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Nasopharyngeal carcinoma (NPC) is the most common malignant tumor of the nasopharynx. The delicate nature of the
nasopharyngeal structures means that noninvasive magnetic resonance imaging (MRI) is the preferred diagnostic technique for
NPC. However, NPC is a typically infiltrative tumor, usually with a small volume, and thus, it remains challenging to
discriminate it from tightly connected surrounding tissues. To address this issue, this study proposes a voxel-wise discriminate
method for locating and segmenting NPC from normal tissues in MRI sequences. The located NPC is refined to obtain its
accurate segmentation results by an original multiviewed collaborative dictionary classification (CODL) model. The proposed
CODL reconstructs a latent intact space and equips it with discriminative power for the collective multiview analysis task.
Experiments on synthetic data demonstrate that CODL is capable of finding a discriminative space for multiview orthogonal
data. We then evaluated the method on real NPC. Experimental results show that CODL could accurately discriminate and
localize NPCs of different volumes. This method achieved superior performances in segmenting NPC compared with
benchmark methods. Robust segmentation results show that CODL can effectively assist clinicians in locating NPC.

1. Introduction

Nasopharyngeal carcinoma (NPC) is an enigmatic malig-
nancy with marked racial and geographical differences, being
particularly prevalent in southern China, Southeast Asia, and
northern Africa [1, 2]. Although advances in therapeutic tech-
niques have contributed to improve clinical outcomes for
patients with NPC, the mortality rate remains high. Early
detection and accurate tumor localization of NPC are vital
for surgical planning. Magnetic resonance imaging (MRI) is
the first choice in primary tumor delineatio and a presurgical
tool for localization and evaluation of the tumor entity [3–5].
In practice, the patient is usually scanned by T1-weighted
(T1-w) or T2-weighted (T2-w) MR imaging. The T2-
weighted (T2-w) imaging provides better fine structural infor-
mation on soft tissues than by T1-w imaging. A contrast-

enhanced T1-weighted (CET1-w) imaging is sometimes oper-
ated to provide direct evidence on tumor occurrence. Cur-
rently, identification and comprehensive assessment of the
carcinoma entity NPC remain a great challenge. The infiltra-
tive and migratory characteristics of NPC make it difficult to
be discriminated from surrounding tissues.

To achieve automatic (or semiautomatic) segmentation of
the NPC, traditional image processing has been used to fulfill
the task. For example, [6] proposed a semiautomatic workflow,
including masking, thresholding, and seed growing, to segment
NPC from both T2-w and CET1-w from 7 patients to help radi-
ation therapy. [7] proposed an automatic NPC segmentation
method based on region growing and clustering and used neu-
ral networks to classify suspicious regions. [8] proposed to use a
genetic algorithm for selecting the informative features and the
support vector machine for classifying NPC. With the great
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success of deep learning models in computer vision, [9] pro-
posed to use deep convolutional neural networks and graph
cut on T1-w images from 30 NPC patients. [10] tested a deep
deconvolutional neural network, composing of an encoder net-
work and a decoder network, on CT images from 230 patients.
[11] reported an automatic NPC segmentation method based
on the convolutional neural network (CNN) architecture with
dynamic contrast-enhanced MRI. [12] used fully convolutional
networks with auxiliary paths to achieve automatic segmenta-
tion of NPC on PET-CT images. [13] used a modified U-Net
model to automatically segment NPC on CT images from 502
patients. [14] proposed an automated method based on CNN
for NPC segmentation on dual-sequence MRI (i.e., T1-w and
T2-w) from 44 patients. Furthermore, the tumor volume varies
greatly andmany of them are small. Such sample characteristics
raise a large difficulty in constructing representative learning
models using deep networks.

Recently, multiview learning models have been developed
to analyze images from various imaging modalities or views.
Fruitful advances have beenmade in reconstruction, face recog-
nition, humanmotion recognition, and other object recognition
issues [15–17]. In the current study, each patient underwent
MRI by three sequences (i.e., T1-w, T2-w, and CET1-w) to
enjoy the merits of different imaging characteristics (see
Figure 1). The study is aimed at achieving the identification
and segmentation of the NPC with high accuracy. Different
views usually provide supplemental information. The problem
of NPC segmentation can be formulated as a voxel-wise dictio-
nary learning problem with three different views.

However, existing multiview learning methods cannot be
tailored directly to be applied in NPC localization and seg-
mentation. From the methodological aspect, most NPCs
only occupy a small area in the entire slice. Such imbalance

also results in a high false positive rate in applying learning
models directly. To solve this difficulty, we preprocessed
the data, that is, using a specially designed deep learning
model with a fully convolutional network (FCN) structure to
roughly locate the suspicious tumor area. In light of the advan-
tages of multiview subspace learning, we propose to use a mul-
tiview learning collaborative dictionary model, which we call
CODL, to further refine the detailed structure of NPC. The
flowchart of NPC segmentation is illustrated in Figure 2.

The major contributions of our work are as follows:

(1) An original collaborative dictionary model for multi-
view learning (CODL) is proposed to achieve fine seg-
mentation. The CODL integrates cooperative
information from multiple views to find latent intact
space for the data and renders the latent space discrim-
inative. The latent space is constructed by collaborative
dictionary learning incorporating membership to pos-
sess discriminative power. Our approach takes into
account the label of the samples to latent intact space.
This gives a consistent indicator matrix discriminative
capability

(2) The numerical scheme involved in solving the CODL
is provided. It treated the proposed unified frame-
work into solvable subproblems, each with an explicit
solution and a fast computation

(3) While using all three MR sequences (T1-w, T2-w, and
CET1-w) achieved the highest accuracy, we show that,
for patients having kidney diseases that prevent the
use of contrast agent necessary in CET1-w imaging
[18, 19], using T1-w and T2-w alone does not signifi-
cantly undermine the segmentation accuracy. This

(a) (b)

(c) (d)

Figure 1: Example MR slices with three sequences. From left to right: (a) ground truth, (b) T1-w, (c) T2-w, and (d) CET1-w.
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highlights the sensitivity and stability of the proposed
CODL algorithm and improves the applicability of the
proposed framework

2. Literature Review

Sparse codes generated by dictionaries can be directly used as
features to train classifiers for recognition [20]. This two-
stage scheme has been extensively used in many existing
methods [21–25], such method uses the discriminative
nature of sparse representation to perform classification.
However, generated sparse codes are often insufficiently dis-
criminative in complex recognition tasks [26]. One alterna-
tive is to unify dictionary learning and classifier training in
an optimization model [27]. However, most of the supervised
dictionary methods only employ single-view information in
the learning process, which will result in the data not having
the optimal expressibility. Besides, the model will also
depend on the peculiarities of training data.

A naive way of multiview learning is feature fusion [28].
However, consolidating each single view may be suboptimal
if the different views belong to different sample spaces. To
address the drawback, weighted combinations [29] have been
proposed. Alternatively, recent advances are aimed at learn-
ing the multiview data via finding an intact space, such as
the multiview intact space learning (MISL) [15] and the mul-
tiview discriminant analysis with view consistency (MvDA-
VC) [16]. In such approaches, a latent subspace shared by

multiple views is learned by assuming that the input views
are generated from this latent subspace. For multiview intact
space learning, however, class membership is seldom used to
find the optimal latent subspace and has little power available
to handle problems in supervised learning.

As the goal of this paper is to develop amultiview dictionary
learning method for voxel-wise classification. We first give a
brief review of the supervised dictionary and multiview sub-
space learning methods related to our work. In this paper, we
propose a novel collaborative dictionary model for multiview
learning, which also takes into account the label of the samples
to latent intact space. The construction of the latent space is
guided by the supervised dictionary learning within each indi-
vidual view and equipped to have discriminative power.

3. Materials and Methods

3.1. Dataset. A total of 24 patients with nonmetastatic NPC at
the Sun Yat-sen University Cancer Center (SYSUCC) were
enrolled in this study. MRI was performed on a 3.0-T scanner
(Discovery MR750; GE Healthcare, Milwaukee, WI, USA).
The imaging parameters are as follows: axial T1-w imaging
(FSE, TR = 540ms, and TE = 11:8ms), axial T2-w imaging
(FSE,TR = 4000ms, and TE = 99ms), and axial CET1-w imag-
ing (FSE, TR = 540ms, and TE = 11:8ms). The number of
slices per patient was 16, 32, or 36. Not every layer of MR
images has lesions. The interval between each layer of images
is 5mm, in which imaging has a high resolution of 0:43mm
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Figure 2: The workflow of location and segmentation of NPC. It consists of two steps, rough location by FCN and pixel-wise fine
classification by CODL.
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× 0:43mm. T1-w, T2-w, and CET1-w MR sequences were
assessed for each patient. Regions of interest (ROI) were drawn
by four experienced radiologists (>3 years of clinical experience)
using semiautomatic methods. They were required to draw all
discernable tumor regions cautiously along axial directions.
Any disagreements were resolved through negotiating until full
consent was derived by the four.

The purpose of this study is to develop a multiview dic-
tionary learning method for voxel-wise classification. We
first give a rigid quality control on the selection of slices. Fol-
lowing the principle of multiple modalities sequences align-
ment, in total, 90 slices covering 30 instances of distinct
tumor sizes were selected for our experiment. Each instance
has three MR sequences (i.e., T1-w, T2-w, and CET1-w)
and well-aligned before feeding into models.

3.2. A Collaborative Dictionary Model for Multiview
Classification (CODL). In this paper, we proposed a collabo-
rative multiview learning model to fuse multiple image
modalities into a consolidated space. By integrating each sin-
gle modality and exploiting its characteristics comprehen-
sively, the information among different modalities is
actively learned and reinterpreted in a latent space. The
supervised membership is used to render the latent space
being discriminative, and thus, the sample classification is
finally conducted within the learned latent space.

3.2.1. Formulation of Multiview Collaborative Classification
Model. Mathematically, let XðvÞ = ½xðvÞ1 , xðvÞ2 ,⋯,xðvÞs � ∈ℝn×sðv
= 1, 2,⋯,mÞ denote a dataset containing s samples from the
vth view, with each sample characterized by a n-dimen-
sional vector. We want to consolidate the multiview data into
a latent space, denoted by Y = ½y1, y2,⋯,ys� ∈ℝd×s, where d is
the dimensionality of the latent space.

Let DðvÞ ∈ℝn×dðv = 1, 2,⋯,mÞ denote the dictionary
learned in the vth view. The label for the training samples
is denoted by L. Our aim is to learn an informative latent
space from multiple modalities and then achieve accurate
classification task within the latent space. To this end, we
proposed the following model to achieve latent space learn-
ing and classification simultaneously.

argmin
Y ,D vð Þ ,β

〠
m

v=1

1
2

X vð Þ −D vð ÞY
��� ���2

2
+
1
2
λ1 L − YTβ
�� ��2

2 + λ2 βk k1:

ð1Þ

The first term in Equation (1) controls data fidelity by
minimizing the reconstruction errors in the latent space Y
through the dictionary DðvÞ. The second term renders the
latent space with discriminative power. The two terms work
collaboratively to yield a sharable latent space for different
views. The third term encourages the loading coefficient β
to be sparse to achieve economic expression. Besides, it also
helps to stabilize the optimization due to large freedom in
the objective function. The hyperparameters λ1 and λ2 are
aimed at penalizing the reconstruction error and sparsity.

Once we obtain the learned dictionariesDðvÞðv = 1, 2,⋯,mÞ
and the latent spaceY, we canmap a query sample qi ∈ℝ

n to its

representation q̂ ∈ℝd in the latent space. The latent representa-
tion q̂ is estimated byminimizing the following energy function:

argmin
q̂

〠
m

v=1

1
2

qi −D vð Þq̂
��� ���2

2
: ð2Þ

Finally, we can classify the sample q̂ in the latent space Y
using benchmark classification models, e.g., k-nearest neighbor.

The proposed CODL not only integrates complementary
information in multiple views to find a latent intact space for
the data but also renders the latent space discriminative.

3.2.2. Numerical Scheme for Solving CODL. The objective
function Equation (1) is convex with respect to DðvÞ and Y .
Therefore, we used a heuristic alternating direction method
to solve it. By minimizing one variable while fixing the others,
the alternating direction method iteratively updates each var-
iable until convergence. The alternate minimization method
enjoys an excellent characteristic. It can decompose a large
complex problem into small-sized subproblems, thus
enabling parallel solving to have a quick convergence. In par-
ticular to our problem, it decomposes Equation (1) into three
subproblems with respect to the three variables DðvÞ, Y , and β
.

Step 1 to update DðvÞ: by fixing Y and β and discarding
irrelevant terms, the objective function Equation (1) could
be simplified as

argmin
D vð Þ

〠
m

v=1

1
2

X vð Þ −D vð ÞY
��� ���2

2
: ð3Þ

It is convex and differentiable with respect to the variable
DðvÞ. By setting the gradient to zero, one has an explicit solu-
tion:

D vð Þ = X vð ÞYT YYT� �−1
: ð4Þ

Step 2 to update β: by fixing the variables DðvÞ and Y , the
objective function Equation (1) could be simplified as:

argmin
β

1
2
λ1 L − YTβ

��2
2 + λ2

��� ���β
�����
1

: ð5Þ

It resembles the classical least absolute shrinkage and
selection operator (LASSO) problem. By using a proximal
gradient, its solution could be obtained by the iterative soft-
thresholding algorithm (ISTA) [30]:

βk = argmin
β

1
2

L − YTβ
�� ��2

2 + βk k1 = S λ1/λ2ð Þt β k−1ð Þ + tY L − YTβ k−1ð Þ
� �� �

,

ð6Þ

where t is the step size and SλtðβÞ is the soft-thresholding
operator. One could further accelerate the ISTA to achieve
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fast convergence

β kð Þ = S λ1/λ2ð Þt g + tY L − YTg
� �� �

, g = β k−1ð Þ +
k − 2
k + 1

β k−1ð Þ − β k−2ð Þ
� �

:

ð7Þ

Step 3 to update Y : by fixing DðvÞ and β, the objective
function Equation (1) could be simplified as

argmin
Y

〠
m

v=1

1
2

X vð Þ −D vð ÞY
��� ���2

2
+
1
2
λ1 L − YTβ
�� ��2

2: ð8Þ

Setting the gradient with respect to Y to be zero, one has

Y = 〠
m

v=1
D vð Þ
� �T

D vð Þ + λ1ββ
T

 !−1

〠
m

v=1
D vð Þ
� �T

X vð Þ + λ1βL
T

 !
:

ð9Þ

The above three schemes are iteratively updated until
convergence.

In the testing phase, one needs to find the new represen-
tation q̂ for query samples q through the dictionary DðvÞ by
solving Equation (2). It is a standard least square minimiza-
tion problem with an explicit solution

q̂ = 〠
m

v=1
D vð ÞD vð Þ
� �" #−1

〠
m

v=1
D vð Þq: ð10Þ

The pseudocode for solving CODL is provided in
Algorithm 1.

3.2.3. Complexity Analysis. The computational time of solving
the proposed model is mainly taken by updating the DðvÞ, β,
and Y. As mentioned in Section 3.2.1, DðvÞ ∈ℝn×d, β ∈ℝd×1,
and Y ∈ℝd×s, where n is the dimensionality of the vth view, d
is the dimensionality of the latent space, and s is the number
of multiview objects. According to Algorithm 1, the main com-
putational cost of CODL is incurred in the iterative calculations

ofDðvÞ, β, and Y. In each inner iteration, the computational cost
of solving DðvÞ by Equation (4) is Oðnsd + d2s + d3 + nd2Þ, the
computational cost of solving β by Equation (6) is Oðd3 + d2sÞ,
and the computational cost of solving Y via Equation (9) is O
ðd2n + d2s + dns + d3Þ. Therefore, the total computational
complexity is Oðdns + d2n + d2s + d3Þ.

4. Experiments and Results

We applied the proposed model on both a synthetic dataset
and a real NPC dataset. For a fair comparison, each method
was run on the synthetic data 10 times, and the averaged
results were recorded. On a real NPC dataset, we tested
the performance of each method using 10-fold cross-
validation scheme. Classification accuracy was measured in
terms of average accuracy across ten trials on different train-
ing and testing sets. Moreover, the parameters in each com-
pared method are tuned to meet the best performance in the
suggested range. For CODL, we empirically set the parame-
ters, that is, λ1 = 0:01, λ2 = 0:7 for single view, λ1 = 1:0, λ2
= 0:2 for two views, and λ1 = 3:8, λ2 = 0:2 for three views,
throughout all experiments. All of our experiments were per-
formed on a desktop computer with a 4.20GHz Intel(R)
Core (TM)i7-7700K CPU, 16.0GB of RAM, and MATLAB
R2017a (×64).

4.1. Evaluation Metrics and Baseline Methods for
Performance Comparisons. Six widely used metrics, including
the sensitivity (SENS), the dice similarity coefficient (DICE),
the area under the receiver operating characteristic curve
(AUC), intersection over union (IoU), mean pixel accuracy
(MPA), and Hausdorff distance (HD) were employed to mea-
sure the performances of each tested method. These qualitative
metrics were defined as follows:

SENS = TP
TP + FN

,

DICE =
2TP

TP + FN + TP + FP
,

IoU =
TP

TP + FP + FN
,

MPA =
TPR + TNR

2
,

ð11Þ

Input: X = fXðvÞ ∣ 1 ≤ v ≤mg, L, λ1, λ2.
1: Initialize DðvÞ, Y , and β;
2: repeat
3: Update DðvÞ for ðv = 1, 2,⋯,mÞ by solving Equation (3);
4: Update β by solving Equation (5);
5: Update Y by solving Equation (8);
6: until convergence
7: Get q̂ by solving subproblem Equation (2);
8: Get classification result by applying k-Nearest Neighbor.
Output: The classification result.

Algorithm 1: The algorithm for solving CODL.
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where TP, FP, TN, FN, TPR, and TNR represented true posi-
tive, false positive, true negative, false negative, true positive rate,
and true negative rate, respectively. We also plotted the receiver
operating characteristic curve (ROC) for eachmethod. The area
under the ROC curve (AUC) was then estimated. For two point
sets A and B, the Hausdorff distance between these two sets is
defined as follows:

HD A, Bð Þ =max hd A, Bð Þ, hd B, Að Þð Þ , ð12Þ

where hdðA, BÞ =max
x∈X

min
y∈Y

kx − yk2, hdðB, AÞ =max
y∈Y

min
x∈X

kx − yk2. For this study, we have used the Euclidean norm
kx − yk2.

Several benchmark methods are borrowed to serve as
baseline methods for comparisons. They are widely used
multiview methods and most relevant to our method.

(i) Support vector machine (SVM) [31]: we concatenate
the features of all views and perform support vector
machine classification

(ii) Multiview intact space learning (MISL) [15]: it is
aimed at integrating the encoded complementary
information from different views into a latent intact
space. It shows theoretically that combining multiple
views can obtain abundant information for latent
intact space learning

(iii) Multiview discriminant analysis with view consistency
(MvDA-VC) [16]: it seeks for a single discriminant
common space for multiple views in a nonpairwise
manner by jointly learning multiple view-specific lin-
ear transforms. MvDA-VCmethod has achieved good
performance in addressing the problem of object rec-
ognition from multiple views
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Figure 3: A toy example to demonstrate the discrimination power of the CODL. The data is collected from three views on (a) X-Y plane, (b)
Y-Z plane, and (c) X-Z plane. The reconstructed results in X-Y-Z space by CODL on (d) the intact noiseless data, (e) the noisy data with
std = 0:5, and (f) its std = 1 noisy counterpart are also shown. Different classes are highlighted in different colors.
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(a) Zhao et al. [12]: it uses fully convolutional networks
with an auxiliary path to achieve automatic segmen-
tation of NPC on dual-modality PET-CT images.
The proposed method improves NPC segmentation
by guiding the training of lower layers by auxiliary
paths

(b) Li et al. [13]: it proposes a modified version of the
U-Net, which performs well on NPC segmentation
by modifying the downsampling layers and upsam-
pling layers to have a similar learning ability and

predict the same spatial resolution as the source
image

4.2. Discriminative Capability Tests of CODL on Synthetic
Data. We first constructed a synthetic data to test the discrim-
ination power of the proposed methods. The synthetic data
consisted of three classes, and they were separable within a
three-dimensional space, but inseparable when projected
orthogonally into two-dimensional (2D) plane (i.e., X-Y and
Y-Z planes). The projected samples into each 2D plane were

Table 1: The performance of different methods on noisy synthetic datasets (mean ± standard deviation).

Method Noise free std = 0:25 std = 0:5 std = 1
SVM (V1) 0:664 ± 0:007 0:647 ± 0:008 0:614 ± 0:009 0:527 ± 0:013

SVM (V2) 0:606 ± 0:008 0:563 ± 0:009 0:561 ± 0:008 0:462 ± 0:034

SVM (V3) 0:938 ± 0:016 0:932 ± 0:016 0:843 ± 0:018 0:671 ± 0:021

CODL (V1) 0:668 ± 0:011 0:659 ± 0:007 0:621 ± 0:010 0:523 ± 0:014

CODL (V2) 0:664 ± 0:011 0:648 ± 0:013 0:591 ± 0:011 0:496 ± 0:012

CODL (V3) 0:994 ± 0:002 0:969 ± 0:005 0:874 ± 0:008 0:679 ± 0:014

SVM (FeaConcat) 0:946 ± 0:007 0:912 ± 0:007 0:843 ± 0:021 0:735 ± 0:042

MISL (fusion) 0:984 ± 0:004 0:966 ± 0:006 0:908 ± 0:011 0:733 ± 0:013

MvDA-VC (fusion) 0:995 ± 0:002 0:968 ± 0:005 0:876 ± 0:010 0:675 ± 0:011

CODL (fusion) 0:987 ± 0:002 0:971 ± 0:004 0:911 ± 0:006 0:749 ± 0:011
∗The V1, V2, and V3 denote X-Y , Y-Z, and X-Z views, respectively. ∗FeaConcat means that we concatenate features of all views to generate a combined feature.
∗Fusion means that we construct a multiview latent intact space learning by fusing all individual views. ∗Classification performance is measured in terms of
average accuracy.

Table 2: Architecture of the FCN network for tumor localization.

Type Input size Output size Filter size Stride # filters

Layer 1 Conv. 512 × 512 × 3 512 × 512 × 32 3 × 3 1 × 1 32

Layer 2 Max-pool. 512 × 512 × 32 256 × 256 × 32 2 × 2 2 × 2 —

Layer 3 Conv. 256 × 256 × 32 256 × 256 × 64 5 × 5 1 × 1 64

Layer 4 Max-pool. 256 × 256 × 64 128 × 128 × 64 2 × 2 2 × 2 —

Layer 5 Conv. 128 × 128 × 64 128 × 128 × 128 7 × 7 1 × 1 128

Layer 6 Max-pool. 128 × 128 × 128 64 × 64 × 128 2 × 2 2 × 2 —

Layer 7 Conv. 64 × 64 × 128 64 × 64 × 128 3 × 3 1 × 1 128

Layer 8 Conv. 64 × 64 × 128 64 × 64 × 128 3 × 3 1 × 1 128

Layer 9 Conv. 64 × 64 × 128 64 × 64 × 128 3 × 3 1 × 1 128

Layer 10 Conv. 64 × 64 × 128 64 × 64 × 128 3 × 3 1 × 1 128

Layer 11 Upsampling 64 × 64 × 128 128 × 128 × 128 2 × 2 2 × 2 —

Layer 12 Conv. 128 × 128 × 128 128 × 128 × 128 7 × 7 1 × 1 128

Layer 13 Upsampling 128 × 128 × 128 256 × 256 × 128 2 × 2 2 × 2 —

Layer 14 Conv. 256 × 256 × 128 256 × 256 × 64 5 × 5 1 × 1 64

Layer 15 Upsampling 256 × 256 × 64 512 × 512 × 64 2 × 2 2 × 2 —

Layer 16 Conv. 512 × 512 × 64 512 × 512 × 32 3 × 3 1 × 1 32

Layer 17 Conv. 512 × 512 × 32 512 × 512 × 2 1 × 1 1 × 1 2
∗The convolutional layer is denoted by Conv., and the max pooling by max-pool.
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(a) (b) (c) (d) (e) (f)

Figure 5: Typical segmentation results of three instances using CODL. (a) Ground truth. From second to last column: the tumor regions
identified by CODL on modality T1-w (b), T2-w (c), CET1-w (d), both T1-w and T2-w (e), and T1-w, T2-w, and CET1-w (f), respectively.

(a)

(b) (c)

Figure 4: NPC segmentation results on three typical examples. (a) Rough location results with bounding boxes identified by FCN, highlighted
in red dots. The extended areas used for fine classification were indicated by solid red lines. (b) Fine segmentation results with fusing T1-w,
T2-w, and CET1-w MR sequences. The last three columns are the tumor regions located by MISL, MvDA-VC, and CODL, respectively. (c)
Results of our method on the whole slice in case of a combination of three modalities.
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considered an observed individual view. The synthetic data con-
tained 3000 samples from three classes, each following a multi-
variate normal distribution with mean values μ1 = ð10 20 30Þ,
μ2 = ð10 20 35Þ, μ3 = ð16 20 35Þ, and covariances

〠 =

1 0 0

0 1 0

0 0 1

0
BB@

1
CCA, ð13Þ

respectively.

To test the robustness of the model over noise con-
taminations, the synthetic data were corrupted by Gauss-
ian white noises with a standard deviation of 0.25, 0.5,
and 1, respectively. The synthetic data was shown in
Figure 3. The first row was the three different views along
different planes (i.e., X-Y , Y-Z, and X-Z planes), respec-
tively. The corresponding classified results by the proposed
CODL were shown in the second row of Figure 3. Classi-
fication performance was measured in terms of average
accuracy across ten trials. The percentage of training sets
and test sets in each trial is 1 : 1. The averaged results were
recorded and summarized in Table 1.

Table 3: Metric results (mean ± standard deviation) of different methods on the cropped NPC dataset.

Method SENS DICE AUC IoU MPA HD

SVM (T1-w) 0:570 ± 0:292 0:558 ± 0:237 0:729 ± 0:107 0:419 ± 0:199 0:728 ± 0:113 28:566 ± 13:664

SVM (T2-w) 0:609 ± 0:269 0:652 ± 0:229 0:790 ± 0:144 0:518 ± 0:216 0:780 ± 0:134 23:212 ± 12:273

SVM (CET1-w) 0:733 ± 0:158 0:731 ± 0:093 0:827 ± 0:078 0:584 ± 0:112 0:829 ± 0:075 20:979 ± 8:505

CODL (T1-w) 0:832 ± 0:118 0:733 ± 0:088 0:847 ± 0:055 0:586 ± 0:110 0:847 ± 0:054 23:241 ± 9:168

CODL (T2-w) 0:812 ± 0:138 0:745 ± 0:119 0:860 ± 0:090 0:607 ± 0:145 0:854 ± 0:077 23:057 ± 10:456

CODL (CET1-w) 0:828 ± 0:102 0:767 ± 0:074 0:868 ± 0:050 0:627 ± 0:094 0:864 ± 0:047 22:827 ± 10:103

SVM (FeaConcat2) 0:377 ± 0:182 0:505 ± 0:204 0:692 ± 0:087 0:360 ± 0:168 0:682 ± 0:091 24:470 ± 13:020

MISL (Fusion2) 0:412 ± 0:254 0:310 ± 0:172 0:531 ± 0:136 0:195 ± 0:121 0:530 ± 0:115 38:052 ± 8:738

MvDA-VC (Fusion2) 0:901 ± 0:072 0:718 ± 0:090 0:853 ± 0:046 0:567 ± 0:111 0:858 ± 0:043 24:807 ± 7:010

CODL (Fusion2) 0:827 ± 0:094 0:808 ± 0:075 0:886 ± 0:055 0:683 ± 0:099 0:877 ± 0:052 16:618 ± 9:524

SVM (FeaConcat3) 0:211 ± 0:139 0:327 ± 0:194 0:611 ± 0:086 0:211 ± 0:139 0:606 ± 0:070 31:288 ± 16:200

MISL (Fusion3) 0:530 ± 0:262 0:452 ± 0:219 0:680 ± 0:123 0:317 ± 0:185 0:667 ± 0:125 32:490 ± 9:290

MvDA-VC (Fusion3) 0:893 ± 0:086 0:713 ± 0:094 0:846 ± 0:055 0:562 ± 0:116 0:853 ± 0:050 24:918 ± 7:243

CODL (Fusion3) 0:836 ± 0:111 0:820 ± 0:062 0:889 ± 0:054 0:699 ± 0:087 0:885 ± 0:049 16:683 ± 9:447
∗FeaConcat2 and Fusion2 denote concatenating and fusing T1-w and T2-w, respectively. ∗FeaConcat3 and Fusion3 denote concatenating and fusing T1-w, T2-
w, and CET1-w, respectively.
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Figure 6: Quantitative results of MISL, MvDA-VC, and CODL on multiple sequences of (a) T1-w and T2-w and (b) T1-w, T2-w, and CET1-w.
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Since the individual view cannot reveal the intrinsic struc-
ture of the data, one may note that the classification on each
individual view may not obtain accurate results. When the syn-
esthetic data was noise free, the classification by MvDA-VC
obtained the highest accuracy by fusing X-Y, Y-Z, and X-Z
views. However, when the noise level increased, its perfor-
mances were inferior to the MISL and CODL. Throughout
the experiments, the proposed CODL achieved the best per-
formance uniformly. With the increasing noise level, the
reduction of our method’s classification performance was sig-

nificantly lower than that of other methods. Even when the
data was heavily contaminated by the noises (std = 1), the
CODL remained superior performance with the highest
accuracy of 74.9%.

4.3. Realistic Experiments on Nasopharyngeal
Carcinoma Data

4.3.1. Image Preprocessing.Most of the NPCs have a small vol-
ume and thus are very difficult to discriminate from its large

Table 4: Metric results (mean ± standard deviation) of different methods on the whole slices.

Method SENS DICE AUC IoU MPA HD

Zhao et al. [12] (Fusion2) 0:723 ± 0:242 0:662 ± 0:160 0:814 ± 0:121 0:511 ± 0:149 0:858 ± 0:119 31:365 ± 19:268

Li et al. [13] (Fusion2) 0:469 ± 0:338 0:523 ± 0:300 0:723 ± 0:179 0:407 ± 0:274 0:734 ± 0:168 38:769 ± 28:383

Ours (Fusion2) 0:823 ± 0:096 0:804 ± 0:077 0:908 ± 0:048 0:678 ± 0:100 0:910 ± 0:048 16:918 ± 9:553

Zhao et al. [12] (Fusion3) 0:713 ± 0:223 0:664 ± 0:165 0:806 ± 0:125 0:518 ± 0:178 0:854 ± 0:110 30:388 ± 11:953

Li et al. [13] (Fusion3) 0:689 ± 0:237 0:741 ± 0:197 0:826 ± 0:128 0:618 ± 0:195 0:844 ± 0:118 21:928 ± 11:037

Ours (Fusion3) 0:828 ± 0:109 0:813 ± 0:066 0:910 ± 0:060 0:690 ± 0:090 0:913 ± 0:054 16:895 ± 9:624
∗Fusion2 denote fusing T1-w and T2-w. ∗Fusion3 denote fusing T1-w, T2-w, and CET1-w.

(a) (b) (c) (d)

Figure 7: NPC segmentation results by fusing T1-w and T2-w modalities on the whole slices. (a) Ground truth. From second to last column:
the tumor regions located by (b) Zhao et al. [12], (c) Li et al. [13], and (d) our approach, respectively.
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surrounding. Such imbalance also results in a large false positive
rate in applying learningmodels directly. To solve these difficul-
ties, we firstly designed a fully convolutional network (FCN) to
locate a rectangular box bounding the suspicious tumor. The
network contains standard layers, including convolution, max-
imum pooling, and upsampling [32]. Our network used a jump
structure to exploit deep and shallow semantic information. It
also used multiscale convolution kernels to obtain a compre-
hensive global structure. The network was trained to predict a
rectangular bounding box for the NPC.

The detailed architecture of the FCN network for NPC
location is summarized in Table 2. Figure 4(a) showed the
MR slices with bounding boxes identified by FCN,
highlighted in red dots. We selected an outer area by extend-
ing the located bounding box by fifteen pixels outward to
ensure that it sufficiently covers the tumor region.

4.3.2. Radiomics Feature Extraction and Classification. In the
bounding box, each voxel is classified into a binary label of
tumor vs. normal. The features for each pixel were estimated
within a sliding window of 11 × 11 centered itself. A total of
192 radiomics features (i.e., 32 Gabor, 5 Momentum, 154
GLCM, and 1 Pixel) were extracted for each sliding window.
See section S1 in the Supplementary Material for more infor-

mation on radiomics feature. If the border size is 103 × 78, it
resulted in a sample matrix with 8034 samples and 192 fea-
tures. The methods for extracting features from T1-w, T2-
w, and CET1-w sequences are the same. We use z-score for
standardization. Finally, we use an adaptive median filter
function to perform a simple postprocessing on the entire
slice to retain the largest connected area.

We tested the performance of CODL using a 10-fold
cross-validation scheme. The percentage of training sets
and test sets per fold cross-validation is 9 : 1. A total of 30
instances (training cohort: 27, testing cohort: 3) were
enrolled in the voxel classification analysis. Classification
accuracy was measured in terms of average accuracy across
ten trials on different training and testing sets.

4.3.3. Experimental Results. Figure 5 visualizes NPC segmen-
tation results on three typical instances, having large,
medium, and small size tumors, respectively. Each row
stands for segmentation results for one instance of MR
sequences. From Figure 5, one would find that the segmenta-
tion results of CODL with fusing T1-w, T2-w, and CET1-w
MR sequences obtained a highly accurate segmentation.

Figure 4 shows the overall segmentation process. As is
illustrated in Figure 4(a), we select the outer area by

(a) (b) (c) (d)

Figure 8: NPC segmentation results by fusing T1-w, T2-w, and CET1-wmodalities on the whole slices. (a) Ground truth. From second to last
column: the tumor regions located by (b) Zhao et al. [12], (c) Li et al. [13], and (d) our approach, respectively.
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expanding the positioned bounding box 15 pixels outward.
The extended areas used for fine classification were indicated
by solid red lines. Figure 4(b) shows pixel-wise fine classifica-
tion results using MISL, MvDA-VC, and CODL. One may
observe that CODL obtained the highest accuracy. Our
method performed stably in identifying tumors of different
volumes. Specifically, Figure 4(c) showed the identified
tumors in the whole slices. One may observe that the pro-
posed method identifies the tumor successfully with its
boundary almost perfectly overlapped with the actual one.

We report the detailed numerical results on cropped
NPC dataset in Table 3.

In the first section in Table 3, we firstly tested the classi-
fication performance on each individual image modalities.
CODL performed uniformly better than SVM. The superior
performance of CODL is consistent with the synthetic data.
Moreover, the CET1-w provides a more accurate classifica-
tion than T2-w or T1-w. The AUCs by CODL were 0:868
± 0:050, 0:860 ± 0:090, and 0:847 ± 0:055 on CET1-w, T2-
w, and T1-w, respectively.

Considering that some NPC patients do not get CET1-w
scans due to kidney diseases, we used two modalities T1-w

and T2-w to rerun the experiments. The results were summa-
rized in the second section in Table 3. Overall, the accuracy
has increased, which is higher than using any single MR
modality. CODL with the fusion of T1-w and T2-w modali-
ties scored the highest accuracy.

Finally, we used threeMRmodalities. Onemay observe that
CODL achieved superior performances in classifying the naso-
pharyngeal carcinoma. The DICE, AUC, IoU, and MPA for
CODL were uniformly larger than those by the other methods.
Incorporating the imaging of CET1-w achieved minor
improvement (0:889 ± 0:054) than without it (0:886 ± 0:055)
by CODL. It implies that the CODL could exploit fully discrim-
inative information in the modality of T1-w and T2-w, such
that the loss of accuracy after dropping CET1-w is only mild.

Quantitative results of each method were shown by box
plots in Figure 6. In terms of DICE, AUC, IoU, MPA, and
HD, the performance of CODL is superior to the other
methods. Another noticeable characteristic of the CODL lies
in its robustness. One would find that the variances by the
different metrics are dramatically smaller than by other
methods. Such high robustness coincides with the experi-
ments on synthetic data.
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Figure 9: Performance of our model on NPC dataset with different parameter settings by fusing T1-w and T2-w modalities: (a)
hyperparameter λ1 and (b) hyperparameter λ2.
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We report the detailed numerical results on whole MR
slices in Table 4.

In the first section in Table 4, we firstly tested the seg-
mentation performance on two modalities T1-w and T2-w.
One may observe that our approach achieved superior per-
formances in NPC segmentation.

Finally, we used three modalities (i.e., T1-w, T2-w, and
CET1-w) to rerun the experiments. The results were summa-
rized in the second section in Table 4. The SENS, DICE,
AUC, IoU, and MPA for our approach were uniformly larger
than other methods. There were good overlaps in DICE and
HD values for our method between segmented contours and
ROIs drawn by radiologists. By checking the results, one can
find that the variances by the six metrics are dramatically
smaller than by other methods.

Figure 7 shows NPC segmentation results in case of fusing
two modalities (i.e., T1-w and T2-w). From Figure 7, one may
observe that the proposed method identifies the tumor success-
fullywith its boundary almost perfect overlappedwith the ground
truth drawn by radiologist. Our approach achieved superior per-
formances in segmenting NPC compared with other methods.

Figure 8 visualizes NPC segmentation results in case of
fusing three modalities (i.e., T1-w, T2-w, and CET1-w).
From Figure 8, one would find that the segmentation results
of our approach obtained a highly segmenting performance.
It can be seen that our approach could help make their want-
ing segmentation better.

5. Discussion

In our model, there are two regularization parameters (i.e.,
λ1 and λ2) balancing the effect of approximation error and
sparse term. In the following, we study the influence of
parameters λ1, λ2 on the NPC dataset in terms of SENS,
DICE, AUC, IoU, and MPA by setting them to different
values, e.g., ½1, 2,⋯,10�. We vary a parameter at a time while
keeping others fixed. Due to the limitation of space, we only
show the results of a combination of two (i.e., T1-w and T2-
w) and three modalities (i.e., T1-w, T2-w, and CET1-w).

From Figure 9, we can see that our method is relatively
insensitive to its parameters as long as the parameters are
in a suitable range. Moreover, we find that our method
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Figure 10: Performance of our model on the NPC dataset with different parameter settings by fusing T1-w, T2-w, and CET1-wmodalities: (a)
hyperparameter λ1 and (b) hyperparameter λ2.
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performs well when parameter λ1 ∈ ð0:1,1:0Þ, λ2 ∈ ð0:1,1:0Þ.
Thus, we select λ1 = 1:0, λ2 = 0:2 in our experiment. Simi-
larly, from Figure 10, we find that our method performs well
when parameter λ1 ∈ ð3:0,4:0Þ, λ2 ∈ ð0:1,0:2Þ. Consequently,
we choose λ1 = 3:8, λ2 = 0:2 for experiments.

6. Conclusions

In this study, we have proposed a voxel-wise classification
method for locating and segmenting NPC from normal tis-
sues. Specifically, each voxel is classified into a binary label
of tumor vs. normal. The located NPC is refined to obtain
its accurate segmentation by an original multiview collabora-
tive dictionary classification model. The proposed CODL
integrates complementary information from multiple views
and collaboratively constructs a discriminative latent intact
space through rendering with supervised membership.
Experimental results show that CODL could accurately dis-
criminate NPCs and effectively assist clinicians in locating
NPC.
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