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Abstract 

Background:  To evaluate the imaging biomarkers of human epidermal growth factor receptor 2 (HER2) positive 
breast cancer in comparison to other molecular subtypes and to determine the feasibility of identifying hormone 
receptor (HR) status and lymph node metastasis status using volumetric-tumour histogram-based analysis through 
intravoxel incoherent motion (IVIM) and non-Gaussian diffusion.

Methods:  This study included 145 breast cancer patients with 148 lesions between January and November in 2018. 
Among the 148 lesions, 74 were confirmed to be HER2-positive. The volumetric-tumour histogram-based features 
were extracted from the combined IVIM and non-Gaussian diffusion model. IVIM and non-Gaussian diffusion param-
eters obtained from images of the subjects with different molecular prognostic biomarker statuses were compared 
by Student’s t test or the Mann–Whitney U test. The area under the curve (AUC), sensitivity, and specificity at the best 
cut-off point were reported. The Spearman correlation coefficient was calculated to analyse the correlations of clinical 
tumor nodule metastasis (TNM) stage and Ki67 with the IVIM and non-Gaussian diffusion parameters.

Results:  The entropy of mean kurtosis (MK) was significantly higher in the HER2-positive group than in the HER2-
negative group (p = 0.015), with an AUC of 0.629 (95% CI 0.546, 0.707), a sensitivity of 62.6%, and a specificity of 66.2%. 
For HR status, the MD 5th percentile was higher in the HR-positive group of HER2-positive breast cancer (p = 0.041), 
with an AUC of 0.643 (95% CI 0.523, 0.751), while for lymph node status, the entropy of mean diffusivity (MK) was 
lower in the lymph node positive group (p = 0.040), with an AUC of 0.587 (95% CI 0.504, 0.668). The clinical TNM stage 
and Ki67 index were correlated with several histogram parameters.

Conclusion:  Volumetric-lesion histogram analysis of IVIM and the non-Gaussian diffusion model can be used to 
provide prognostic information about HER2-positive breast cancers and potentially contribute to individualized anti-
HER2 targeted therapy plans .
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Background
Breast cancer is the most common malignancy in women 
and is considered potential heterogeneous [1]. Human 
epidermal growth factor receptor 2 (HER2) positivity, 
accounting for approximately 15–20% of breast cancers, 
is defined by HER2 protein overexpression measured by 
immunohistochemistry (IHC) status (IHC3+) or by fluo-
rescence in  situ hybridization (FISH) analysis. The suc-
cess of targeted neoadjuvant therapy such as trastuzumab 
is especially accepted in HER2-positive breast cancer [2]. 
To date, on the basis of the negativity of hormone-recep-
tor (HR) and positivity of lymph node status, dual anti-
HER2 therapy of the combination of trastuzumab and 
pertuzumab was associated with an increased proportion 
of HER2-positive patients achieving a better prognosis 
[3, 4].

Breast magnetic resonance imaging (MRI) is useful 
for detecting breast cancer and guiding treatment plans 
[5, 6]. Diffusion-weighted imaging (DWI) can differ-
entiate benign and malignant breast lesion, to predict 
the response to neoadjuvant chemotherapy (NAC) and 
determine associated prognostic factors [7, 8]. Because 
the putative apparent diffusion coefficient (ADC) did not 
consider either the non-Gaussian water diffusion or the 
random flow of blood in capillaries, intravoxel incoher-
ent motion (IVIM) and non-Gaussian MRI takes into 
account IVIM effects (low b values) and non-Gaussian 
diffusion effects (high b values) to explore the potential of 
perfusion MRI and non-Gaussian distribution. Lima et al. 
[9] first investigated the IVIM and non-Gaussian MRI in 
breast tissue. They reported that combining the two dif-
fusion models as integrated biomarkers can improve the 
diagnostic value for the differentiation between malig-
nant and benign breast lesions without the need for con-
trast medium and may also help understand the tumour 
biology.

Moreover, there has been a growing interest in tex-
ture analysis, which can be used to evaluate tumour het-
erogeneity by measuring the pixel grey-level on medical 
images [10]. Several studies have investigated the use of 
texture parameters from dynamic contrast-enhanced 
(DCE) images in breast cancer [11–13]. In addition, the 
standard ADC histogram analysis for the identification 
of malignant lesions and its relationship to molecular 
prognostic factors were evaluated in recent studies [14–
16]. However, to our knowledge, investigators have not 
determined whether histogram analysis of both IVIM 
and non-Gaussian diffusion could identify HER2-positive 
breast cancer from other subtypes.

Thus, we used volumetric-tumour histogram-based 
analysis through IVIM and non-Gaussian diffusion MRI 
in breast cancer. The aim was to evaluate the imaging bio-
markers of HER2-positive breast cancer in comparison to 

other molecular subtypes and further to determine the 
feasibility of histogram analysis to identify HR status in 
HER2-positive breast cancer.

Materials and methods
Patient population
This prospective study was received approval from the 
Institutional Review Board (1802181-7). Between January 
and November 2018, 154 patients, who were diagnosed 
with breast cancer or suspected of having breast cancer 
underwent breast MRI in preparation to receive NAC. 
No biopsy or previous neoadjuvant treatment was per-
formed before the baseline MRI. The diagnosis of breast 
lesions was confirmed by core needle biopsy and the 
diagnosis of a suspicious lymph node was confirmed by 
ultrasound-guided fine needle aspiration. The exclusion 
criteria included the following: patients with no obvi-
ous lesion detected on MRI (n = 1), with signal quality 
that was too poor to process DWI (n = 2), with pathol-
ogy revealing lymphoma (n = 1), without pathology and 
loss to follow-up (n = 5). Among all the included patients, 
three were confirmed to have bilateral breast cancer. For 
multicentric or multifocal tumours, the tumours with the 
largest sizes according to MRI were analysed. Finally, 145 
patients with 148 lesions were enrolled in this study.

Acquisition of DW images
All MRI was performed on a MAGNETOM Skyra 3 T 
MR system (Siemens Healthineers, Erlangen, Germany) 
using a dedicated 16-channel phased-array breast coil. 
The DWI in axial view was executed before contrast-
agent injection using trace-weighted diffusion images 
(single-shot echo planar imaging) with spectral adiabatic 
inversion recovery for fat suppression were performed 
with the following parameters: b values (0, 10, 20, 50, 100, 
150, 200, 400, 500, 800, 1000, 1500, 2000 s/mm2); repeti-
tion time/echo time, 5600/75 ms; flip angle, 90 degrees; 
field of view, 180 * 300 mm2; matrix, 96 * 200 mm2; slice 
thickness, 5.0  mm; 25 slices without gap; bandwidth, 
1666  Hz; acquisition time, 6  min 21  s; generalized auto 
calibrating partially parallel acquisitions with an accel-
eration factor of 3; EPI factor, 96. The other sequences 
of breast MRI included a T1-weighted 2D gradient-echo 
and a fat-suppressed T2-weighted 2D fast spin-echo, as 
well as a fat-suppressed T1-weighted 3D fast spoiled gra-
dient-echo sequence before and five times continuously 
after the contrast agent injection in the transverse plane, 
but these data were not considered for this study.

Postprocessing of IVIM and non‑Gaussian diffusion data
DWI data were inline calculated by the scanner inte-
grated Syngo software (Siemens Healthineers) accord-
ing to the monoexponential, biexponential and kurtosis 
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models. The monoexponential diffusion model was cal-
culated by the following equation: Sb = S0 exp (−b* ADC) 
where ADC represents the apparent diffusion coefficient, 
and S0 and Sb are the signal intensity values in the vox-
els with b values of 0 and 1000 s/mm2, respectively. The 
bi-exponential model was expressed by the following 
equation: Sb/S0 = f exp(−b D*) + (1−f ) exp(−b Dt), where 
Dt was the true diffusion, f was the perfusion fraction 
related to microcirculation and D* was the pseudo-diffu-
sion coefficient which represents perfusion-related diffu-
sion or incoherent microcirculation. The b-values used in 
IVIM are generally below 1000 s/mm2 (0, 10, 20, 50, 100, 
150, 200, 400, 500 and 800  s/mm2). The non-Gaussian 
diffusion model was calculated by the following equation: 
Sb = S0 exp(−bMD + b2MD2 MKapp/6), where MD is 
the mean diffusivity and MK is the dimensionless metric 
mean kurtosis expressing the deviation from the Gauss-
ian distribution. The b-values used in IVIM are gener-
ally high b values (0, 500, 1000, 1500 and 2000  s/mm2). 
Parametric maps, including ADC1000, Dt, f, D*, MK and 
MD maps, derived from the three diffusion models were 
generated with least squares fitting of all b-value data on 
a voxel-by-voxel basis with software.

Volumetric‑tumour histogram‑based analysis in IVIM 
and non‑Gaussian diffusion parameters
Histogram analysis was performed with the proto-
type MR Multiparameter Analysis software (Siemens 
Healthineers). The analysis of DWI-derived IVIM and 
non-Gaussian diffusion parameter maps were executed 
separately. Regions of interest (ROIs) were placed manu-
ally on the DW images with a b value of 1000 s/mm2, but 
DCE images to assist in locating the lesions and verify-
ing the lesion boundaries. ROIs were placed on all slices 
that contained the whole tumour and the largest lesion 
(in the case of multicentric or multifocal tumours), and 
care was taken to avoid regions influenced by partial vol-
ume effect (Fig. 1). Two radiologists (C.Y. and Y.Q.C. with 
6 and 2 years of experience in breast MRI, respectively) 
were blinded to the pathological and biochemical find-
ings of each patient, and reviewed the MR images and 
draw the ROIs independently. When discrepancy of ROIs 
arose especially for non-mass enhancement lesion, two of 
them together made a consensus of lesion and redraw the 
ROIs later. The mean ROI of lesion for radiologist 1 was 
37.72 ± 77.10, and the mean ROI of lesion for radiolo-
gist 2 was 45.24 ± 84.64. Spearman correlation showed 
ROI of tumour on DW image had good agreement with 
two radiologists (r = 0.835, p < 0.001). Finally, the data 
from the two radiologists’ average measurements were 
analysed.

Histogram analysis for the whole tumour on the para-
metric maps was performed and the parameters were 

extracted, including percentiles (5th, 50th and 95th of the 
ADC value), skewness (a measure of asymmetry of the 
probability distribution), kurtosis (a measure of the shape 
of the probability distribution), contrast (a measure of 
the signal difference) and entropy (a measure of texture 
irregularity).

Histopathological analysis
All pathological results were defined according to the 
World Health Organization classification of breast tumor 
[17]. According to IHC-determined steroid HRs with 
estrogen receptor (ER), progesterone receptor (PR), and 
HER2 status, as well as tumour proliferation measured 
by Ki 67, breast cancer is considered to consist of four 
molecular types: (1) luminal A-like subtype (ER or PR 
positive, or both, HER2 negative, low proliferation); (2) 
luminal B-like subtype (ER or PR positive, or both, HER2 
negative, high proliferation); (3) HER2 subtype, non-
luminal (HER2 positive and ER and PR negative) or lumi-
nal (HER2 positive and ER or PR positive, or both); (4) 
basal-like subtype (HER2 negative and ER and PR nega-
tive; i.e. triple-negative breast cancer) [18].

Statistical analysis
All data were analysed using SPSS 20.0 (Chicago, IL). Val-
ues of p < 0.05 were considered statistically significant. 
Categorical data were compared with the Pearson Chi 
squared test. IVIM and non-Gaussian diffusion param-
eters in the status of molecular prognostic biomarkers 
were compared by Student’s t test when normally distrib-
uted or by the Mann–Whitney U test when not normally 
distributed. Receiver operating characteristic (ROC) 
curve analysis was used to evaluate the effectiveness of 
IVIM and non-Gaussian diffusion parameters for differ-
entiating HER2 positive breast cancer. The area under the 
curve (AUC), sensitivity, and specificity at the best cut-
off point were reported. The Spearman correlation coef-
ficient was calculated to analyse the correlations between 
of clinical TNM stage, and Ki 67 status with IVIM and 
non-Gaussian diffusion parameters.

Results
Patient characteristics
Of the 148 breast cancer lesions in 145 patients, 19 
lesions (12. 8%) were triple-negative subtype, 14 (9. 
5%) were luminal A subtype, 41 (27. 7%) were luminal 
B and HER2-negative subtype, 34 (23%) were luminal 
HER2-positive subtype, and 40 (27%) were non-luminal 
HER2-positive subtype. The clinical characteristics of the 
patients are listed in Table 1.
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Fig. 1  Workflow for the histogram analysis. a Foreground seed points were manually drawn on the axial view of the original ADC map (b 
value = 1000 s/mm2), and on the multiparametric diffusion parameter maps within the same ROI. b The 3D segmentation was created on the three 
multiplane reconstruction planes, and DCE images were accessed to verify the lesion boundaries



Page 5 of 11You et al. J Transl Med          (2019) 17:182 

Histogram analysis to differentiate HER2‑positive breast 
cancer
There were 74 HER2-positive lesions and 74 HER2-nega-
tive lesions. Of all the histogram analyses of the IVIM and 
non-Gaussian diffusion parameters, only MK entropy 
was significantly higher in the HER2-positive group 
(1.39 ± 0.47) than in HER2-negative group (1.20 ± 0.45, 
p = 0.015) (Fig.  2a). The HER2 subtype differentiation 
yielded an AUC of 0.629 (95% CI 0.546, 0.707), a sensitiv-
ity of 62.6%, and a specificity of 66.2% (Fig. 2b). The other 
histogram parameters did not show a significant differ-
ence between HER2-positive and HER2-negative groups, 
which are detailed in the Additional file 1: table.

Histogram analysis to differentiate HR status and lymph 
node metastasis status in HER2‑positive breast cancer
For HR status, there were 34 HR-positive HER2-posi-
tive lesions and 40 HR-negative HER2-positive lesions. 
The MD 5th percentile was higher in the HR-posi-
tive group (850.12 ± 129.74) than in the HR-negative 

group within the HER2-positive breast cancer patients 
(804.12 ± 144.58, p = 0.041) (Fig.  3a). The HR differen-
tiation yielded an AUC of 0.643 (95% CI 0.523, 0.751), a 
sensitivity of 72.22%, and a specificity of 57.89% (Fig. 3b).

For lymph node status, the MD entropy was lower 
in the lymph node positive group (2.20 ± 0.25) than in 
the lymph node-negative group (2.98 ± 0.15, p = 0.040) 
(Fig. 4a). Lymph node differentiation yielded an AUC of 
0.587 (95% CI 0.504, 0.668), a sensitivity of 37.5%, and 
a specificity of 85% (Fig.  4b). The other IVIM and non-
Gaussian diffusion parameters showed no significant dif-
ference in the differentiation of HR status or lymph node 
status in HER2-positive breast cancer, which are also 
detailed in the Additional file 1: table. The performances 
based on subtype and lymph node differentiation are 
shown in Fig. 5.

IVIM and non‑Gaussian diffusion parameters correlation 
with clinical TNM stage and Ki 67 index
The clinical TNM stage positively correlated with ADC 
skewness with an r of 0.28 (p = 0.000) and ADC kurtosis 

Table 1  Clinicopathological characteristics between the HER2- positive and HER2-negative groups

Numerical data are presented as the mean ± SD. Nonnumerical data are presented as the number of patients (percentage). The p value was analysed between HER2-
negative group and the HER2-positive group

HER2 human epidermal growth factor receptor 2, cTNM clinical TNM stage

Variable Overall (n = 148) HER2(−) (n = 74) HER2(+) (n = 74) p value

Age (year) 49.68 ± 10.64 50.47 ± 11.15 49.04 ± 10.11 0.414

Diameter (cm) 3.42 ± 1.37 3.35 ± 1.20 3.48 ± 1.52 0.736

Affected side

 Right 64 (43.2) 30 (40.5) 34 (45.9) 0.507

 Left 84 (56.4) 44 (59.5) 40 (54.1)

T stage

 1 9 (6.0) 5 (6.7) 4 (5.4) 0.235

 2 55 (37.2) 26 (35.1) 29 (39.2)

 3 30 (20.3) 11 (14.9) 19 (25.7)

 4 54 (36.5) 32 (43.2) 22 (29.7)

N stage

 0 20 (13.5) 11 (14.9) 9 (12.1) 0.967

 1 64 (43.2) 31 (41.9) 33 (44.6)

 2 26 (17.6) 13 (17.5) 13 (17.6)

 3 38 (25.7) 19 (25.7) 19 (25.7)

M stage

 0 136 (91.9) 68 (91.9) 68 (91.9) 1.00

 1 12 (8.1) 6 (8.1) 6 (8.1)

cTNM

 1 4 (2.7) 2 (2.7) 2 (2.7) 0.685

 2 44 (29.7) 25 (33.8) 19 (25.7)

 3 79 (53.4) 36 (48.6) 43 (58.1)

 4 21 (14.2) 11 (14.9) 10 (13.5)

Ki 67

0.37 ± 0.20 0.35 ± 0.23 0.38 ± 0.18 0.360
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with an r of 0.21 (p = 0.006). Statistically, Ki 67 was nega-
tively correlated with the 50th percentile and 95th per-
centile of ADC, 95th percentile of Dt, and the skewness 
and kurtosis of f, with r values of − 0.23 (p = 0.005), 
− 0.24 (p = 0.004), − 0.21 (p = 0.019), − 0.20 (p = 0.020) 
and − 0.25 (p = 0.004), respectively. Ki 67 was positively 
correlated with kurtosis of ADC, 50th percentile, 95th 
percentile and contrast of f, and with 5th percentile of 

MK, with r values of 0.19 (p = 0.020), 0.22 (p = 0.017), 
0.20 (p = 0.013), 0.23 (p = 0.020) and 0.18 (p = 0.025), 
respectively (Table 2).

Discussion
Our study found that histogram parameters of MD and 
MK from non-Gaussian diffusion maps can be used as 
potential biomarkers for differentiating HER2-positive 

Fig. 2  a Boxplots illustrating a comparison of MKentropy indexes between the HER2-positive and HER2-negative groups. b Receiver operating 
characteristic (ROC) curve for the differentiation of HER2-positive and HER2-negative groups using MK entropy for the entire tumour volume

Fig. 3  a Boxplots illustrating a comparison of MD 5th percentile indexes between HR-positive and HR-negative groups within the HER2 positive 
breast cancer patients. b Receiver operating characteristic (ROC) curve for differentiating HR status using MD 5th percentile for the entire tumour 
volume
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subtypes and further for identifying the HR status and 
lymph node metastasis status in HER2-positive breast 
cancers. In the present study, the volumetric-tumour 
histogram parameters were also performed to assess the 
correlations with clinical TNM stage and Ki 67 in HER2-
positive subtypes, such as the 50th, 95th percentile, 
skewness and kurtosis of ADC and f values, the 95th per-
centile of Dt value, the 5th percentile of MK value.

Technically, this study is the first to investigate the 
performance of volumetric-tumour histogram-based 
analysis on parameters derived from combined IVIM 
and non-Gaussian diffusion models. Due to the simplic-
ity and ubiquity of the single component in DWI model, 
there has been increased use of advanced DWI tech-
niques to assess the applicability to cancer diagnosis [8, 
19–21]. Lima et al. first proposed the approach of com-
bined IVIM and non-Gaussian diffusion MRI to better 
differentiate benign and malignant breast tumours; how-
ever, they did not further assess this combined advanced 
DWI model by histogram analysis [6, 9, 22–24]. Some 
other studies have investigated the heterogeneity of 
breast cancer using histogram analysis, which can poten-
tially provide additional information beyond the mean 
values of ADCs, such as the skewness and kurtosis of the 
parameter distributions [25, 26]. Thus, the method of our 
study was based on the histogram-based analysis of the 
combined IVIM and non-Gaussian diffusion.

Our study was designed to mainly investigate HER2-
positive breast cancer. Most previous DWI studies have 
mainly focused on ways to improve cancer detection and 

diagnosis, because malignant lesions are more cellular 
and vascular than benign entities [7, 8, 27]. Additionally, 
a few studies have focused on the relationship of DWI 
parameters with prognostic factors in breast cancer [28, 
29]. A key finding in these reports is a significantly lower 
ADC value and lower ADC percentiles value in HR-posi-
tive tumours, which is speculated to be related to a lower 
perfusion contribution. However, no significant correla-
tion was observed between HER2 status and the mean 
value of IVIM and non-Gaussian diffusion parameters. 
To date, a lack of evidences or studies further using a his-
togram analysis of advanced DWI models were applied to 
differentiate HER2 status especially, noting that under-
standing the heterogeneity of HER2-positive breast can-
cer can better guide targeted treatment. In our study, 
all the average values of ADC, IVIM and non-Gaussian 
diffusion showed no significant difference in HER2 sta-
tus differentiation, which was in line with the findings 
of Lima et  al. [23]. Partially different from the findings 
of Kim et  al. and Martincich et  al., they reported that 
higher ADC value were common seen in HER2-positive 
tumours due to the effect of higher tumour blood flow 
and an increased volume of extracellular fluid [14, 30]. 
Furthermore, the entropy of MK from histogram param-
eters was significantly higher in the HER2-positive group 
than in the HER2-negative group. The possible explana-
tion was that the higher entropy of MK, represented the 
increased heterogeneity, was associated with increased 
angiogenesis and necrosis through induction of vascu-
lar endothelial growth factor (VEGF) caused by HER2 

Fig. 4  a Boxplots illustrating a comparison of MD entropy indexes between the lymph node-positive and -negative groups within HER2 positive 
breast cancer patients. b Receiver operating characteristic (ROC) curve for differentiating lymph node status using MD entropy for the entire 
tumour volume
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Fig. 5  A 48-year-old female with human epidermal growth factor receptor 2 (HER2)-positive breast cancer, with hormone receptor (HR) -negative 
status and lymph node -positive status. a The 3D segmentation of the lesion was created on the three multiplane reconstruction planes, and 
DCE images were accessed to verify the lesion boundaries. b MK and MD maps overlaid with colour maps of ADC values and the histogram of 
whole-tumour MK and MD maps. The MK entropy was 1.83, the MD 5th percentile was 776.64 and the MD entropy was 2.13
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expression [31, 32]. Therefore, our findings revealed that 
the entropy of MK derived from histogram analysis can 
identify HER2-positive subtypes, which were essential for 
guiding the targeted therapy of trastuzumab.

Owing to the new results of the APHINITY study, tras-
tuzumab combined with pertuzumab has been shown to 
be more effective than trastuzumab alone, especially in 
patients with HR-negative and lymph node-positive sta-
tus [33]. Thus, to select suitable patients for dual-target 
treatment among HER2-positive breast cancer patients, 
we further investigated the feasibility of histogram anal-
ysis for differentiating the HR receptor and lymph node 
statuses. Our study found that the 5th percentile of MD 
was lower in the HR-negative group and that the entropy 
of MD was lower in the lymph node-positive group. For 
HER2-positive patients, the status of HR-negative and 
lymph node-positive may result in a more aggressive 
tumours and higher risk for recurrence and metastasis 
[34]. The lower value of the 5th percentile and entropy 
derived from the MD of the non-Gaussian diffusion 
model represents a decrease in the overall water mole-
cule diffusion and an increase in the diffusion resistance. 
Kim et al. [35] also found that lower tumour ADC values 
were associated with the presence of lymph node metas-
tasis in invasive ductal carcinoma, which was partially in 
line with our findings because MD was corrected by non-
Gaussian distribution. Lower histogram indexes from 
ADC value were related to increased microenvironmen-
tal stiffness that may reflect a restriction of water diffu-
sion in a breast tumour.

Furthermore, our study investigated the relationship 
between histogram parameters and clinical TNM stage, 
as well as the Ki 67 index. Our results showed a positive 
correlation between the clinical TNM stage and tumour 
skewness and kurtosis of ADC values, which were con-
sistent with previous observations [27]. High-grade 
tumours are characterized by the absence of tubule and 

gland formation, marked variation of nuclear pleomor-
phism, and high mitotic counts. These changes represent 
the increasing tissue complexity at the microstructural 
level, thereby manifesting higher kurtosis and skewness 
of ADC in tumour. Additionally, we further reported the 
correlation between multiparametric DWI parameters 
and Ki 67 index. Partially consisted with previous obser-
vations, a high Ki 67 index was related to significantly 
lowered 50th percentile and 95th percentile of ADC val-
ues, 95th percentile of Dt value and to skewness and kur-
tosis of f value [14, 29]. Meanwhile, our study also found 
several other histogram parameters that are positively 
correlated with the Ki 67 index, such as kurtosis of ADC, 
50th percentile, 95th percentile and contrast of f, and 
with 5th percentile of MK. As we known, the Ki-67 index 
is correlated with a high mitotic count and recurrent dis-
ease and can be considered as a marker evaluating the 
degree of cellularity. Some membrane activity between 
cells might contribute to DWI parameter behavior. 
These findings still need further studies to better under-
stand the special clinical significance of these histogram 
parameters.

There are several limitations in this study. First, for 
multicentric or multifocal tumours, small lesions with a 
diameter less than 5  mm were not included due to the 
slice thickness and limited resolution of DWI. Readout-
segmented DWI is required to assess smaller lesions in 
further studies. Second, only the first-order histogram-
based features of DWI were extracted in this study. Even 
though a few features were found to be significant, the 
AUC values were not high enough. More extensive obser-
vations of these relationships are needed to confirm these 
findings according to increase the number of samples. 
The histogram-based features of DCE images and T2WI, 
as well as the higher-order texture features, are still war-
ranted. Meanwhile, based on the current findings of 
these statistical indexes, the future study hopes to expand 

Table 2  Spearman’s correlation coefficients (r) of  clinical TNM stage, Ki 67 and  with  combined IVIM and  non-Gaussian 
diffusion parameters

ADC apparent diffusion coefficient, Dt true diffusion coefficient, f perfusion fraction diffusion, D* pseudo-diffusion coefficient, MK mean kurtosis, MD mean diffusivity

*p < 0.05 was considered statistically significant

ADC Dt f D* MK MD

cTNM Ki67 cTNM Ki67 cTNM Ki67 cTNM Ki67 cTNM Ki67 cTNM Ki67

50th − 0.61 − 0.23* − 0.04 − 0.11 0.04 0.22* − 0.14 − 0.06 0.02 0.14 − 0.05 − 0.60

5th − 0.23 − 0.14 − 0.02 − 0.08 0.04 0.13 − 0.04 0.01 0.05 0.18* − 0.02 − 0.13

95th − 0.40 − 0.24* − 0.07 − 0.21* 0.04 0.20* − 0.12 − 0.01 0.03 0.07 − 0.10 − 0.05

Skewness 0.28* 0.11 0.12 0.16 − 0.02 − 0.20* 0.05 − 0.01 − 0.12 − 0.07 0.16 − 0.04

Kurtosis 0.21* 0.19* 0.04 0.09 − 0.01 − 0.25* 0.09 − 0.02 − 0.12 − 0.13 0.06 − 0.01

Contrast − 0.13 − 0.12 − 0.12 − 0.03 − 0.02 0.23* − 0.10 − 0.02 0.01 0.12 − 0.01 0.12

Entropy − 0.14 − 0.13 − 0.01 − 0.04 0.113 0.06 − 0.02 0.21 0.024 0.11 0.05 − 0.12
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the sample size in order to make the trend more obvi-
ous and improve the diagnostic efficiency. Third, most 
of the patients in this study received NAC, and follow-
up MRI examinations were still being performed. This 
study focused on the histogram-based features of HER2-
positive breast cancer. The diagnostic value of histogram 
features to predict the response to NAC is needed in the 
future.

Conclusion
In conclusion, volumetric-lesion histogram analysis of 
IVIM and non-Gaussian diffusion, especially for the 
non-Gaussian diffusion model, may be useful in provid-
ing prognostic information about HER2-positive breast 
cancers, thus potentially contributing to individualized 
anti-HER2 targeted therapy plans and might play an 
important role in evaluating the NAC response. Further 
studies still are needed.

Additional file

Additional file 1. All the parameters of histogram analysis for the whole 
tumour in different groups.
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