
J A C C : A D V A N C E S VO L . 4 , N O . 1 , 2 0 2 5

ª 2 0 2 4 T H E A U T HO R S . P U B L I S H E D B Y E L S E V I E R O N B E H A L F O F T H E A M E R I C A N

C O L L E G E O F C A R D I O L O G Y F OU N D A T I O N . T H I S I S A N O P E N A C C E S S A R T I C L E U N D E R

T H E C C B Y - N C - N D L I C E N S E ( h t t p : / / c r e a t i v e c o mm o n s . o r g / l i c e n s e s / b y - n c - n d / 4 . 0 / ) .
ORIGINAL RESEARCH
The Colorado Heart Failure Acuity
Risk Model
A Mortality Model for Waitlisted Cardiac Transplant Patients
Rachel D. Murphy, MD,a Sarah Y. Park, MD,b Larry A. Allen, MD, MHS,b Amrut V. Ambardekar, MD,b

Joseph C. Cleveland, JR, MD,c Michael T. Cain, MD,c Bruce Kaplan, MD,d,e Jordan R.H. Hoffman, MPH, MD,c

John S. Malamon, PHDd,e
ABSTRACT
ISS

Fro

Me

Su

me

the

Th

ins

vis

Ma
BACKGROUND Currently, there is no mathematical model used nationally to determine the medical urgency of

patients on the heart transplant waitlist in the United States. While the current organ distribution system accounts for

many patient factors, a truly objective model is needed to more reliably stratify patients by their medical acuity.

OBJECTIVES The aim of the study was to develop risk scores (Colorado Heart failure Acuity Risk Model [CHARM] score)

to predict mortality in adults waitlisted for heart transplant.

METHODS Risk scores were based on multivariable logistic regression models with mortality endpoints at 90 days,

180 days, 1 year, and 2 years. The models included serology data and patient history variables from waitlisted patients

(N ¼ 4,176) within the Scientific Registry of Transplant Recipients database from January 1, 2017, to September 2, 2023.

RESULTS The CHARM score included serum markers (brain natriuretic peptide, creatinine, sodium, aspartate amino-

transferase, albumin, total bilirubin) and clinical variables (history of cardiac surgery, prior transplant, willingness to

accept an hepatitis C virus positive heart, use of extracorporeal membrane oxygenation, use of mechanical life support,

implantation of a cardiac defibrillator, and ventilator support prior to transplant). Sample holdout-validation for the

models yielded average area under the curves of 0.825 (90-day), 0.805 (180-day), 0.779 (1-year), and 0.766 (2-year).

Risk indices for all models were 99% correlated with observed mortality rates.

CONCLUSIONS The CHARM score provides reliable calibration and prediction, offering an objective system for

identifying critically ill patients on the heart transplant waitlist. The CHARM score will be useful in the era of continuous

distribution to standardize organ allocation. (JACC Adv. 2025;4:101449) © 2024 The Authors. Published by Elsevier on

behalf of the American College of Cardiology Foundation. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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ABBR EV I A T I ON S

AND ACRONYMS

AUC = area under the curve

BNP = B-type natriuretic

peptide

CHARM = Colorado Heart

failure Acuity Risk Model

HF = heart failure

MELD = Model for End-Stage

Liver Disease

OPTN = Organ Procurement

and Transplantation Network

SRTR = Scientific Registry of

Transplant Recipients

VIF = variance inflation fac
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T he Organ Procurement and Trans-
plantation Network (OPTN) has
worked to develop a cardiac trans-

plant allocation system that distributes
donor hearts to the most critically ill pa-
tients.1 In 2018, a new heart allocation policy
revision was enacted to convert the 3-tier to a
6-tier status-based patient risk stratification
model that attempted to encompass the
increasing complexity of managing critical
cardiac illness. However, this policy has
been critiqued for its subjectivity and hetero-
geneity in accurately discriminating patient
risk while on the waitlist. For example, a
large percentage of transplant candidates
are now stratified as status 1 or status 2 by exception
rather than by the standard criteria, which can be
modified by a physician’s practice.2 Early studies on
post-transplant survival have demonstrated that the
2018 policy revision was associated with a significant
reduction in post-transplant survival.3,4 However, in
2022, Lazenby et al used the multivariable Cox pro-
portional hazards model to demonstrate the effect
of inadequate follow-up on postpolicy survival.
They concluded that there is no significant difference
in 1-year post-transplant survival under the new heart
allocation policy.5 A formal prognostic model that
accurately stratifies waitlisted end-stage heart failure
(HF) patients based on medical urgency is needed to
provide objectivity, accuracy, and transparency. The
need for such a model was recently highlighted by
Pelzer et al, who determined the current allocation
system had only a moderate ability to successfully
rank transplant candidates according to medical
urgency.6

While useful prognostic tools for patients with HF
have been introduced, such as the Heart Failure
Survival Score7 and the Seattle Heart Failure Model,8

they have not accurately predicted patient waitlist
mortality.9 The Ottawa Heart Failure Risk Scale pro-
vided a risk stratification tool designed for acute
heart failure patients in emergency departments.10

However, this score has not been applied to or vali-
dated against a waitlisted heart transplant patient
population. Similarly, the Meta-Analysis Global
Group in Chronic Heart Failure (MAGGIC) risk score
performed well for HF patients with preserved ejec-
tion fraction, but it has not been externally validated
for reduced ejection fraction, which excludes most
patients on a heart transplant waitlist.11 More
recently, the U.S.-Candidate Risk Score model high-
lighted the need for an accurate and objective waitlist
mortality model.12

tor
Predictive models that integrate patient history
with serology have been successfully implemented
in other organ transplant systems. The Model for
End-Stage Liver Disease, including sodium, or
MELD-Na, score for liver transplantation accurately
predicts 90-day patient waitlist mortality and is the
most significant metric in liver allocation.13 A
similar model is desperately needed in cardiac
transplantation to accurately identify and prioritize
the most critically ill patients. A model that assesses
risk beyond 1 year can also be utilized to prioritize
the timing and selection of patients who are wai-
tlisted with the intention of getting the most criti-
cally ill patients on the waitlist first. To this end,
we used the Scientific Registry of Transplant Re-
cipients (SRTR) database to develop and validate 4
predictive mortality models for waitlisted patients
with end-stage HF. Our models utilize objective
serological data to determine the most urgent heart
transplant candidates and stratify their relative risk
of waitlist mortality at 90 days (90D), 180 days
(180D), 1 year (1Y), and 2 years (2Y).

METHODS

DATA SOURCES. This study utilized retrospective
data from the SRTR. The SRTR system includes data
on all donors, waitlisted candidates, and transplant
recipients in the United States, submitted by the
members of the OPTN.14 The Health Resources and
Services Administration, U.S. Department of Health
and Human Services, provides oversight to the ac-
tivities of the OPTN and SRTR contractors. The data
reported here have been supplied by the Hennepin
Healthcare Research Institute as the contractor for
SRTR. The interpretation and reporting of these data
are the responsibility of the authors and in no way
should be seen as an official policy of or interpreta-
tion by the SRTR or the U.S. Government.

STUDY POPULATION. The study population included
adult waitlisted cardiac transplant patients with some
laboratory data who registered for a single-organ
heart transplant (N ¼ 4,176) between January 1,
2017, and September 2, 2023. There were no multi-
center listed patients. All study participants were
retrospectively censored at 2 time points, first on
January 1, 2017, and then on September 2, 2023. Pa-
tients who did not reach follow-up time were
included in the model. Supplemental Figure 1 pro-
vides a participant workflow diagram with the num-
ber of participants retained for each exclusion
criterion. January 1, 2017, was selected as the start
date of this cohort because SRTR stopped recording
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TABLE 1 Patient Characteristics and Laboratory Values for Waitlisted Heart Transplant

Patients, 2017 to 2023

Training Data
(n ¼ 2,088)

Test Data
(n ¼ 2,088) P Value

Age

Mean (SD) 53.3 � 12.6 53.1 � 12.8 0.904

Median [Min, Max] 56.0 [18.0, 76.0] 56.0 [18.0, 73.0]

Sex

Female 519 (24.9%) 505 (24.2%) 0.881

Male 1,569 (75.1%) 1,583 (75.8%)

Race

Caucasian 1,294 (62.0%) 1,334 (63.9%) 0.994

Hispanic/Latino 184 (8.8%) 169 (8.1%)

Black or African American 509 (24.4%) 493 (23.6%)

Asian 76 (3.6%) 66 (3.2%)

American Indian or Alaska Native 7 (0.3%) 8 (0.4%)

Native Hawaiian or Pacific Islander 8 (0.4%) 8 (0.4%)

Ethnicity

Latino 187 (9.0%) 172 (8.2%) 0.71

Non-Latino or unknown 1901 (91.0%) 1916 (91.8%)

Education

High School (9-12) 761 (36.4%) 808 (38.7%) 0.941

Attended College/Technical School 568 (27.2%) 569 (27.3%)

Associate/Bachelor’s degree 440 (21.1%) 408 (19.5%)

Post-college Graduate Degree 187 (9.0%) 176 (8.4%)

Grade School (0-8) 75 (3.6%) 67 (3.2%)

None 50 (2.4%) 59 (2.8%)

Continued on the next page
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laboratory values after this time in 2018. Thus, we
imputed directly on the SRTR’s serology data.
Because many laboratory values were missing, we
utilized the Multivariate Imputation by Chain Vari-
ables algorithm15 to impute missing laboratory
values. Training and testing sets were imputed
independently. Specifically, albumin, aspartate
aminotransferase, bilirubin, standard B-type natri-
uretic peptide (BNP), and sodium were missing in
approximately 80% of participants. All steps in this
analysis were conducted for 4 models. Survival times
for waitlisted candidates started at the date of listing
and were censored at the date of death or removal
from the waitlist. Patients removed from the waitlist
for death or because they were “too ill” were
censored as an event. Candidates who were removed
due to an improvement in their health were censored
as alive. All patients were censored at the date of the
last administrative follow-up, September 2, 2023. This
population was randomly split (50% by 50%) into 2
cohorts: a training set (N ¼ 2,088) and a test set
(N ¼ 2,088).Table 1 provides the population charac-
teristics of the 2 study groups. The discovery set was
used for variable selection, the generation of the lo-
gistic regression equations, and the creation of a
tiered-risk system. The testing set was used to inde-
pendently evaluate each model’s performance in
predicting mortality outcomes and ranking patients’
relative risk of death. All analyses presented herein
were applied to the training and test
sets independently.
STATISTICAL APPROACH. Clinical variable selection and
importance. For clinical applicability, we selected 13
independent patient variables (6 serology and 7
medical histories) that were readily available and
clinically justified. For continuous variables, a two-
way analysis of variance test was used to test the
observed differences in patient characteristics and
the independent variables used in this study. The
chi-squared test was used to measure the
significance of categorical and indicator (binary)
variables. These patient predictor variables should
also exhibit discriminating power and low
collinearity. To measure collinearity, we calculated
Pearson’s cross-correlation coefficient (R) and
variance inflation factor (VIF) for all independent
variables. Low collinearity was defined as 2
independent variables with an R value <0.7. The
VIF is used to determine the correlation between
independent variables in a logistic regression model.
A VIF of 1 provides no correlation, whereas values
above 2.5 indicate considerable multicollinearity.16

Independent var iab le defini t ions . We leveraged a
combination of serological predictors along with
patient medical history variables to construct the
CHARM (Colorado Heart failure Acuity Risk Model)
score. Serum values include BNP, serum creatinine
(Cr), sodium, aspartate aminotransferase, albumin,
and total bilirubin. The BNP marker used in these
models directly tests the BNP hormone, not the sur-
rogate protein marker known as NT-proBNP. BNP is a
strong predictor of heart function.17-20 Other variables
are related to the patient’s clinical course with HF,
including implantable cardiac defibrillators, me-
chanical circulatory support, inotropic support, and
ventilator support. A history of cardiac surgery and a
previous transplant were also predictive of waitlist
mortality. The life support variable refers to any
waitlisted heart transplant recipient who received
inotropic infusion right ventricular assist devices, left
ventricular assist devices, including Impella devices
prior to 5.5, total artificial hearts, or intra-aortic
balloon pumps.21 Extracorporeal membrane oxygen-
ation was defined as its own specific variable outside
of the term “life support.” The ventilator indicator
variable refers to the need for any mechanical venti-
lation prior to transplant.

Regress ion formulas for ca lcu la t ing pat ient r i sk
scores . We set out to build a set of 4 predictive
models to formally define a wide range of patient risk
by developing a score known as the CHARM score,



TABLE 1 Continued

Training Data
(n ¼ 2,088)

Test Data
(n ¼ 2,088) P Value

Independent variables

Albumin (g/dL)

Mean (SD) 3.73 � 0.570 3.74 � 0.600 0.686

Median [Min, Max] 3.80 [0.7, 6.50] 3.80 [0.5, 7.30]

Bilirubin (mg/dL)

Mean (SD) 0.852 � 1.26 0.887 � 1.53 0.728

Median [Min, Max] 0.70 [0.1, 40.8] 0.70 [0.1, 42.0]

BNP (pg/mL)

Mean (SD) 1,680 � 2,260 1,750 � 2,320 0.607

Median [Min, Max] 797 [5.00, 10,000] 763 [8.00, 10,000]

Cardiac surgery

Yes 61 (2.9%) 73 (3.5%) 0.932

No 2027 (97.1%) 2015 (96.5%)

Creatinine (mg/dL)

Mean (SD) 1.40 � 1.04 1.41 � 0.902 0.994

Median [Min, Max] 1.20 [0.08, 24.0] 1.20 [0.4, 10.7]

Previous transplant

Yes 61 (2.9%) 73 (3.5%) 0.574

No 2027 (97.1%) 2015 (96.5%)

SGOT (U/L)

Mean (SD) 88.1 � 70.2 88.9 � 70.6 0.225

Median [Min, Max] 28.0 [0.1, 34,300] 27.0 [0.1, 1810]

Sodium (mEq/L)

Mean (SD) 136 � 4.26 136 � 4.23 0.959

Median [Min, Max] 136 [119, 153] 137 [109, 153]

Ventilator

Yes 41 (2.0%) 47 (2.3%) 0.811

No 2047 (98.0%) 2041 (97.7%)

ECMO

Yes 48 (2.3%) 67 (3.2%) 0.199

No 2040 (97.7%) 2021 (96.8%)

Implant defibrillator

Yes 1,550 (74.2%) 1,555 (74.5%) 0.984

No 538 (25.8%) 533 (25.5%)

Accept HCV-positive

Yes 801 (38.4%) 770 (36.9%) 0.612

No 1,287 (61.6%) 1,318 (63.1%)

Life support

Yes 947 (45.4%) 986 (47.2%) 0.48

No 1,141 (54.6%) 1,102 (52.8%)

Values are n (%) unless otherwise indicated.

BNP ¼ B-type natriuretic peptide; ECMO ¼ extracorporeal membrane oxygenation; HCV ¼ hepatitis C virus;
SGOT ¼ glutamic-oxaloacetic transaminase.
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which is based on a patient’s estimated likelihood of
death while waitlisted. Thus, we constructed 4 lo-
gistic regression models using a generalized linear
model with a logit link function at 90D, 180D, 1Y, and
2Y censoring times (Equations 1-4). All laboratory
values were transformed to the logarithmic scale
prior to calculation. The major model assumptions
were checked for all 4 models using R’s “perfor-
mance” package.22 Supplemental Figure 2 provided
the quality checks for the 90-day model. All 4 models
exhibited linearity, normality in the distribution of
the residuals, and low variable inflation.
Model ca l ibrat ion and the t iered-r i sk index . A
well-calibrated ranking system is required to accu-
rately estimate the relative medical urgency of wai-
tlisted heart transplant patients. This ranking system
can be used to prioritize patients for transplant and
for entry onto the waitlist. To maximize our ability to
statistically discriminate among high- and low-risk
patient subgroups, we developed a 6-tiered risk in-
dex system based on the CHARM score, which ranges
from 1 to 6, where 6 is the highest risk tier. To
determine the goodness-of-fit of the CHARM score as
compared to the observed patient risk, we performed
the Hosmer-Lemeshow test23 on each model using 6
equally distributed patient groups. All study partici-
pants were divided into sextiles, or 6 equally dis-
trusted patient groups. We used the Hosmer-
Lemeshow test to define the boundaries of risk tiers
and calibrated each regression model by maximizing
the goodness-of-fit between the observed and pre-
dicted patient risk. To more accurately assess the
calibration of our models, we utilized R’s “Calibra-
tionCurves” package.24 This software package pro-
vided the calibration intercept, slope, and
discrimination (c-statistic) for each model.
Val idat ing d ichotomous outcomes us ing log is t i c
regress ion . We measured each model’s performance
in predicting mortality events at 4 censoring periods
using sample hold-out validation; we calculated co-
efficients using the training set (N ¼ 2,088) and
measured the area under the curve (AUC) and other
performance metrics using the independent valida-
tion set (N ¼ 2,088). To avoid confirmation bias in
selecting the training and test sets, we performed 30
random splits and recorded the AUC of each test. R’s
“pROC” package25 was used to calculate the 95% CIs
of each model. All patient risk scores were calculated
using Equations 1-4. Coefficients were calculated us-
ing the discovery set, and predictions were indepen-
dently validated using the validation set. Finally, we
calculated the AUC, for all 4 models.
Val idat ing the 6-t iered r i sk index system. To
validate the CHARM and our tiered-risk classification
system using a univariable test, we performed the
Cox proportional hazard regression method26 to
measure each tier’s performance as a single survival
predictor. We reported the concordance index27 to
gauge each model’s overall performance with respect
to survival time. The survival concordance is the
fraction of randomly selected patient pairs among all
pairs, where the higher-risk tier corresponds to the
individual with an earlier event. The logarithm of the
HRs, or log (HR), CIs, and P values were provided for
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all tiers and models. This allowed for one simple
linear metric for comparing all patient tiers. All ana-
lyses were performed using the R statistical language
version 4.4.3.28 TRIPOD, or the transparent reporting
of a multivariable prediction model for individual
prognosis or diagnosis, was followed throughout this
study.29

RESULTS

POPULATION CHARACTERISTICS. The training (dis-
covery) and test (validation) patient population
characteristics are depicted in Table 1. The mean age
of the 4,176 study participants ranged from 18 to
76 years, with a mean age of 53.2 � 12.7 years. Of
participants, 75.5% were male, 62.9% were White or
Caucasian, 24% were Black or African American, 8.5%
were Hispanic or Latino, 3.4% were Asian, 0.4% were
Native Hawaiian or Other Pacific Islander, and 6
(0.3%) were American Indian or Alaska Native. In
summary, there were no statistically significant dif-
ferences in the patient characteristics or independent
variables when comparing the discovery set to the
validation set.
VARIABLE COEFFICIENTS AND INFLATION FACTORS. A
graphic abstract of the CHARM model and study
design are provided in the Central Illustration. All
correlation coefficients of the independent variables
were below the absolute value of 0.35 (Figure 1). All
logistic regression coefficients, P values, and VIF
values are provided in Supplemental Table 1. VIF
values ranged from 1 to 1.5. No significant correlation
or inflation was observed among the independent
variables. Also, laboratory values that were imputed
provided very small coefficients. Thus, they cannot
inflate or skew the model’s results.

https://doi.org/10.1016/j.jacadv.2024.101449


FIGURE 1 Correlation Heatmap of Independent Variables

Pearson’s correlation coefficients were calculated using all patients (N ¼ 4,176) for the 13

independent variables used to construct the 4 models (90 days, 180 days, 1 year, and 2

years). This is used to provide a measure of collinearity. Blue indicates a positive corre-

lation, and red indicates a negative correlation. The color saturation and circle area in-

crease as the correlation coefficients increase in magnitude. No highly significant

correlations were observed. BNP ¼ B-type natriuretic peptide; ECMO ¼ extracorporeal

membrane oxygenation; SGOT ¼ glutamic-oxaloacetic transaminase.
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LOGISTIC REGRESSION FORMULAS. Equation 1: The
90-day CHARM score.

90D CHARM Score ¼ � 2:46þ 0:02ðAlbuminÞ
þ 0:03ðBilirubinÞ þ 0:01ðBNPÞ
þ 0:21ðCreatinineÞ þ 0:01ðASTÞ
� 0:02ðSODIUMÞ þ 0:15ðCARDIAC SURGERYÞ
� 0:01ðIMPLANT DEFIBÞ þ 1:12ðLIFE SUPPORTÞ
� 0:06ðVENTILATORÞ þ 0:65ðPREV TXÞ
� 0:53ðACPT HCV POSÞ þ 1:65ðECMOÞ

Equation 2: The 180-day CHARM score.

180D CHARM Score ¼ � 1:07� 0:04ðAlbuminÞ
þ 0:02ðBilirubinÞ þ 0:01ðBNPÞ þ 0:25ðCreatinineÞ
þ 0:01ðASTÞ � 0:02ðSODIUMÞ
þ 0:19ðCARDIAC SURGERYÞ
� 0:1ðIMPLANT DEFIBÞ þ 0:93ðLIFE SUPPORTÞ
� 0:26ðVENTILATORÞ þ 0:65ðPREV TXÞ
� 0:44ðACPT HCV POSÞ þ 1:66ðECMOÞ
Equation 3: The 1-year CHARM score.

1Y CHARM Score ¼ � 2:3þ 0:07ðAlbuminÞ
þ 0:01ðBilirubinÞ þ 0:01ðBNPÞ þ 0:22ðCreatinineÞ
þ 0:01ðASTÞ � 0:01ðSODIUMÞ
þ 0:2ðCARDIAC SURGERYÞ
� 0:01ðIMPLANT DEFIBÞ þ 0:75ðLIFE SUPPORTÞ
� 0:34ðVENTILATORÞ þ 0:88ðPREV TXÞ
� 0:56ðACPT HCV POSÞ þ 1:56ðECMOÞ

Equation 4: The 2-year CHARM score..

2Y CHARM Score ¼ � 1:97þ 0:1ðAlbuminÞ
þ 0:01ðBilirubinÞ þ 0:01ðBNPÞ þ 0:2ðCreatinineÞ
þ 0:01ðASTÞ � 0:02ðSODIUMÞ
þ 0:18ðCARDIAC SURGERYÞ
þ 0:02ðIMPLANT DEFIBÞ þ 0:63ðLIFE SUPPORTÞ
� 0:39ðVENTILATORÞ þ 0:89ðPREV TXÞ
� 0:47ðACPT HCV POSÞ þ 1:56ðECMOÞ

MODEL CALIBRATION AND THE TIERED-RISK INDEX. The
predicted mortality rates are presented as a function
of the observed mortality rates in Figure 2 for each
risk tier. For the 90-day model, Risk Index (RI) 1 had
an observed mortality rate of 0.43%, RI 2 had a mor-
tality rate of 0.08%, RI 3 had a mortality rate of 1.44%,
RI 4 had a mortality rate of 1.72%, RI 5 had a mortality
rate of 4.45%, and RI 6 had a mortality rate of 9.77%.
Using the Hosmer-Lemeshow method, the goodness-
of-fit observed between the observed and predicted
patient risk was greater than 0.99 for all 4 models
(Supplemental Figure 3). Interestingly, observed and
predicted patient risk was exponentially distributed,
with few waitlisted patients having a relatively higher
risk of experiencing waitlist mortality. For example,
in the 90D model, approximately two-thirds of pa-
tients have less than a 2.5% chance of mortality. All 4
models produced a sensitivity above 99%.
Supplemental Table 2 provides the contingency tables
(observed vs predicted outcomes) for all 4 models.
Using “CalibrationCurves,” we obtained calibration
curve slopes (mean/SD) of 1.02 (0.80-1.24), 1.00 (0.80-
1.21), 1.00 (0.79-1.21), and 1.03 (0.81-1.25) for the 90D,
180D, 1Y, and 2Y models, respectively. The intercepts
(mean/SD) were �0.09 (�0.36 to 0.17), �0.02 (�0.26
to 0.22), �0.01 (�0.23 to 0.22), �0.05 (�0.27 to 0.17),
respectively. The c-statistics (mean/SD) were 0.81
(0.75-0.86), 0.79 (0.73-0.84), 0.77 (0.72-0.82), and
0.76 (0.71-0.81), respectively.

LOGISTIC REGRESSION FOR PREDICTING SHORT-TERM

MORTALITY OUTCOMES. Using sample hold-out vali-
dation, the calculated AUCs (mean/SD) were 0.825
(0.7786-0.8721) (90-day), 0.805 (0.7558-0.854)

https://doi.org/10.1016/j.jacadv.2024.101449
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FIGURE 2 Tiered-Risk Index System

Patient mortality probabilities were calculated for all patients in the cohort (N ¼ 4,176) and are provided as a function of observed patient

mortality rate per tier for the (A) 90-day, (B) 180-day, (C) 1-year, and (D) 2-year models. The goodness-of-fit was calculated with 6 tiers

using the Hosmer-Lemeshow methodology and was greater than 0.99 for all 4 models. The observed morality rate (OBS), number of patients

per group (Tier N), and the number of waitlist patient deaths (Events N) are reported for each tier and model. CHARM ¼ Colorado Heart

failure Acuity Risk Model.
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(180-day), 0.779 (0.730-0.829) (1-year), and 0.766
(0.718-0.814) (2-year), respectively (Figure 3). All 30
random validation sets based on selection splits fell
within the 95% CIs for all 4 models. In summary,
these models and the tiered-risk system provide a
reliable and highly accurate methodology for ranking
the short-term survival of waitlisted heart trans-
plant patients.
TIME-DEPENDENT VALIDATION OF THE CHARM AND

6-TIERED RISK INDEX SYSTEM. We applied the Cox
proportional hazard model as a multivariable and
univariable validation test. In the multivariable
model, all 13 original independent variables were
used. In the univariable model, the independent
variable was the risk index, or tier. We found a sig-
nificant difference in survival times by risk tier. For
the multivariable model, the survival concordance
values were 78.8% (90D), 77.2% (180D), 75.3% (1Y),
and 73.7% (2Y). For the univariable model, the sur-
vival concordance values were 72.6% (90D), 76.1%
(180D), 73.7% (1Y), and 72.1% (2Y). The standard
error was below 0.021 for all 4 concordance values.



FIGURE 3 Area Under the Receiver Operating Characteristic Curves Using Sample Hold-Out Validation

Logistic regression was performed on the training set (N ¼ 2,088) to calculate each model’s coefficients. Predictions were made using the test

set (N¼ 2,088) for the (A) 90-day, (B) 180-day, (C) 1-year, and (D) 2-year models. Upper and lower 95% CIs were provided for each model in

brackets. AUC ¼ area under the curve.

Murphy et al J A C C : A D V A N C E S , V O L . 4 , N O . 1 , 2 0 2 5

The Colorado Heart Failure Acuity Risk Model J A N U A R Y 2 0 2 5 : 1 0 1 4 4 9

8

Figure 4 provides the log (HR) values for each tier and
model. The HR was transformed to the logarithmic
scale so that the risk tiers could be compared in linear
space. For example, in the 90D model, Tier 5 was
twice as likely, on average, to die on the waitlist as
Tier 1. Accordingly, Tier 5 had a 50% increase in the
likelihood of death as compared to Tier 3.

DISCUSSION

In 2023, it was demonstrated that the OPTN’s 6-status
allocation system had only a moderate ability
(AUC ¼ 0.67) to identify the short-term survival
likelihood of waitlisted heart transplant candidates.6

While the current system accounts for many patient
factors, an objective model that can accurately strat-
ify patients by medical urgency is needed to inform
the new continuous distribution system. Formal
pretransplant patient mortality models have been
successfully developed and utilized in liver and kid-
ney transplantation. Evans et al30 demonstrated an
overall 1-year survival rate increase of 18% in high-
acuity patients in the 15 years following the national
implementation of the MELD-Na score. A similar



FIGURE 4 Time-Dependent Univariable Analysis of Tiered-Risk System

We performed time-dependent univariable analysis to assess each tier and each model. All log-transformed HRs are referenced to tier 1 for the

(A) 90-day, (B) 180-day, (C) 1-year, and (D) 2-year models. Upper and lower 95% CIs were provided for each model.
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metric is needed for cardiac transplantation to iden-
tify and prioritize the most critically ill waitlisted
patients.

To this end, we created the CHARM score. This
score used a 6-tiered categorical risk model that can
be designated to patients on the waiting list and can
prioritize patients for waitlist selection. Our models
precisely rank patient subgroups based on waitlist
mortality, with holdout-validation yielding average
AUCs of 0.825 (90-day), 0.805 (180-day), 0.779 (1-
year), and 0.766 (2-year).
The time-dependent concordance values were
78.8% (90D), 77.2% (180D), 75.3% (1Y), and 73.7% (2Y).
This prediction accuracy is the highest of any existing
HF survival or pretransplant mortality score,
including the U.S.-CRS (mean AUC 0.825 vs 0.78 at
90 days). Risk indices for all models were 99%
correlated with the observed mortality rates.

The CHARM score is intended to be used to prior-
itize cardiac transplant candidates at the time of
listing, with the recommendation to renew data
points and recalculate every 90 days. The 1Y and 2Y
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models are intended to better inform the prioritiza-
tion and timing of the most critically ill patients to be
included on the waitlist. Other models, such as the
U.S.-CRS, utilized shorter censoring periods in their
predictions (6 weeks), which did not include the
majority of patient risk and could lead to a misrep-
resentation of the cummulative mortality rate, as
there were relatively fewer patient deaths observed
within the 6-week time period. The 90D time frame
will allow for frequent reevaluation while maintain-
ing a high degree of prediction accuracy. In addition,
this timeframe better falls within the median waitlist
time of 3 to 6 months reported by SRTR in 2019. We
also included additional time lengths of 180D, 1Y, and
2Y models to demonstrate the cumulative patient risk
of death on the waitlist, which has not been included
in any other risk calculator.

We anticipate the CHARM score could be used to
inform the heart continuous distribution system, as it
utilizes a framework that is point-based rather than
status-based, in which candidates are prioritized for
transplant through the designation of a composite
score from a variety of attributes. Staged imple-
mentation of the continuous distribution system is
currently in use for other organs, with anticipated
completion of the heart allocation system within the
next few years. The CHARM score provides a simple,
accurate measure of pretransplant mortality that can
easily be incorporated into a heart transplant com-
posite score.

The 13 independent patient variables incorporated
into the CHARM score were chosen for their objec-
tivity, clinical availability, and relevance to cardiac
illness. Each variable was also determined to signifi-
cantly contribute to the predictive value of waitlist
mortality. Laboratory values were selected for their
evaluation of crucial organ function in the setting of
severe HF. A large meta-analysis of 64 models that
predicted death or hospitalization from HF deter-
mined renal function is one of the most significant
factors in these outcomes.31 Renal function was
included through serum sodium and creatinine.
Multiple studies have demonstrated worsened short-
term mortality for HF patients related to low serum
sodium.32,33 While estimated glomerular filtration
rate, was considered a measure of renal function, it is
not a value directly recorded in the SRTR database
and can be calculated differently by institutions. BNP
serves as an objective marker of cardiac stretch since
it is influenced by the level of end-diastolic volume,
and it can also be an indicator of responsiveness to
diuretic management.34 In addition to physiologic
data, indicator variables such as previous cardiac
surgery, previous cardiac transplant, ventilator sup-
port, and life support proved to be large contributors
to pretransplant mortality. These interventions often
serve as a “bridge” to transplant, reserved for the
most critically ill patients. Previous cardiac surgeries
or transplants are also indicative of a more extensive
history of cardiac illness.

One unique patient variable added to the CHARM
score is that of accepting a hepatitis C virus (HCV)
positive donor heart. This element was added for
multiple reasons. Patients who elect to receive a
HCVþ heart spend less time on the waitlist than those
who reject an HCVþ donor. Thus, HCV acceptance
acts as a surrogate variable for waitlist time. We
specifically chose not to include variables that
depend upon a physician’s practice or measurement,
such as right heart catheterization data or the level of
inotropic support. These variables were excluded
with the intent of reducing bias based on treatment
variation. We also intentionally excluded age and
time on the waitlist to reduce bias.

The next steps for further utilization of the CHARM
score will include simulation modeling and a pro-
spective, multicenter validation study in which these
additional variables are collected and analyzed. We
will also examine time-dependent and ensemble
classifiers. To move the CHARM model into the na-
tional spotlight, we will continue to prospectively
study waitlist mortality and work with all stake-
holders to develop models using complete national
patient databases. We strongly advocate for
increasing data reporting requirements among wait-
list candidates at the national level. The frequency
with which data points are updated, along with the
lack of granularity within reported patient variables,
has posed a challenge for the creation of CHARM and
other similar risk models that utilized the SRTR
database. Nonetheless, this work proves that we can
still provide accurate and reliable medical acuity
metrics.
STUDY LIMITATIONS. Though we present accurate
predictive models, they must be viewed within the
confines of the study limitations, including available
data within the national database. The variables
chosen for the model were limited by the type of data
recorded within SRTR. As such, certain serum
markers were not readily available within the data-
base and therefore could not be accurately used.
Because the coefficients of the serology predictors are



PERSPECTIVES

COMPETENCY IN SYSTEMS-BASED PRACTICE: The Colo-

rado Heart failure Acuity Risk Model (CHARM) score provides a

validated model with strong predictive ability for short-term

mortality among patients waitlisted for cardiac transplantation.

The CHARM score will be useful for prioritizing the selection of

waitlisted patients.

TRANSLATIONAL OUTLOOK: We anticipate the CHARM

score will be useful in the era of continuous distribution to

standardize organ allocation by providing an objective and

intuitive system for stratifying waitlisted heart failure patients

based on medical urgency.
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relatively low, normally distributed, and not inflated,
we expect minimal bias. Further studies will be
needed to aggregate sufficient serology values. These
efforts will greatly improve future models. Similarly
to the US-CRS, we relied on imputation for serological
predictors. Because the imputed laboratory variables
are distributed normally and their coefficient values
are very low, they do not inflate or bias the CHARM
score. Furthermore, the specificity of some variables
was limited. For example, the term “life support” is
broad and includes anyone on inotropic support
alone or varying degrees of temporary or durable
mechanical support. Therefore, “life support”
currently serves as a binary variable within the
model, understanding that different modalities of
mechanical support may contribute differently to
patient risk. For the 1-year and 2-year models, we
acknowledge that a subset of patients may not have
accurate follow-up. Thus, we have validated the
CHARM model using the time-dependent Cox pro-
portional hazard survival regression analysis to
derive a C-statistic that is more robust in the event of
informative censoring.35-37 In terms of statistical
discrimination, logistic regression is often inferior to
the random forest method, gradient boosting, and
other ensemble methodologies.
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