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Evaluating Physiological Dynamics
via Synchrosqueezing: Prediction

of Ventilator Weaning
Hau-Tieng Wu∗, Shu-Shua Hseu, Mauo-Ying Bien, Yu Ru Kou∗, and Ingrid Daubechies

Abstract—Oscillatory phenomena abound in many types of sig-
nals. Identifying the individual oscillatory components that consti-
tute an observed biological signal leads to profound understanding
about the biological system. The instantaneous frequency (IF), the
amplitude modulation (AM), and their temporal variability are
widely used to describe these oscillatory phenomena. In addition,
the shape of the oscillatory pattern, repeated in time for an oscil-
latory component, is also an important characteristic that can be
parametrized appropriately. These parameters can be viewed as
phenomenological surrogates for the hidden dynamics of the bio-
logical system. To estimate jointly the IF, AM, and shape, this paper
applies a novel and robust time-frequency analysis tool, referred
to as the synchrosqueezing transform (SST). The usefulness of the
model and SST are shown directly in predicting the clinical out-
come of ventilator weaning. Compared with traditional respiration
parameters, the breath-to-breath variability has been reported to
be a better predictor of the outcome of the weaning procedure. So
far, however, all these indices normally require at least 20 min of
data acquisition to ensure predictive power. Moreover, the robust-
ness of these indices to the inevitable noise is rarely discussed. We
find that based on the proposed model, SST and only 3 min of respi-
ration data, the ROC area under curve of the prediction accuracy
is 0.76. The high predictive power that is achieved in the weaning
problem, despite a shorter evaluation period, and the stability to
noise suggest that other similar kinds of signal may likewise benefit
from the proposed model and SST.

Index Terms—Heart rate variability (HRV), instantaneous fre-
quency, physiological dynamics, respiratory rate variability (RRV),
synchrosqueezing transform, ventilation weaning prediction.
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I. INTRODUCTION

B IOLOGICAL signals can contain a wealth of information.
In particular, to evaluate a person’s physiological condi-

tion we can extract information from a variety of biological
signals such as ECG, respiratory signals, blood pressure, and
circadian rhythm [1]–[8]. In some cases, this information is
easy to read and interpret, in others, it is less accessible, and
more sophisticated approaches are needed to extract the infor-
mation. Many of the measured signals are oscillatory, and one
particular and common technique is to focus on the oscillatory
features. The fundamental quantity describing the oscillation is
its period, which is defined to be the time needed for an ob-
server to observe a “complete and intact oscillation”; this can
be expressed by the frequency, which qualitatively is the inverse
of the period, that is, it gives the number of oscillations per
unit time period. For example, the periods of the ECG signal,
the respiratory signal, and the circadian rhythm are about 1 s,
5 s, and 24 h, corresponding to 1 Hz, 0.2 Hz, and 11.6 mHz,
respectively [2]–[5]. In recent years, growing evidence suggests
that information extracted from biological signals with oscil-
latory features has diagnostic and prognostic value in various
diseases [1], [2], [4]–[6], [9], [10].

Mathematically, frequency analysis is typically studied via
the Fourier transform when the signal can be assumed to be
stationary. However, it has been long observed that the station-
arity assumption is too restrictive for physiological signals, and
more information of the physiological system can be extracted
if one allows time dependence in the frequency or period. For
example, the variability of the time intervals between sequential
heart beats, or heart rate variability (HRV) [2], [4], observed in
ECG signals, and the variability of the time intervals between se-
quential breath intakes, or respiratory rate variability (RRV) [3],
[10]–[16] are well known to be related to physiological dynam-
ics. Accurate extraction of this type of time-varying information
improves diagnostic accuracy and treatment quality [3], [4], [9],
[10] and much effort has been put on this direction. In general,
time-varying frequency is not measured directly, but is inferred
from the behavior, in time, of the oscillation-to-oscillation inter-
vals. A well-known example is the analysis of R-peak to R-peak
intervals (RRI) to reveal HRV information [4], [9], [17]. Many
techniques have been introduced, including spectral methods
and nonlinear dynamical analysis, such as Poincare map, en-
tropy analysis, fractal analysis, to analyze these oscillation-to-
oscillation intervals [10]–[17].

These established analysis techniques have at least the fol-
lowing three limitations, however, in their use for the study of
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Fig. 1. Typical recorded respiratory signal from an intensive care unit patient
with support from a ventilator. The arrows with a mark R indicate times in the
signal where it would be difficult to identify a basic oscillation if only peaks
were taken into consideration; the arrow with a mark B indicates a brief machine
recalibration; the arrow with a mark G indicates an invalid respiratory trigger.
This patient succeeded in ventilator weaning.

physiological signals. A first limitation is the (relatively) large
number of oscillations that must be observed. For example, for
analysis of respiratory signals, at least 300 and 100–1000 os-
cillations are needed for methods that use a Poincare map [10],
[14], [15] or approximate entropy [12], [18], respectively. It is
feasible to collect many points for the ECG signal, since this
requires only a continuous recording for about 5 min, a reason-
able length for a bedside observation. For signals that function
on larger time scales than the ECG signal, the story is different.
For example, for respiratory signals, we normally need at least
20 min or longer to collect the necessary amount of data, which
is usually difficult in certain clinical settings such as patients in
intensive care unit [10], [12], [14]–[16] or newborns [18]. The
situation would be even worse if we wanted to analyze larger
time-scale physiological signals such as circadian rhythm [5],
[7].

The second limitation is that it is not always straightforward
to determine the oscillation-to-oscillation time series from the
given oscillatory signal. Recall that this determination depends
on being able to isolate individual oscillations, which requires
the identification of the complete repeating basic pattern and,
possibly, landmarks within the pattern. Given a suitable defini-
tion of this repeating pattern, the oscillation-to-oscillation time
series is determined by finding the landmarks for each oscilla-
tion. For example, for the ECG signal, the pattern is related to
the electrophysiological activity of a normal heart beat and the
landmark is defined to be the R peak, and the RRI-time series is
based on the R-peak detection [4], [9], [17]. For other physiolog-
ical signals, it is not always easy to define a basic “oscillation” or
a “landmark,” even for healthy subjects. For example, although
we can provide a definition for respiratory signals, in practice
determining the landmarks is not easy, specifically when there
is invalid or doubly triggered respiration (see Fig. 1). This diffi-
culty can be mitigated to some extent by noise removal or noise
reduction algorithms [17], but even then no reliable determina-
tion of the “true” landmarks can be guaranteed. Sometimes it
is hard to even provide a universally accepted definition of a
landmark, e.g., for the electroesophagographic signal.

The third limitation is the overreduction of the information
inside the physiological signals by retaining only the oscillation-
to-oscillation time series. For example, respiratory signal infor-
mation is hidden in the time varying amplitude of the ECG

signal [19], which is lost in the RRI time series. Indeed, the ba-
sic pattern of the oscillation of the ECG signal itself also varies
according to time due to the cardiac axis rotation induced by the
respiration and other effects.

To address these limitations, we propose in this paper a de-
scriptive model featuring a more fine-grained description of the
oscillatory physiological signal than given by the time intervals
between sequential oscillations. The model is characterized by
the wave-shape function, which is defined to replace the def-
inition of an oscillation and the landmark, the instantaneous
frequency, the variability of which is defined to be a proxy
for the physiological dynamics, and the amplitude modulation,
which is aimed to capture more physiological information. The
companion algorithm, referred to as the synchrosqueezing trans-
form (SST), is introduced to provide an accurate estimation of
the instantaneous frequency and the amplitude modulation [20],
[21].

We recently reported [14], [15] that small variabilities of
respiratory parameters including rate and flow are associated
with a high incidence of weaning failure in intensive care unit
patients, and these variabilities may serve as reliable predictors
for weaning patients from mechanical ventilation. As an testbed
of the proposed model and algorithm, we analyze the respiratory
signals collected from patients in one of our recent studies [15].
We show that the variation of the recorded respiratory signal,
monitored for as brief a period as 3 min, together with the tidal
volume information, can be used to define a weaning index
(WIN) that predicts weaning process outcome with a success
rate quantitatively as high as with the area under curve (AUC)
of 0.76 when analyzed by the receiver operation characteristic
(ROC).

II. MODEL AND METHODOLOGY

A. Model

In this section, we provide a phenomenological model de-
scribing general oscillatory physiological signals. A physiolog-
ical system is closely linked with a variety of other physiolog-
ical systems that interact in complex ways; it is well known
that, for example, chemical set points and metabolic demand
play a role in respiration patterns [3], [15]. Our treatment of
these signals will be purely phenomenological; that is, the pa-
rameters and indices we will derive from observations of the
physiological signal will be based solely on these signals them-
selves, and not on explicit, quantitative models of the underlying
mechanisms. We will show by example in the next section that
these parameters and indices in the model contain information
that can provide insight into the functioning of the underlying
physiology.

The major characteristic pattern of an oscillatory physiologi-
cal signal is that it is a (fairly) periodic phenomenon; we there-
fore model it (without noise) as

f(t) = A(t) s(2πφ(t)) (1)

where s(·) is a continuously differentiable periodic function we
call the wave shape function, s(t + 2π) = s(t) for all t; it is an
oscillating function that satisfies some mild technical conditions
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[22] (Note that to make the discussion clear, we assume that the
signal has just one component, unlike [22], where superpositions
of several components were considered.) We call the derivative
φ′(·) of the phase function φ(t) the instantaneous frequency of
f ; we require it to be positive, but it need not be constant; we
allow it to vary in time, as long as the variations are slight from
one period to the next, i.e., |φ′′(t)| ≤ εφ′(t) for all t, where ε is
some small, preassigned number. Likewise, the amplitude A(t)
should be positive, but is allowed to vary slightly as well, i.e.,
|A′(t)| ≤ εφ′(t). In summary, we have the following conditions
for all t ∈ R:

A(t) > 0, φ′(t) > 0, |A′(t)| ≤ εφ′(t), |φ′′(t)| ≤ εφ′(t).
(2)

For the identifiability problem raised in this model and hence
the terminologies instantaneous frequency and amplitude mod-
ulation, we refer the reader to [21] for the discussion.

In reality, the recorded physiological signal g(t) is contami-
nated by noise or measurement error, and we model the deviated
physiological signal as [21], [23]

g(t) = f(t) + σ(t)Φ(t) (3)

where Φ(t) is a generalized stationary random process with fi-
nite variance and σ(t) is a slowly varying smooth function which
capture the heteroscedasticity of the error. Although the possible
noise appearing in the medical signal is versatile, our model cov-
ers a large portion of it, for example, the time-dependent noise,
the Poisson noise and even “slightly” nonstationary noise. Note
that the commonly used Gaussian white noise model is when
σ(t) = 1 and Φ(t) is the derivative of the Brownian motion.

B. Methodology

Given the model (1) for the oscillatory physiological signal
f(t), we want to capture the time-varying quantities of the sig-
nal, including the instantaneous frequency φ′(t) and the ampli-
tude modulation A(t), when the signal is contaminated by noise
as the model (3). It is well known that the continuous wavelet
transform (CWT) and short time Fourier transform (STFT) pro-
vide profound information about these time-varying quantities,
in particular the instantaneous frequency, but accurate extraction
via these methods remains an issue, even after many years of re-
search. Reallocation is a technique widely employed in order to
get accurate estimates of the instantaneous frequency [24]–[26].
In general, these methods reallocate the wavelet coefficients or
STFT coefficients according to some “regrouping” rule, making
it possible to read the instantaneous frequency from the resulting
time-frequency plane representation.

Synchrosqueezing transform (SST) is a recently introduced
novel reallocation technique introduced in [27] in order to ana-
lyze speech signals; it was theoretically proved to enjoy several
nice properties, useful in our analysis of [20]–[23]. Specifically,
the instantaneous frequency φ′(t) and the amplitude modulation
A(t) can be accurately estimated and the estimation does not de-
pend on whether or not the wave-shape function is a cosine [22];
moreover, the SST is robust to several different types of noise,
like the white or colored Gaussian noise [23] or almost station-
ary generalized random process [21]. Furthermore, the analysis

result is adaptive to the data in the sense that the error is de-
pendent only on the first three moments of the chosen mother
wavelet and its derivative instead of the profile of the mother
wavelet. We summarize the reallocation technique and SST in
Appendix A and its numerical implementation in Appendix B.1

For the sake of convenience, in what follows we shall use
the acronyms SSTIF (for SynchroSqueezing Transform-derived
Instantaneous Frequency) to refer to the SST-estimated instanta-
neous frequency, and SSTAM (SynchroSqueezing Transform-
derived Amplitude Modulation) to refer to the SST-estimated
amplitude modulation.

III. TESTBED: VENTILATOR WEANING PROBLEM

Making a weaning decision for a patient on a ventilator is
clinically an important issue. The RRV has proved to be helpful
in predicting the outcome of weaning intubated patients from
the ventilator [14]–[16]. Extended intubation has many nega-
tive side effects, such as an increased risk for infection [28],
[29]; ideally physicians seek to extubate as soon as medically
possible. Yet, weaning too early carries risk as well: reintuba-
tion leads to stress to patients or a higher mortality rate [28],
[29]). It is thus important to decide accurately when patients
can be weaned from the ventilator. To increase the weaning suc-
cess, the present common practice is to conduct spontaneous
breathing trials before a weaning attempt; the final weaning de-
cision is based on the patient’s performance during spontaneous
breathing trials, characterized by parameters derived directly
from the respiration signal, such as the rapid shallow breathing
index (RSBI) [30], and subjective evaluation by the clinician.
Unfortunately, weaning failure still occurs in a significant per-
centage of patients who are judged ready-to-wean [28], [29].
Recently, several RRV-based predictors have been proposed to
increase the rate of success weaning in this context; these newer
predictors are reported to have a higher accuracy than RSBI
in predicting weaning success or failure [10], [14]–[16]. Since
the oscillation-to-oscillation time series is the focus of RRV
analysis, observation of the respiration signal usually takes at
least 20 min to guarantee highly significant prediction accu-
racy [13]–[15]. In addition, these more accurate RRV-based
predictors rely on accurate timing of breath intake “peaks”, and
are thus likely subject to stability issues caused by the inevitable
noise.

To mitigate these limitations, we analyze the respiratory sig-
nal by the approach proposed in Section II. First, we model the
respiratory signal R(t) (without noise) as

R(t) = A(t)s(2πφ(t)), (4)

where s(·), A(t), and φ(t) satisfy (2). Fig. 2 illustrates the role of
the different constituents of f(t) modeling the respiratory signal.
In reality, the recorded respiration signal Resp(t) is noisy, and
we model it as

Resp(t) = R(t) + σ(t)Φ(t) (5)

where σ(t)Φ(t) satisfies the same conditions as that of (3).
We apply the methodology described in Section II to directly

1The MATLAB code is available in http://sites.google.com/site/hautiengwu/.
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Fig. 2. (Modeling the respiration signal) Panel (a) plots a cosine function,
an overly simplified model of the respiration; moving to the right shows
enrichment of this model by allowing nonconstant instantaneous frequency
(b) amplitude modulation (c) and a more complex wave shape function (d). The
(nonconstant) instantaneous frequency and the amplitude modulation function
should capture how the oscillations vary in time, independent of whether the
basic shape function is a simple trigonometric function or not.

Fig. 3. Top row: the result of the Synchrosqueezing transform (SST) of the
signal in Fig. 1 with the SSTIF (dashed curve) superimposed; bottom row:
the 3-D version of the SST result. The instantaneous frequency corresponds to
the dominant curve in the SST, and the amplitude modulation corresponds to
the intensity upon the dominant curve (visible in the 3-D graph). Indeed, the
spacing of respiration cycle is reflected by SSTIF: closer spacing corresponds
to higher SSTIF values, and wider spacing to lower SSTIF values; the darker
curve corresponds to higher SSTAM values, and lighter curve to lower SSTAM
values. In conclusion, through reading the SST figure, we can visually see how
the frequency and amplitude modulation vary according to time.

analyze Resp(t) signals measured continuously during clini-
cally feasible time intervals, far shorter than 20 min. The SST
result of the recorded respiratory signal demonstrated in Fig. 1
is shown in Fig. 3.

A. Study Material

To validate the combination of the model and the SST algo-
rithm in deriving the dynamics of a physiological signal with
large oscillatory scale, we consider the following database col-
lected in a recent study [15] for the purpose of studying the
ventilator weaning problem.

All protocols in that study [15] were approved by the In-
stitutional Review Board of Taipei Veterans General Hospital,
Taipei, Taiwan, and written informed consent was obtained from
patients. The study subjects were 68 ready-for-weaning intu-
bated patients collected in the intensive care unit of Taipei Vet-
erans General Hospital, Taipei, Taiwan. In particular, all subjects
are with RSBI ≤110 breaths/min/L since we excluded patients
not ready for weaning with RSBI >110 breaths/min/L before
spontaneous breathing trial (SBT) due to the restriction from the

Fig. 4. ROC curve of the WIN index in the dataset of 68 patients. The cut-off
point is marked in circle, where the WIN index value is 88.8841, the sensitivity
is 0.7556, and the specificity is 0.6957.

Institutional Review Board. For each subject, we continuously
recorded a 30 min flow signal at the sampling rate 100 Hz during
SBT under the T-piece ventilator mode. The characteristics of
these patients and the protocol to perform SBT are described
in detail in [15]. These 68 subjects are divided into weaning
success (n = 45) and failure (n = 23) groups, based upon their
extubation outcomes. Extubation was defined to be successful
if patients did not need the ventilator again for at least 48 h
after extubation. Reinstitution of either noninvasive or invasive
mechanical ventilation within 48 h of extubation was consid-
ered an extubation failure. In [15], the data show no difference
between the success and failure groups in the mean values of
six clinically used weaning predictors measured before subject
inclusion, and also in the mean values of three breathing pattern
parameters measured after subject inclusion; in other words, the
mean values of these nine clinically used weaning predictors
could not allow us to discriminate success cases from failures.

B. WIN Index

We now define the WIN index capturing the breathing pattern
variability. Given the respiratory signal Resp(t), we apply SST
to get the SSTIF and SSTAM. In the respiratory signal, the
SSTAM can be understood as the instantaneous tidal volume.
Then, we define the WIN index

WIN = var

(
SSTAM(t)
SSTIF(t)

)
. (6)

For all 68 patients, the SST is applied to the first 3 min res-
piratory flow signal during SBT under the T-piece mode, from
which the WIN indices are evaluated. The WIN indices of each
subject and the ROC curve are shown in Figs. 4 and 5. The AUC
is 0.76, and the 95% confidence interval is [0.65, 0.87]. The con-
fidence interval is evaluated by 1000 bootstrap replicas. Based
on the analysis of the ROC curve, we obtained a cut-off value
of the WIN index, which is 88.8841 with a sensitivity of 0.7556
and specificity of 0.6957. The WIN indices of all 68 patients are
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Fig. 5. WIN indices of the 68 patients. The black circles are the WIN indices
for the patients who succeeded in the weaning procedure (numbered 1 to 45
here), while the gray circles are for the patients who failed in the weaning
procedure (numbered 46 to 68 here). The gray dashed line is the cut-off value
88.8841 determined by the ROC.

shown in Fig. 5. As shown, the cut-off value of WIN index could
allow us to separate a majority of patients with success weaning
procedure from those with failure weaning procedure. Accord-
ingly, this cut-off value of WIN index might be helpful for the
physicians to make decision which patients merit weaning from
mechanical ventilation. Notice that our method requires only
three consecutive minutes of respiratory signal observation. It
is important to note that the occurrence, during the observation
windows, of machine calibration or some breathing irregulari-
ties, such as coughs, invalid trigger, etc., which normally require
special attention in the existing analyses, is not an impediment
for our method. These properties of the SST for a patient in the
success group are shown in Fig. 3 for demonstration.

IV. DISCUSSION

In this paper, we introduced a phenomenological model and
the synchrosqueezing transform (SST) to alleviate the limita-
tions of traditional methods for the analysis of oscillatory phys-
iological signals. The usefulness of this combination is shown
by applying it to the study of the ventilator weaning problem.
Our results show that the SSTIF and SSTAM and their derived
quantity WIN from the respiratory signal provide a suitable
criterion for clinical use to predict weaning outcome, with an
ROC-AUC of 0.76.

At first sight, this result does not improve upon what has
been reported for RRV-based predictions [14]–[16]. One should
take into account, however, the following two points. First, the
WIN requires only 3 min of consecutively recorded data rather
than the at least 20 min typically required for the RRV-based
indices; since a 3 min-observation is entirely feasible in clinical
practice, whereas a 20 min-observation is much less so this is
a crucial difference. Second, the definition of an oscillation and
its landmark are not critical in the analysis. Note that even if
the definition of an oscillation and its landmark are precisely
given, the landmark detection is typically not robust under per-
turbations by noise, e.g., invalid breathing in the respiratory
signal. Although the necessarily noisy signal can be “denoised,”
existing noise removal or noise reduction algorithms cannot
guarantee a reliable determination of the “true” landmarks. Even

if “oscillation-based segmentation” could be carried out per-
fectly on a long enough recorded physiological signal so that
enough oscillations are collected, it is not straightforward to ob-
tain such an uninterrupted signal, in practice, especially when
the period of each oscillation is large than, say, 2 s. Differ-
ent kinds of interruptions during the signal record, for exam-
ple, machine calibration, coughs, suction, irritation, and so on,
require the signal analyst to artificially cut-and-stitch together
pieces of signal so that the oscillation-to-oscillation intervals can
be defined, as needed for the traditional method, even though
there is no theoretical support to show that the dynamical vari-
abilities evaluated from such manipulated time series are still
as trustworthy. Similar potential disruptions typically occur in
other oscillatory physiological signals. We therefore expect that
the combination of the proposed phenomenological model and
the analysis method, SST, have great potential in dealing with
broader physiological signals than the traditional approaches,
especially when the scale of the signal is large and the determi-
nation of the landmarks is not easy.

In the introduction, we identified three drawbacks of presently
used methods. We have already shown that the method pro-
posed here does not suffer from the first two drawbacks: we can
use much shorter time observation time observation windows,
and we need not identify precisely the oscillating pattern to be
detected. The third drawback we formulated was the relative
poverty of the traditional landmark-to-landmark time interval
series. The importance of keeping a richer description is illus-
trated by our method’s use of variation in both frequency and
amplitude in the ventilator weaning example.

Physiologically, the respiration is not only controlled by the
neural respiratory center, but also controlled by the arterial
chemoreceptors, lung vagal sensory receptors, lung mechanics,
etc. In a normal subject, these control factors are integrated in a
complex way which leads to the RRV [12], [14], [15]. Although
we do not have a definite evidence, based on the reasoning
about the relationship between the decreased HRV (or RRV)
and the severity of disease [2], [4], [14]–[16], we hypothesize
that the distinguishing power of WIN is a consequence of the
possible disintegrity of the respiratory control factors, and this
disintegrity leads to the decreased variability in the breathing
pattern. This hypothesis indicates that the subject with decreased
WIN is not completely ready for weaning, and explains why we
observe the different patterns in the two groups. Also note that
RRV is a different notion compared with the descriptive breath-
ing parameters, like total volume, peak respiratory flow, total
breath duration, and so on, which quantify the average behavior
of one breath but not the complex integrity of the control factors.

This discussion would not be complete without listing the
shortcomings of our approach. First, the phenomenological na-
ture of our analysis limits the possibility to extract detailed
underlying mechanisms leading to the variability and hence the
prediction outcome. For example, we are not able (nor did we at-
tempt) to distinguish if the observed variability is purely neural
in origin, or if mechanical factors also play a role; finer modeling
is needed to decide this, if possible. Second, from the viewpoint
of estimating physiological dynamics, monitoring variability
from the signal of one physiological subsystem, for example,
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the respiratory signal, is not sufficient: the physiological dy-
namics is the outcome of the complicated interactions between
different physiological subsystems. Incorporating different si-
multaneously recorded biomedical signals, such as electrocar-
diograms, respiratory signal, blood pressure, and so on, should
lead to a more informative description of the systematic dynam-
ics. A study of how to extract the information on the interaction
between different subsystems via the combination of the exist-
ing model and the SST algorithm is now ongoing. Specifically,
although we now have a suitable method to extract informa-
tion from different oscillatory physiological signals of different
scales, finding their interactions and inferring more information
remains an open problem. Third, the limitation inherent to the
SST itself cannot be overlooked. Indeed, it is an intrinsic limita-
tion of the SST that its estimation of the instantaneous frequency
is less reliable when this instantaneous frequency has large lo-
cal variations. To address this, we need a better theoretically
rigorous approach to estimate the instantaneous frequency for
such signals; work on this is ongoing. Finally, the study in the
testbed has two limitations: it is retrospective, and the data have
been collected for a small clinical population only, although
the group of patients is homogeneous, in the sense that all pa-
tients are confirmed to be ready for weaning based on the RSBI.
Yet it certainly warrants a follow-up prospective and large-scale
clinical study to investigate its clinical applicability.

Despite these shortcomings, our example supports that the
criterion we propose (in the form of the WIN) has the potential
to assist physicians in assessing weaning readiness. The result
encourages its application to other different kinds of oscilla-
tory signals, in particular to those with (relatively) long periods.
In conclusion, the proposed model and algorithm together effi-
ciently relieve the difficulty shared by the traditional methods
presently used to analyze physiological dynamics or more gen-
eral oscillatory signals—the data length needed for analyzing the
dynamics is significantly shortened, the effect of the inevitable
noise is reduced, and the pattern of the oscillatory phenomenon
does not play a significant role.

APPENDIX A

REALLOCATION TECHNIQUE AND

SYNCHROSQUEEZING TRANSFORM

The main mathematical tool we apply to analyze the
oscillatory physiological signal is the newly developed, math-
ematically rigorous proved, and adaptive time-frequency (TF)
analysis referred to as the synchrosqueezing transform (SST)
[20], [21], [23], [27], [31]–[34].

Besides the traditional analytic approach, for example, the
Hilbert transform, there are many existing TF analysis method
available to estimate φ′(t) of the signal expressed in (9) [35].
Due to the Heisenberg uncertainty principal, the ambiguity in the
TF representation is inevitable, and the reallocation technique
was proposed for the sake of sharpening the TF representation
[24]–[26], [34]–[36]. SST is a special reallocation technique. In
the following, we start from giving the precise conditions and
definitions about the functional class modeling the oscillatory
physiological signal, and then discuss the reallocation technique

and its special case SST. We mention that we can also consider
STFT, but here we focus on the CWT to simplify the discussion.

Fix a Schwartz function ψ so that supp ψ̂ ⊂ [1 − Δ, 1 + Δ],
where 0 < Δ < 1 which is commonly called the mother
wavelet. Recall that the CWT [37] of a given f(t) ∈ S′ is defined
by

Wf (a, b) =
∫ ∞

−∞
f(t)

1√
a
ψ

(
t − b

a

)
dt, (7)

where a > 0 and b ∈ R. Here, we follow the convention in
the wavelet literature that a means scale and b means time.
To ease the notation, the moments of ψ are denoted as I

(k)
i =∫

R |x|i |ψ(k)(x)|dx for k = 0, 1, . . ..
A continuous function is called an nonharmonic intrinsic

mode function if it satisfies

f(t) = A(t)s(φ(t)), (8)

where
I) A ∈ C1(R) ∩ L∞(R), φ∈C2(R), inf t∈R A(t)≥ c1 > 0,

inf t∈R φ′(t)≥ c1 > 0, supt∈R A(t) < c2 , supt∈R φ′(t) <
c2 , |A′(t)| ≤ εφ′(t) and |φ′′(t)| ≤ εφ′(t), for all t, and ε
is a small parameter chosen in the model;

II) s : [0, 1] → R is C1,α , where α > 1/2, and 1-periodic
function with unit L2 norm, |ŝ(k)| ≤ δ|ŝ(1)| for all k �= 1,
where δ ≥ 0 is a small parameter, and

∑
n>D |nŝ(n)| ≤ θ

for some small parameter θ ≥ 0 and D ∈ N.
Note that we assume that the signal has just one component,

unlike the case in previous studies wherein the signals were
considered to include several components [22]. We shall call φ
the phase function of the signal f(t) and the derivative φ′(t)
of the phase function the instantaneous frequency (IF) of f(t).
Next, we model the measured physiological signal as

Y (t) = A(t)s(φ(t)) + T (t) + σ(t)Φ(t), (9)

where s(t), A(t), and φ(t) satisfy (I) and (II) and the following
condition is satisfied:
III) T : R → R is in C1(R) so that its Fourier transform exists

in the distribution sense, and |T (ψa,b)|, |T ′(ψa,b)| ≤ CT ε
for all b ∈ R and a ∈ (0, 1+Δ

c1
], for some CT ≥ 0 [21].

IV) Φ(t) is a stationary generalized random process (GRP) or
“almost” stationary GRP [21] independent of A(t)s(φ(t)),
which is introduced to model the measurement error. To
be more specific, the power spectrum dη of the given
GRP Φ satisfies

∫
(1 + |ξ|)−2ldη < ∞ for some l > 0.

Also assume σ ∈ C∞ so that ‖σ‖L∞ � 1 and εσ :=
max�=1,...,max{1,l}{‖σ(�)‖L∞} � 1, and varΦ(ψ) = 1.

Now we discuss the reallocation technique and the SST. Take
the CWT of a given observation Y in (9)

WY (a, b) =
∫ ∞

−∞
Y (t)

1√
a
ψ

(
t − b

a

)
dt. (10)

Note that (10) is well defined since σ(t)Φ(t) is GRP and by the
assumption of T . The reallocation technique “sharpens” WY by
“reallocating” the value at (t, ξ) to a different point (t′, ξ′) ac-
cording to some reassignment rules [25], [26], [34], [35], where
t′ might be different from t. In contrast to the reallocation tech-
nique, in the SST, WY is reallocated from (t, ξ) to a different
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point (t, ξ′) according to a different reassignment rules which
only reallocates the frequency axis and preserves the time in-
formation. Note that it is important in biomedical application,
in particular when prediction is the purpose, since in general we
do not have the future information.

Here we detail the SST, which is separated into three steps.
First, calculate WY (a, b). Second, calculate the reallocation rule
ωY defined on R+ ×R:

ωY (a, b) :=

⎧⎪⎨
⎪⎩

−i∂bWY (a, b)
2πWY (a, b)

when |WY (a, b)| �= 0;

−∞ when |WY (a, b)| = 0.

(11)

Third, the SST of Y (t) is defined by reallocating the coefficients
of WY (a, b) according to the reallocation rule ωf (a, b):

SΓ
Y (b, ξ) := lim

α>0,α→0

∫
{(a,b):|WY (a,b)|≥Γ}

1
α

h

(
|ωY (a, b) − ξ|

α

)

× WY (a, b)a−3/2da (12)

where (b, ξ) ∈ R×R+ ,Γ > 0 is the threshold chosen by the
user, h is a kernel function which is smooth enough and decays
fast enough. Intuitively, at each time point t, we collect all CWT
coefficients with scales a at which ωY (a, b) is close to ξ and put
them in the (b, ξ) slot. As is shown in [20]–[22], SΓ

Y (b, ξ) will
only have dominant values around φ′(b). This property allows us
an accurate estimate of φ′ by, for example, the curve extraction
technique. The estimated φ′ is denoted by φ̃′.

With the estimated φ′, we can estimate A(t) and φ(t) in (9)
by the following reconstruction formula. Define

R̃(t) := R−1
ψ Re

∫
{ξ :|φ ′(t)−ξ |≤ε1 / 3 }

SΓ
Y (t, ξ)dξ, (13)

where Rψ :=
∫ ψ̂ (ζ )

ζ dζ and Re means taking the real part.
Based on the theorem in [20]–[22], the estimator of A(t) is de-
fined as Ã(t) := |R̃(t)|. Then an estimator for φ(t), denoted as
φ̃(t), can be obtained by unwrapping the phase of the complex-
valued signal R̃(t)/Ã(t). As is shown in [21, Th. 3.1], these
estimators are accurate and are robust to the existence of the
trend T (t) and noise σ(t)Φ(t).

Notice that we can interpret (13) as an adaptive band-pass
filter. Indeed, at each time t, the estimation of φ′(t) by SST can
be interpreted as the main frequency region corresponding to the
physiological signal at time t. Then, the reconstruction of the
physiological signal at time t is based on the chosen frequency
band with bandwidth ε1/3 .

We summarize the theoretical results of SST relevant to this
paper, and refer the reader to [20], [21], [23] for the precise
statement of the theorem.
P1 : SST is robust to the several different kinds of noise, which

might be slightly nonstationary. Thus, we are able to ac-
curately estimate the IF and AM [21], [23].

P2 : Since SST is local in nature, we are able to detect compo-
nents that do not exist all the time and hence the dynamical
behavior of the signal [20], [21].

P3 : The time-frequency representation SΓ
Y (b, ξ) is visually in-

formative. See Fig. 3 for example.

P4 : SST is “adaptive” to the data in the sense that the error
in the estimation depends only on the first three moments
of the mother wavelet instead of the profile of the mother
wavelet. See [23, Fig. 6] for a visual demonstration.

P5 : The existence of the trend modeled in (9) do not interfere
with the SST. Thus, we are able to separate the trend
and periodic components. Note that a smooth function
T ∈ C∞ ∩ S′ so that its Fourier transform T̂ is compactly
supported in a small interval around 0 is a special case.

APPENDIX B

NUMERICAL IMPLEMENTATION OF SST

In this section, we provide the numerical implementation
detail of SST. The MATLAB code is available in http://sites.
google.com/site/hautiengwu/ and we refer the readers to [23]
for more implementation details.

Take a discretization of (9), denoted as Y ∈ RN , with the
sampling period τ > 0 from time τ to time Nτ , that is,
Y (n) = Y (nτ). Here, we have to be careful about the meaning
of Y (nτ) when Φ is a GRP. Theoretically, when Φ is in the
general sense, for example, the differentiation of the standard
Brownian motion, it does not make sense to directly evaluate
Φ at a particular time [38]. Also, as is discussed in [21] and
the references therein, the relationship between the continuous
random process and discrete time series is not always one to
one. For example, not every autoregressive and moving aver-
age time series (ARMA) can be embedded into a continuous
ARMA random process. Thus, in the discrete case, sometimes
the random error term needs to be modeled separately, that is,
Y ∈ RN satisfies

Y (n) = f(nτ) + T (nτ) + σ(nτ)Ψ(n),

where n = 1, . . . , N, f, T and σ satisfy conditions (I), (II) and
(III), and Ψ is a zero-mean stationary time series, which can
be taken as an ARAM time series, generalized autoregressive
conditional heteroskedasticity time series, etc. In the following,
to simplify the discussion, we assume that the discretization of
(9) can be carried out directly, and refer the reader to [21] for
more theoretical results about discretization.

In practice, to prevent boundary effects, we pad Y on both
sides by reflecting the signal near the boundary so that its length
is N ′ = 2L+1 , where L is the minimal integer such that N ′ > N .
Although it works well in practice, we emphasize that doing so
is not the optimal solution. To ease the notation, in the following,
we use the same notation Y to denote the padded signal and N
to indicate the length of the padded signal.

A. Step 1: Numerically Implement the CWT

For the sake of implementing (10), we take the scales
aj = 2j/nv τ, j = 1, . . . , Lnv , where nv is the “voice number”
chosen by the user. In practice, nv = 32 performs well. We de-
note the implemented CWT as a N × na matrix W Y . We may
directly follow the code available from wavelab2 which imple-

2http://www-stat.stanford.edu/∼wavelab/
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ments CWT in the Fourier domain, or directly implement it by
convolution in the time domain.

B. Step 2: Numerically Implement ωY (a, b)

To numerically implement the reallocation rule ωY (a, b) (11),
we have to discretize ∂bWY (a, b). It is evaluated directly by
finite difference at the time axis b and we denote the result as a
N × na matrix ∂bW Y . The ωY (a, b) is then implemented as a
N × na matrix ωY by the following entrywise calculation:

ωY (i, j) =

⎧⎪⎨
⎪⎩

−i∂bW Y (i, j)
2πW Y (i, j)

when W Y (i, j) �= 0

−∞ when W Y (i, j) = 0.

Note that although W Y (i, j) = 0 is numerically unstable, but
this unstability will be taken care in the next step.

C. Step 3: Numerically Implement SΓ
Y (b, ξ).

To implement the Synchrosqueezing transform SΓ
Y (b, ξ) (12),

we discretize the frequency domain [ 1
N τ , 1

2τ ] by equally spaced
intervals of length Δξ = 1

N τ . Here, 1
N τ and 1

2τ are the minimal
and maximal frequencies detectable by the Fourier transform
theorem. Note that the dc (direct current) term is not considered

in SST. Denote nξ = �
1

2 τ − 1
N τ

Δ ξ
�, which is the number of the

discretization of the frequency axis. Fix Γ > 0, the discretized
SΓ

Y (b, ξ), denoted by a N × nξ matrix SY , is evaluated by

SY (i, j) =
∑

k : |ωY ( i , k )−j Δ ξ |≤Δ ξ / 2 ,

|W Y ( i , j ) |≥Γ

log(2)√aj

Δξnv
W Y (i, k),

where i = 1, . . . , N and j = 1, . . . , nξ . Notice that the number
Γ is a hard thresholding parameter, which is chosen to reduce
the influence of noise and numerical error encountered when
W Y (i, j) is small. We choose Γ = 1e − 3 in this study. If the
error is Gaussian white noise, the choice of Γ is suggested
in [23]. In general, more study is needed to adaptively choose Γ
from a given time series.

To visually see the time frequency representation of the SST,
we may directly plot the N × nξ matrix RY defined by

RY (i, j) := |SY (i, j)|2

for all i = 1, . . . , N and j = 1, . . . , nξ , and observe its behavior.

D. Step 4: Estimate IF, AM, and Trend From SY

According to the theoretical statement, the SST time fre-
quency representation will be dominant in the IF [21], [23].
Thus, we estimate IF by fitting a discretized curve c∗ ∈ ZN

nξ
,

where Znξ
= {1, . . . , nξ} indexes the discretized frequency

axis, to the dominant area of SY . Precisely, we maximize the

following functional over c ∈ ZN
nξ

:

c∗ := argmax
c∈Z N

n ξ

N∑
m=1

log

(
|SY (m, c(m))|∑nξ

i=1
∑N

j=1 |SY (j, i)|

)

− λ

N∑
m=2

|cm − cm−1 |2 , (14)

where λ > 0 determines the regularity of the estimated curve.
The first term is aimed to capture the maximal value of SY at
each time and the second term is aimed to impose regularity
of the extracted curve. In this study, we simply choose λ = 1.
Denote the maximizer of the functional in (14) as c∗ ∈ RN .
Then SSTIF, denoted as φ′ ∈ RN , is given by

φ′(n) := c∗(n)Δξ ,

where n = 1, . . . , N . Here, φ′(n) is the estimated IF at time
nτ . With c∗, SSTAM, denoted as A ∈ RN , is evaluated by

f1(n) :=
2
Rψ

Δξ

c∗(n)+�Δ/Δ ξ �∑
i=c∗(n)−�Δ/Δ ξ �

SY (n, i),

A(n) := |f 1(n)|,

where n = 1, . . . , N,f1(n) ∈ C, and � is the real part.
The phase function φ is then estimated by unwrapping
f1(n)/|f1(n)|. Note that estimating the phase by integrating
the estimated IF is not recommended since the error might be
accumulated. Lastly, the trend T (t) at time t = nτ can be esti-
mated by

T (n) := Y n −� 2
Rψ

Δξ

nξ∑
i=�ξ l /Δξ�

SY (n, i),

where T ∈ RN and ξl is chosen by the user, if recovering the
trend is necessary.
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