in feedback performance required the participant to explore alternative walking patterns and use the visual feed-
back to determine which patterns resulted in better or worse performance.

For both feedback types, these differences were calculated at approximately halfway through the swing phase 
of each leg and then displayed at heel strike. Thus, feedback given at right leg heel strike contained information 
from the preceding right leg swing and left leg stance phase, and vice versa for the feedback given at left leg heel 
strike. This delay corresponds to approximately ¼ of the stride cycle (i.e. 250–300 ms on average). Visual feedback 
display and calculation are shown in Fig. 2 (panels A and B).

Data analysis.  Our measure of performance can be mapped into two spaces—PC and Cartesian space—
that can be linearly transformed from one to the other using the component loadings (Fig. 2b). In each of these 
spaces, our primary outcome measure is the step-by-step difference between the current set of kinematics and 
the prescribed goal pattern. In PC space, this measure is a difference of first principal components (measured in 
arbitrary units) while in Cartesian space, this measure is a difference of sagittal plane ankle position (measured 
in millimeters). These differences are calculated and averaged over the rewarded time window (100 millisecond 
windows centered approximately around mid-swing of each leg; displayed as vertical dashed lines between 20–30 
and 70–80 percent stride in Fig. 2b). As such a value of zero for these measures represents perfect performance in 
matching the prescribed goal pattern over these time windows. We use PC space as a measure of overall perfor-
mance while we use Cartesian space to break out how individual dimensions evolve over the course of training. 
We ensured that participants were maintaining the cadence provided by the metronome by calculating stride time 
between consecutive left heel strikes.

Performance during the all blocks of the experiment was calculated by averaging over specific time periods in 
the experiment. For each of the feedback blocks, we averaged performance over the first and last 50 steps in each 
block to obtain a measure of early and late performance, respectively. Early performance was our measure of rate 
of increased performance while late performance was our measure of task proficiency at the end of each block.

To demonstrate that participants in PC match could exactly match the set of goal kinematics, we calculated 
the root mean squared error (RMSE) between the kinematics observed at the end of Feedback 3 and the goal and 
compared that to those of the PC feedback group.
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Figure 3.  (a) Stride times for PC feedback (red) and Cartesian feedback (blue) across blocks. The dashed 
lines are the group average goal stride times provided by the metronome. Data points at the end of each block 
denote the group mean ± SEM of the last 50 steps within that block. All shaded regions denote SEM. (b) Sample 
participant kinematics in the vertical dimension over training. Cold colors denote baseline/early training and 
hot colors denote late training. Participants had to use the feedback to incrementally change their kinematics 
toward the prescribed goal (dashed black line) over the course of training. The vertical shaded regions denote 
the rewarded time windows.
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Statistical analysis.  The dimensions submitted to the principal component analysis were first z-scored to 
ensure that the absolute magnitude of the input dimensions did not drive the loading values. We used a typical 
principal component analysis which consists of calculating the eigenvectors of the covariance matrix of the nor-
malized input data. We did not rotate the input data. For visual feedback, we selected the first principal compo-
nent (i.e. the eigenvector that contains that highest percentage of variance from the input data) and calculated the 
difference between current and goal principal components.

To identify differences between groups in their ability to match the goal kinematics during training, we per-
formed mixed design, repeated-measures ANOVA with ‘block’ (dimension 7) and ‘group’ (dimension 2) main 
factors. ‘Block’ was composed of performance during late No Feedback block and early and late performance 
from each feedback block. To observe differences between groups during specific blocks of training, we per-
formed post-hoc analysis on the block-group interaction. Bonferonni correction for multiple comparisons was 
used when necessary. In addition, we used paired sample t-tests to determine which block subjects within each 
group reached the outer-bound of successful task performance (i.e. dashed lines in Fig. 2a). This outer-bound was 
selected based on the variability observed during baseline walking in pilot testing. These analyses were performed 
in both PC and Cartesian space. Similar mixed-methods repeated measures ANOVA design was used when 
analyzing group and dimension effects on loading values between PC and Cartesian as well as root mean squared 
error values for PC and PC Match. For repeated-measures ANOVA, we performed Mauchly’s test of sphericity 
and used the Greenhouse-Geisser correction of degrees of freedom if sphericity was violated. To ensure that par-
ticipants remained within 60 ms (approx. 5 percent) of the prescribed stride cadence, we performed right-tailed, 
one-sample t-tests on the absolute difference between participants’ baseline stride times and the metronome 
beat interval against a null hypothesis of mean 60. Because this task relies on exploration of alternative walking 
patterns to achieve task success, we considered that it might be possible that subjects did not explore beyond their 
natural walking pattern. Thus, we used outlier analysis to exclude participants from analysis who continued to 
walk naturally and did not improve their performance over the course of the three feedback blocks. This analysis 
eliminated one subject from each of the PC, Cartesian, and PC match groups. All analyses were performed using 
SPSS 25.0 (IBM, Armonk, NY) and α–level was set to 0.05.

Results
Figure 3a displays the stride times during all blocks of the experiment. Participants in the PC and Cartesian 
groups were able to stay within 60 ms of this prescribed walking cadence during the early and late epochs of all 
blocks of the experiment (all p > 0.832). Thus, we are confident that participants were able to follow instructions 
and complete the task.

To improve task performance, participants had to incrementally alter their walking pattern from their natural 
walking (example participant data for the vertical ankle movement shown in Fig. 3b) and use the visual feedback 
to determine if their stride-to-stride change resulted in improved or declined performance.

Figure 4a displays our primary measure of performance (mean difference from goal PC1) for PC and 
Cartesian groups across all feedback blocks. Baseline performance did not vary between PC and Cartesian groups 
(p = 0.976; see Fig. 4a, baseline late). For analysis, we binned performance into early and late epochs (first and last 
50 steps) for each feedback block. Early and late epochs, in addition to baseline measurements, were submitted to 
mixed-methods repeated-measures ANOVA with block and group main factors. Our analysis reveals that groups 
improved performance across feedback blocks (F6, 96 = 60.89, p < 0.001). Thus, participants were able to use the 
visual feedback (either PC or Cartesian) to approach the prescribed walking pattern.

Interestingly, PC and Cartesian groups’ performance varied differently across time epochs as revealed by a 
significant block*group interaction (F6, 96 = 3.23, p = 0.006). Analysis revealed that the PC group improved perfor-
mance at a faster rate than the Cartesian group during Feedback 1 (p = 0.006; see Fig. 4a, FB1 early). Additionally, 
the PC group was closer to the goal at the end of Feedback 2 and 3 (p = 0.013 and p = 0.020, respectively; see 
Fig. 4a, FB2 late and FB3 late). Furthermore, performance in the PC group did not differ from −0.25 a.u. (defined 
as the outer-bound of task success) while the Cartesian group was not able to reach task success (t8 = −5.28, 
p < 0.001; against a null hypothesis with mean −0.25). Therefore, participants using the PC feedback demonstrate 
faster and more complete learning of a prescribed goal pattern during one session of training.

Information on the first principal component (PC1) for each group is summarized in Fig. 4b,c. PC1 in both 
groups accounted for approximately 62 percent of the variance with no difference between the groups (Fig. 4b; 
t16 = 0.35, p = 0.750). Meanwhile, group average absolute loadings for both groups were approximately 0.67 for 
vertical dimensions and 0.21 for AP dimensions (Fig. 4c). Mixed-methods repeated-measures ANOVA with 
dimension and group main factors revealed no group effect on loadings (F1, 16 = 0.68, p = 0.422). Although there 
was a dimension*group interaction (F1.98, 31.66 = 5.05, p = 0.013), which is driven by significant pairwise differences 
between the vertical dimensions on both the right (p = 0.006) and left (p = 0.005) sides. Still, the mean pairwise 
difference of the loadings in these dimensions is only 0.019 and 0.016, respectively. The statistical significance is 
largely driven by the small standard error within these groups (~0.005). Given that these differences in loadings 
only weigh the respective dimensions by 1 to 2 percent differently, we were not concerned that this difference 
drove our performance effect in PC space (Fig. 4a). Indeed, subsequent analysis of the kinematics reveals that 
these groups did differ in their walking pattern.

We were interested in understanding which dimensions were responsible for the difference in performance 
observed in PC space. Figure 5 shows the deviation of each dimension from the prescribed goal kinematics 
for both groups over the course of the experiment. Of note, both groups performed the same at baseline for all 
dimensions (all p > 0.62).

The observed difference in performance in PC space was largely due to the PC group’s ability to correct their 
ankle trajectory in the vertical dimension more rapidly (i.e. as measured in FB1 early) and completely (i.e. as 
measured in FB3 late) than the Cartesian group. Analysis revealed a significant block*group interaction for the left 
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vertical dimension (Fig. 5a; F6, 96 = 3.23, p = 0.006). While analysis of the right vertical dimension did not yield a 
significant block*group interaction (Fig. 5b; F2.95, 47.15 = 1.36, p = 0.266), we did observe some epoch-specific pair-
wise differences between groups that contributed largely to the effects seen in PC space. Specifically, we observed 
a difference in performance in the right vertical dimension during both FB1 early (Fig. 5b; p = 0.022) and FB3 late 
(p = 0.019). These pairwise differences, along with the aggregate differences in other dimensions, are what led to 
the group differences observed during these epochs in PC space (Fig. 4a).

We observed that participants receiving PC feedback were able to more closely match the goal kinematics 
in the AP dimensions throughout the experiment (Fig. 5c,d). We observed several epoch-specific differences 
between groups in these dimensions. Specifically, PC showed improved performance relative to Cartesian for the 
left ankle AP dimension in FB1 late (p = 0.029), FB2 early (p = 0.050), and FB3 early (p = 0.049) (Fig. 5c) as well 
as for the right ankle AP dimension in FB1 late (p = 0.048) (Fig. 5d).

We then explored which dimensions of the task enabled the PC group to outperform the Cartesian group by 
the end of training (i.e. FB3 late). PC feedback’s level of performance at the end of feedback 3 was statistically 
indistinguishable from the outer-bound of task success in all four kinematic dimensions. The Cartesian group 
achieved task success in the AP dimensions, but did not achieve task success for the vertical dimension on both 
the left (p = 0.002) and right side (p = 0.001). Figure 6 displays sagittal left (panels A–C) and right (panels D–F) 
ankle kinematics at the end of training (FB3 late) for PC and Cartesian groups. The bolded regions of the trajec-
tory in Fig. 6a display the portion of the left ankle trajectory within the time window (i.e. mid-swing) in which the 
participants receive feedback of their performance. Individual dimensions within this time window are displayed 
in Fig. 6b,c within the gray, shaded region between 70 and 80 percent stride. Similar information is conveyed in 
Fig. 6d–f for the right ankle with right mid-swing located between 20 and 30 percent stride in Fig. 6e,f. Notably, 
the PC group kinematics more closely match those of the prescribed goal pattern, particularly in the vertical 
dimensions.

Although participants in the PC group were able to more closely match the goal kinematics by the end of train-
ing, we noticed that the trajectories did not perfectly match the given goal, particularly outside of the rewarded 
time window (compare red traces to pink traces in Fig. 6).We considered that the original, algorithmically gener-
ated goal may have been too difficult to perform. Thus, we wanted to test if the imperfect performance in the PC 
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Figure 4.  Comparison of group performance in PC space. (a) Display of mean difference from goal PC across 
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Data points at the end of each block denote the group means ± SEM of the last 50 steps for the given block. The 
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these early and late epochs are displayed in the bar graphs below the time series. *Denotes a between-subject 
difference (p < 0.05) while # denotes a non-significant difference (p > 0.05) between performance during that 
epoch and the outer-bound of task success (i.e. 0.25 a.u.). (b) Percent variance explained by the first principal 
component (i.e. goal PC1) for PC feedback (red) and Cartesian feedback (blue). (c) Mean absolute loadings for 
each kinematic dimension for PC feedback (red) and Cartesian feedback (blue). These loadings were calculated 
from the normalized goal kinematics. *Denotes a between-subject difference (p < 0.05) and all error bars 
denote SEM.
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feedback group was a product of the visual feedback itself or our selected goal walking pattern. Accordingly, we 
tested an additional group of participants—PC match—which received the identical feedback as PC but now had 
a goal pattern composed of the sagittal plane ankle kinematics observed in the PC group at the end of Feedback 3 
(red traces in Fig. 6). In contrast to the algorithmically calculated gained up/gained down goal used previously, we 
know that young healthy participants have and can achieve this exact set of kinematics on the treadmill.

We found that PC Match were able to use the PC feedback to more closely match their respective goal pat-
tern than the PC group (Fig. 7). Specifically, mixed-methods repeated-measures ANOVA revealed a significant 
between-subject effect of group (F1, 16 = 16.97, p = 0.001) as well as a significant group*dimension interaction (F1.60, 
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a non-significant difference (p > 0.05) between performance during a given epoch and the outer-bound of task 
success; determined by a paired t-test between a given participant’s outer-bound and performance during FB3 
late. These are not displayed for the AP dimensions as performance is always within the success zone.
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25.63 = 7.46, p = 0.005) on RMSE (Fig. 8). Post-hoc analysis revealed pairwise differences between groups’ RMSE 
for the left vertical dimension (p < 0.001) and right vertical dimension (p = 0.001). These results suggest that the 
imperfect performance observed in the PC group was due to our selection of goal kinematics. Thus, given an 
appropriate goal, PC feedback can be used to teach an exact set of kinematics.

Discussion
In this study, we have shown that more information is not necessarily better when using visual feedback to achieve 
a modified walking pattern. The participants in this study were able to use a single stream of PC information 
to change multiple features of their gait toward the prescribed goal pattern and outperformed those receiv-
ing Cartesian-based information. Specifically, we found that healthy, young participants could use the princi-
pal component-based visual feedback to learn a prescribed goal pattern at a faster rate and more completely 
than those who received concurrent feedback of all dimensions. These results suggest that this novel principal 
component-based visual feedback can be used as a straightforward summary of walking performance that enables 
us to alter multiple aspects of gait toward a given goal pattern. Our findings demonstrate that this novel approach 
could be promising for rapidly and intuitively teaching persons with pathological gait how to simultaneously 
correct multiple gait abnormalities.

PCA is a commonly used algorithm when studying movement. For example, it has been used to charac-
terize walking features33–36 or map high dimensional movement to low-dimensional control of a device (i.e. 
body-machine interfaces)28–32. Here we used PC-weighted feedback to simultaneously teach participants multiple 
aspects of movement toward a prescribed movement pattern. This is novel as we are not aware of any work that 
has previously used this approach. PC feedback offers specific advantages. Using PCA to reduce the dimensional-
ity of visual feedback presents a solution to the high-dimensionality of learning a new walking pattern. Improved 
performance using this feedback requires concurrent improvement in multiple kinematic dimensions. For exam-
ple, a subject that progresses toward the goal pattern in one dimension but experiences an equal and opposite 
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by the end of training. The bolded region on each trace denotes the kinematics during the rewarded time 
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dimension. (b) Time-series kinematics for the left ankle AP dimension. Kinematics are aligned to left heel strike 
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this dimension. (c) Time-series kinematics for the left ankle AP dimension. The gray shaded region corresponds 
to the rewarded time window during mid-swing for this dimension. Panels (d–f) contain the same information 
as (a–c) but for the right ankle.
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decline of performance in a different, equally-weighted dimension will not receive rewarding feedback for that 
particular set of kinematics. Thus, PC feedback constrains unwanted changes in kinematics while rewarding a 
change in walking pattern toward the prescribed goal on a whole-gait level. Additionally, PC feedback allows 
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for simplicity of feedback such that participants can respond to an intuitive, low-dimensional form of feedback. 
They can simultaneously receive feedback of multiple aspects of their walking pattern without having the added 
attentional load of multiple streams of visual information.

While both groups changed their walking pattern toward the prescribed goal pattern, the current results 
show participants receiving PC feedback displayed a faster and more complete change in performance than those 
receiving visual feedback containing four concurrent streams of kinematic information. Our primary measure 
of performance is the step-by-step difference from goal in PC space as this metric incorporates the aggregate 
performance from the individual weighted kinematic dimensions. This metric can be considered a standardized 
deviation from the prescribed goal pattern on a whole-gait level. We were able to see differences between PC feed-
back and Cartesian feedback when comparing single sessions of training. Thus, PC feedback has good potential 
for training a new set of walking kinematics more effectively than Cartesian feedback.

We believe that PC feedback allowed for more rapid improvement of performance for two reasons: 1) con-
densing the visual information to a single stream of visual information reduces the attentional demands of the 
task and 2) the PC feedback preferentially up-weighted the most important features of movement that required 
change to progress toward the walking goal. Previous studies have shown that motor performance declines with 
increased attentional demands25–27. PC feedback not only reduced the number of streams of visual information 
that the participants were required to attend to, but also uses a weighted sum to produce a single stream of 
information. Participants receiving the PC feedback are motivated (via their performance gains) to preferentially 
improve the dimensions that are more heavily weighted. That is, an improvement (in millimeters) of a dimension 
with a higher weighting produces a more significant performance gain than an equal improvement of a dimension 
with a lesser weighting. On the contrary, participants who received Cartesian feedback did not have access to this 
weighting and changes in all dimensions resulted in equal performance gains when fed back to the participant. 
This advantage of PC feedback is demonstrated when comparing the improvement in the vertical dimensions of 
the ankle trajectory. These vertical dimensions were weighted more heavily than the AP dimensions (Fig. 4c) and 
showed the most differential improvements across feedback types (Fig. 5a,b).

A key attribute of both feedback types in this study was temporal specificity of performance feedback. For 
participants to gain the most information from the visual feedback, we had to ensure that they could meaning-
fully assign a change in feedback performance to a change in their kinematics. For this reason, we chose to display 
two discrete measures of performance per stride (i.e. at left and right heel strikes) that contained information 
during the most informative portion of the gait cycle needed to reach the goal pattern (i.e. mid-swing). As such, 
the visual feedback relayed the performance of the step immediately preceding its presentation. This temporal 
specificity introduces an additional constraint to participants’ performance that most other gait retraining studies 
do not consider. A majority of studies using visual feedback to alter gait focus on scanning the entire gait cycle for 
either peak or endpoint kinematics10,15,17–20,37. While participants may be able to improve their performance using 
this feedback, gait deficits are often temporally specific within a given stride38,39. Thus, we wanted to address not 
only the extent to which they are adjusting their walking pattern but also constrain when they are making these 
adjustments.

The findings presented here also highlight the importance of selecting an appropriate goal pattern. In our first 
condition, we demonstrate that participants can use PC feedback to improve performance within the selected 
time-windows (Figs. 4a and 5). However, we observed imperfect performance in portions of the swing phase out-
side of the time-windows (Fig. 6). Indeed, our original intention was to create an algorithmically generated goal 
to bias participants in the direction of the goal kinematics, not necessarily to achieve a perfect match. However, 
we contend that our original, algorithmically generated goal required coordination at the hip and knee joints that 
was not easily attained, which hindered achievement of the exact set of ankle kinematics over the entire stride 
cycle. To prove that the observed limit in performance in the original PC group was due to goal selection and not 
a product of the feedback, we observed a second condition in which our goal kinematics were adjusted to a more 
natural ankle trajectory (Fig. 7). Subsequently, participants were able to use PC feedback to more closely achieve 
the goal over the entire gait cycle (Fig. 8). Thus, given an appropriate goal walking pattern, participants are capa-
ble of using PC feedback to match an exact set of kinematics.

A number of previous studies have used visual feedback to alter sagittal plane ankle trajectories40–44. The 
novelty of this study lies in the type of feedback used to bias the participants in the direction of the goal kine-
matics. We selected these kinematic features as a method for testing PC-based feedback in a healthy population. 
Ultimately, PC feedback can be used for any variety of kinematic features in any desired plane of movement. The 
only necessary ingredient is a goal template for the chosen kinematic features that differs from the current move-
ment. Given the goal template, the feedback will algorithmically weight the most relevant features of movement 
and feedback the performance in an intuitive, summary format. We believe this feedback has applicability to a 
wide range of fields—from motor rehabilitation to athletic performance.

While this study reveals promise in PC feedback as a viable method for teaching multiple temporally-specific 
aspects of walking, there are some limitations. Because we did not test for participants’ ability to retain the modi-
fied walking pattern, we are hesitant to term their improved performance ‘learning’. Additionally, this study does 
not test for the generalization of this modified pattern to other walking patterns or other environmental contexts 
(e.g. overground). Many past studies have described using visual feedback to modify gait as skilled locomotor 
learning41,42,44,45. Our results and methodology compare favorably to these past studies; thus, we can best describe 
our task as a skilled motor task. While participants can use PC feedback to improve task performance, more 
studies are needed to test for the long-term retention and generalization of the modified walking pattern for us 
to confidently conclude PC feedback induces learning. Indeed, our goal for this study was to use the feedback to 
increase performance using a variety of visual feedback types and compare performance across feedback types.

We think that these results have potential implications for both healthy and pathological movement. We have 
created a novel visual feedback system for teaching multiple aspects of modified walking pattern in an intuitive, 
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low-dimensional way. The current results demonstrate how we can more effectively deliver multiple streams 
of kinematic information for the users to change their walking patterns toward a prescribed goal. Thus, if we 
have a high-dimensional, coordinated movement we would like to train, PC feedback can bias users toward that 
movement in a low-dimensional, intuitive way. For healthy movement, this could mean training a more efficient 
running style, a modified golf swing, or altered free-throw shooting mechanics, among others. Further, if we 
consider gait disorders that contain multiple kinematic abnormalities, PC-based feedback may present a viable 
method for teaching a new set of kinematics toward a more ‘healthy’ gait pattern. Consider, for example, a patient 
with stiff-knee gait following stroke. Beyond decreased knee flexion, stiff-knee gait typically presents with mul-
tiple kinematic abnormalities such as hip circumduction, vaulting, or pelvic tilt46,47. PC-based feedback offers a 
method for not only addressing the primary deficit (i.e. decreased paretic knee flexion) but also simultaneously 
addressing the accompanying deficits/compensatory movement. In addition, this feedback offers a method for 
algorithmically weighting patient-specific features of gait. Given a set of baseline kinematics, the principal com-
ponent analysis will produce a set of weights that are appropriate for a given individual, thus accommodating the 
heterogeneity that is present in pathological movement. Ultimately, we aim to apply these findings to the rehabil-
itation of those with gait disorders.

Data availability
The datasets analyzed during the current study are available from the corresponding author on reasonable 
request.
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