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Abstract

Motivation: The prediction of the binding between peptides and major histocompatibility complex (MHC) molecules
plays an important role in neoantigen identification. Although a large number of computational methods have been
developed to address this problem, they produce high false-positive rates in practical applications, since in most
cases, a single residue mutation may largely alter the binding affinity of a peptide binding to MHC which cannot be
identified by conventional deep learning methods.

Results: We developed a differential boundary tree-based model, named DBTpred, to address this problem. We
demonstrated that DBTpred can accurately predict MHC class | binding affinity compared to the state-of-art deep
learning methods. We also presented a parallel training algorithm to accelerate the training and inference process
which enables DBTpred to be applied to large datasets. By investigating the statistical properties of differential
boundary trees and the prediction paths to test samples, we revealed that DBTpred can provide an intuitive inter-
pretation and possible hints in detecting important residue mutations that can largely influence binding affinity.
Availability and implementation: The DBTpred package is implemented in Python and freely available at: https://

github.com/fpy94/DBT.

Contact: zengjy321@tsinghua.edu.cn or majianzhu@pku.edu.cn
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Cytotoxic T lymphocytes destroy cancer or virus infected cells by
expressing T-cell receptors (TCRs) that can recognize specific anti-
gens. In most cases, an antigen is a linear peptide arising from mu-
tant proteins in cancer cells or extracellular infected viruses that can
bind to major histocompatibility complex (MHC) molecules. After
the recognition by the MHC, antigens are brought to the surface of
cells where they are identified by specific TCRs, which then initiates
the downstream immune response. The binding between the pepti-
des and MHC molecules plays an essential role in this complicated
biological process.

In the last decades, there have been lots of interests in developing
computational methods that can accurately predict the binding af-
finity between peptides and MHC molecules. These methods can be
mainly divided into two types: allele-specific and pan-allele
approaches. The allele-specific models usually take only peptide
sequences as input to train one model for each allele (Andreatta and
Nielsen, 2016; Han and Kim, 2017; Nielsen and Andreatta, 2016),
while pan-specific models take both peptide sequences and MHC
pseudo-sequences as input to train a single model for all alleles (Han
and Kim, 2017; Hoof et al., 2009; Hu et al., 2019; Jurtz et al., 2017,
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Karosiene et al., 2012; Liu et al., 2017; Nielsen and Andreatta,
2016; 2017). Recently, deep neural networks (DNNs) have been
proved to be powerful models and demonstrated the state-of-the-art
performance in pan-specific tasks. For instance, NetMHCpan uses
only a single layer neural network to predict the binding affinity be-
tween peptides and MHC molecules and achieves high prediction
accuracy on both peptide-MHC binding affinity data and mass spec-
trometry data (Jurtz et al., 2017; Nielsen and Andreatta, 2016).
More carefully designed and precise neural networks have also been
developed to address this problem. ConvMHC uses convolutional
neural networks as a feature extractor of input sequences (Han and
Kim, 2017) that can reliably predict the peptide binding of most
HLA-A and -B alleles. ACME (Attention-based convolutional neural
network for MHC epitope binding prediction) provides a novel se-
quence encoding method with a sophisticated network architecture
to achieve a higher prediction accuracy (Hu ez al., 2019). It uses a
head-to-head and tail-to-tail sequence encoding method and concat-
enates the output of the intermediate layer as the input to the fully-
connected layer before the final output, which thus enables the in-
formation flow from the shallow layer to the deep (Hu et al., 2019).
These methods have been widely used in the discovery of tumor neo-
antigens to narrow down the lists of epitopes by providing high-
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Algorithm 1: Building the Boundary tree
/* € determines the difference of labels */
/* k is the maximum number of children per node */
MHC sequence Peptide Binding affinity /* c(v) represents the label of node v */
IYKTVADSDESYMEK ~ NMEKVDF —> 090 1 Function Building BT(D):
t o ) ) _T ) Input: D the training dataset.
Sequences are similar but binding affinity is different
! Output: 7 the Boundary Tree.
IYKTKADMDESYMEK ~ NMEKVDF  —>  0.60 2 | Sample a root node from D.
3 | while D is not empty do
Low binding affinity High binding affinity 4 v <— Sample an instance from D.
5 Upmin < QueryBT(7,v) /* Get the closest node
Fig. 1. Overview of the DBTpred frar_neworl_y DBTPred predicts the binding of pep- of v in boundary tree x/
tides to MHC molecules by constructing a differential boundary tree 3
6 if |c(v) — ¢(Umin)| > € then
7 ‘ Add node v as a child of v,,,5,, in T.
quality rankings for candidates. However, they suffer from a high 8 end
false-positive rate of predicted epitopes (“The Problem with 9 | end
Neoantigen Prediction”, 2017). In addition, these DNN based meth- 10 | return 7

ods are biased toward learning the most determinant sequence
motifs by smoothing the neighborhood signals and often fail in iden-
tifying mutation-induced tumor neoantigens since these neoantigens
typically have only one single amino acid mutations that may signifi-
cantly influence the MHC-peptide binding (Jiang et al., 2019).
Another limitation of these DNN models is their model interpret-
ation. Most of these convolutional neural network based models
provide multiple sequence motifs represented by a position-specific
scoring matrix as model interpretation through examining the model
weights of the convolutional layers (Han and Kim, 2017; Hu et al.,
2019). This type of interpretation is able to propose the informative
regions on the protein sequences when the algorithm takes complete
protein sequences as input. However, experimental results now have
already identified a significant amount of residues whose mutations
play essential roles in the immune response (Castle et al., 2019).
Therefore, more important biological knowledge in comparison to
simple sequence motifs can help understand the logic of how the ma-
chine learning models make predictions based on these key residues
and how these key residues interact with each other to determine the
MHC-peptide affinity. In this work, we develop a new machine
learning model, named DBTpred (Fig. 1), based on a differential
boundary tree (DBT) (Zoran et al., 2017), which can predict MHC-
peptide binding affinity and at the same time provide a relatively
transparent decision process as the model interpretation. The central
idea of DBT is to organize all the training samples as a tree based on
a distance metric calculated by a neural network model. For two
connecting nodes (training samples) in the DBT, we require that
their features are similar but their labels have to be significantly dif-
ferent. The prediction process is simply to search for the nearest
neighbors along the tree from the root to the leaves. The intuition of
this process is that we keep crossing the decision boundaries of the
machine learning model to search for the nearest neighbor of the
query sample. This model is specially designed to address the MHC-
peptide binding problem in which proteins with similar sequences
might have different binding affinities.

To build the DBT model, we jointly construct the DBT structure
and train the weights of the neural network. The major technical
challenge is that the DBT structure search problem is a computation-
ally demanding optimization problem which significantly limits
both the scalability and training/test speed of the neural network
model. To address this problem, we develop a new parallel algo-
rithm to simultaneously train a deep neural network and construct a
DBT by transforming the entire tree structure search process into
multiple matrix operations. We demonstrated that our model
achieved a superior performance in comparison to the state of art
methods. We evaluated our model on the IEDB MHC class I binding
affinity benchmark datasets (Kim, 2014; Vita et al., 2015) and
found that DBTpred can achieve better performance compared to
the state-of-the-art MHC-peptide binding prediction methods. In

11 End Function

addition, DBTpred can demonstrate the inner working logic to gen-
erate the final prediction, which enables us to identify important
mutations that significantly alter the binding affinity.

2 Materials and methods

2.1 Boundary tree

Boundary tree (BT) is a special type of k-nearest neighbor (KNN)
model, which was first proposed by Mathy et al. (2015). Compared
to conventional KNN based models, BT has very appealing proper-
ties in reducing the computational and memory requirements of
KNN methods. More importantly, BT can generate a decision path
for the final prediction, which thus provides valuable insights to
understand the logic of the model prediction. A BT model selects a
subset of data instances to represent the whole training dataset by
organizing these instances into a tree. To construct the tree struc-
ture, the algorithm randomly samples a data instance as the root of
BT and then iterates all the training instances to search for the near-
est neighbor by traversing the entire tree from the root based on a
particular distance metric. At each step, if the label of the nearest
neighbor is different from the query node (label difference > € for a
regression problem), the query node is added as the child of the cur-
rent node of the tree. Thus, for two connecting nodes in a BT, their
features should be similar while their labels are distinct. The algo-
rithm details of building a BT is shown in Algorithm 1. To make a
prediction for a query (test sample), if the query is much closer to
the current node than any of its children, we assign the current node
as the closest node and then transfer its label as the final prediction.
Otherwise, the current node is updated to the child node that is clos-
est to the query node, and then this process continues until reaching
the leaf. The purpose is to search for the nearest neighbor but the
search must follow the path of the tree from the root to leaves. The
algorithmic details of querying a BT are shown in Algorithm 2.

2.2 Differential boundary tree

Usually, BT requires an accurate metric to quantify the distance be-
tween training samples. To achieve this goal, Zoran ef al. (2017)
developed a new computational framework, named Differential
Boundary Tree (DBT), which includes a deep neural network
(DNN) to represent the node features in a low compact dimensional
space. In particular, DBT implements a differentiable cost function
enabling the simultaneous construction of the boundary tree and the
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Algorithm 2: Querying the Boundary tree

Algorithm 3: Training the differential boundary tree (DBT)

/* € determines the difference of labels */
/* child(v) ={Child node set of v} */
1 Function QueryBT (7 ,q) :

Input: 7 the Boundary Tree, g the query node.
Output: v(g) the closest node of g in 7.

2 | Initialize v to be the root of the tree T, Vynin = 0.
3 | while True do

4 if |child(v)| < k then

5 | child*(v) « child(v) U {v}.
6 else

7 | child* (v) « child(v)

8 end

9 Umin = arg Mily, ¢ cpird* (v) d(w, q)
10 if v = vy, then

11 ‘ break

12 else

13 ‘ V < Umin

14 end

15 | end

16 return v

weight optimization of the DNN model. In this work, we modify
the training process of DBT to a relatively much simpler process. In
particular, at each training epoch, we construct a temporal bound-
ary tree on a batch of random sampled data points and then measure
the loss function between the ground truth labels and their predic-
tions from the temporal boundary tree. Another non-overlapping
batch of training examples are sampled and then queried on the tem-
poral boundary tree. Unlike the training algorithm proposed in
Zoran et al. (2017) which maximized the log-likelihood of all the
data collected from the transition paths, here we adopt the weighted
summation of the labels of the nearest neighbor and its siblings on
the temporal boundary tree as the final prediction of the query.
Specifically, let x* stand for the nearest neighbor of query node x.
Then the final prediction of x is

B exp(=d(fo(x). folx)
=2 e b (—d (o), o))"

x;€s(x*

)

where d represents the Euclidean distance function, s(x*) denotes
the sibling nodes of x* and x* itself, y; stands for the label of x; and
fo stands for the neural network with weights 0. Then, the loss func-
tion that we try to minimize is the mean square error loss defined as
follows,

L=< Y -37 (2)

YEDguery

where N stands for the number of nodes in set Dyyery, and y repre-
sents the label of y. We optimize the parameter in the neural net-
work using the Adam algorithm (Kim, 2014) in each epoch. In the
conventional error backpropagation training algorithm, the forward
function makes the prediction and the backward function propa-
gates the error to calculate the gradient for each weight. Here, DBT
simply replaces the prediction from a forward function based on the
prediction from a boundary tree. The algorithm details are demon-
strated in Algorithm 3. When Algorithm 3 converges, we re-run
Algorithm 1 on all the training samples to create the final DBT
which is then used for making final prediction.

/* D is the training dataset */
/* T is the number of iterations */
1 Initialize the neural network fy with random weights.

2 while not converged do

3 | fort =1toT do

4 Diree < Sample a mini-batch of examples from D.

5 Dguery < Sample a mini-batch of examples from D.

6 T < BuildingBT(fg(Dtree))

7 g+ 0

8 foreach = in Dyyery do

9 g < g+ VL (QueryBT(T,x), z) /* Get the
closest node of z and calculate the
gradient with loss function in
equation (2) */

10 end

11 Updating 6 based on g using Adam.

12 | end

13 end

2.3 A parallel DBT training algorithm
The major problem of DBT and BT is that their training process is
generally quite slow. Training one model for a MHC-peptide bind-
ing prediction task with 10 000 samples needs about an hour. The
training process is slow since it both involves a series of node query-
ing operations on the temporal boundary trees and can only update
the model parameters after collecting a number of traverse paths for
all the samples in a sequential way, which cannot benefit from the
modern parallelization frameworks such as Math Kernel Library
(MKL) (Wang et al., 2014) and Graphics Processing Units (GPUs).
In this work, we also develop a new parallel training/test algo-
rithm to accelerate this query process by transferring the path search
process into a matrix multiplication problem, which can be easily
parallelized through using the GPUs. First, we decompose the inter-
mediate nodes of the boundary tree into different subtrees where
each subtree contains one intermediate node and all of its children.
Then we construct a query matrix Q in which rows represent query
samples within the same batch and columns represent all the sub-
trees from the decomposition. For each query node, we searched for
its closest neighbor in each subtree based on the Euclidean distance
of neural network outputs. The closest neighbor is labeled as 1 and
otherwise as 0 in the matrix Q. For instance, Suppose that the clos-
est nodes of s, in the three subtrees are 1,, n4, 15, respectively, then
the values corresponding to the 7, 714, 75 columns are labeled as 1
in row s; (Fig. 2, left). Note that each subtree is independent of each
other and this construction can be fully parallelized on different
computational resources. Next, we construct a traverse matrix H in
which rows represent subtrees and columns represent all the paths
of boundary trees from the root (Fig. 2, right). For each edge (e.g. 71
to 71,) in each path (column p3), we assign a score o~ to it, where d
is the depth of the reachable node (1,) of the edge and « is a constant
between 0 and 1 (which is set to 0.5 in practice). The score for a
path is equal to the summation of all the scores on its edges. Note
that the same edge can be assigned with different scores as it can be-
long to different paths. For a path stopping at non-leaf nodes, its
score is equal to the mean of 24~ and "M o/, that is,

1 1 M—1‘
5| +;o¢ ) (3)

where M stands for the maximum depth of the tree (which is 4 in
Fig. 2). Note that this construction can be easily implemented by the
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Fig. 2. The illustration of a parallel algorithm for querying boundary trees

matrix multiplication using the feature matrix of query and tree
nodes. Then for each query sample s; and corresponding row Q;
and each column H;, we select the path of s; based on the following
criterion,

path(s;) = arg max;(Q] H)) (4)

It is easy to see that for a query sample s;, the inner product be-
tween Q; and H; results in the sum over all the edges scores of s; on
the path j. Given the above definition, we introduce the following
main theorem about our fast training algorithm, below

Theorem 1.The optimal path found by Algorithm 2 is the same as that
derived from Equation 4, when o < 1.

Proof 1. To prove this theorem, we first define some notation. Let
S(n) represent the assigned score for a reachable node n, and S(P)
represent the total score of a path P. Then for an arbitrary path
P=(ny,...,n,), where n; is the i-th node on the path, then total
score of path P is S(P) =3",_, S(n;). We first prove the following
lemma.

Lemma 1.8(n;) > S(Py e (11i)), Where P},...(n;) represents the paths
that start from the parent of #; but do not pass 7;. That is, the assigned
score of node 7; is larger than those of paths starting from the parent of

n; but not passing through ;.

As shown in Figure 2, if a query node passes an edge e =
(ni-1,m;) in a subtree, the scores of S(P},,,,(7;)) can be divided into
following cases:

1. For a path that ends at a leaf node, the maximum score it can get

is Zf\i}l of, where d is the depth of node 7;, and M is the max-
imum depth of the tree.

peptide MHC
| |
) |
Conv Conv
——  Max-pool — Max-pool
I }
FC FC FC conv
| | |  =——  Max-pool
E€
|
Output

Fig. 3. Neural network architecture of DBTpred. The input data first passes 1-2
convolutional layers (Conv) and then the outputs of two branches are concatenated
as the input to the three fully-connected layers (FC). Finally, the outputs of fully-
connected layers are concatenated and pass through another fully-connected layer
to produce the final representation features

2. For a path that ends at a child node of the node 7, 1, the max-
imum score is 1 (ocd’1 + Zﬁ;l ozi) , where d is the depth of node
n;, and M is the maximum depth of the tree.

3. For a path that ends at a non-leaf node which is not a child node

of  the node ni_1, the maximum score is

S8y +%(a<“’1 + Zi]\i;,] ai), where g is the depth of a non-

leaf node that the path stops, d is the depth of node 7; and M is
the maximum depth of the tree.

Considering all these three conditions, the maximum value of
S(Py grens(mi)) 18 DO +1 (otg’l + ngl oz’). Meanwhile, it is easy

=
to see that S(7;) = a?~'. Then we can see that the maximum of

S(Pyarent(m:)) is smaller than S(n;) = «@1 since,

) &l M-t
o + ot >Z°‘l+§ atg’l-&-Za‘ (5)
i=d i=g

This equation holds when d > 2 and g > 3 which are easily satis-
fied in real world applications. Therefore, Lemma 1 has been
proved.

Finally, from Lemma 1 we have S(P)=>,,S(n)>
> i2 S(Pparens (mi)), which means that at each node 7;(i > 2) of the
path P, the score of any other branch paths that starts from 7;_; and
does not pass 7; are smaller than S(P). Thus, Theorem 1 has been
proved.

2.4 Architecture of deep neural network

The peptides and MHC pseudo-sequences were first encoded as in
Hu et al. (2019). As shown in Figure 3, the protein sequences were
first encoded by a BLOSUMSO scoring matrix (Henikoff and
Henikoff, 1992) into encoded vectors and then passed to 1-2 convo-
lutional layers. In particular, we use one convolutional layer to
model the peptide sequence and two convolutional layers to model
the MHC protein sequences. The outputs of the two branches are
then concatenated as the input to the three fully-connected layers. In
the end, the outputs of fully-connected layers are concatenated and
pass through another fully-connected layer to output the final repre-
sentation features.

2.5 Saliency map scores

As a query node traverses along the boundary tree, it continually
searches for the nearest tree node based on the distance metric
derived from the feature representation of deep neural networks.
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Specifically, let x € R?°*! be the one-hot encoded sequence of an
arbitrary tree node on the transition path and g € R*** be the one-
hot encoded sequence of query node, where L is the length of se-
quence, we can obtain the distance between x and g as

d(x,q) = (fo(Bx) — fo(Bq))*, (6)

where B is the BLOSUMS0 matrix, and fy is the deep neural net-
work. To illustrate the important residues that significantly influ-
ence the distance d(x, q), we calculated the saliency map (Simonyan
etal.,2013) of x and g with respect to d(x, q), that is,

_0d(x,q) ~_9d(x,q)
Wx ="y W g

. (7)

Then, we multiplied w, and w, by their one-hot encoded matri-
ces x and g, respectively to get the derivatives of the actual residues
of sequences, noted as w}, and wy, respectively. Finally, we normal-
ized the saliency map by dividing its maximum absolute values, that
wi w,

is i and — T Thus, the saliency map scores demonstrate the
important residues between the distance of query and tree nodes

along the traverse path in the boundary tree.

3 Results
3.1 Performance of DBTpred

To evaluate the performance of DBTpred, we conducted a five-fold
cross-validation and compared DBTpred to the state-of-the-art
method NetMHCpan 3.0 (Nielsen and Andreatta, 2016), which is a
pan-specific method and also trained on the IEDB MHC class I
binding affinity dataset (Kim, 2014; Vita et al., 2015). NetMHCpan
3.0 is probably the most widely used method in the prediction of
MHC-peptide binding affinity and also provides detailed perform-
ance for different alleles and peptide lengths. Therefore, we trained
our DBTpred model on the same IEDB dataset and investigated the
performance of our method on the same alleles and peptide lengths
(i.e., 9-mer, 10-mer and 11-mer).

The prediction performance is measured in terms of Pearson cor-
relation coefficient (PCC). As shown in Figure 4a, DBTpred
increased the PCC by 2.8%, 3.7% and 6.9% in comparison to
NetMHCpan 3.0 for 9-mers, 10-mer and 11-mers, respectively. We
also investigated the performance in terms of the area under receiver
operating characteristic curve (AUROC). As shown in Figure 4b,

ly/) on an independent test dataset (Trolle et al., 2015) in terms of Pearson correl-
ation coefficient (PCC)

DBTpred increased AUROC by 0.91%, 2.0% and 4.1% compared
to NetMHCpan 3.0 for 9-mers, 10-mers and 11-mers, respectively.
When investigating the performance of individual alleles in peptide
lengths, we found that DBTpred outperformed NetMHCpan 3.0 in
the vast majority of alleles. More specifically, for 88 alleles of 11-
mers, the performance of DBTpred was larger than NetMHCpan
3.0 in 21 out of 29 alleles. Among them, 5 alleles achieved over
20% improvements in PCC. For 10-mers and 9-mers, the perform-
ance in 33 out of 40 alleles and 70 out of 88 alleles achieved
performance improvement compared with NetMHCpan 3.0. For 9-
mers, among 19 alleles DBTpred improved over 5% in PCC and for
10-mers, among 15 alleles DBTpred improved above 5% over the
baseline (Fig. 4c).

To evaluate the contribution of DBT, we also compared the per-
formance of DBTpred to ACME (Hu et al., 2019), which used the
same neural network architectures as in DBTpred. We found that
DBTpred still achieved better performance compared with ACME
for most of the cases although in 11-mer DBTpred decreased a little
in terms of PCC (Fig. 4, Supplementary Fig. S1). These results
revealed that DBTpred can accurately predict the binding affinity of
peptides and MHC class I molecules.

To further demonstrate the generalizability of DBTpred, we
tested its performance on an independent MHC class I binding affin-
ity benchmarking dataset (Trolle et al., 2015), which contains over
30 000 MHC class I binding peptides. In our study, we tested the
performance on the peptides with IC50 binding affinity measure-
ment in the benchmarking dataset. We trained DBTpred on
the training dataset and compared its performance to that of other
state-of-the-art methods. The prediction results of these state-of-
the-art methods were downloaded from the benchmarking
website (http:/tools.immuneepitope.org/auto_bench/mhci/weekly/).
As shown in Figure 5, DBTpred outperformed all the other bench-
marking methods. Compared to the NetMHCpan3.0, DBTpred
achieved an increase of 4.3% in PCC. We also retrained the ACME
(Hu et al., 2019) with the same training dataset and compared its
performance to that of DBTpred. We found that DBTpred still
obtained better performance compared to ACME.

3.2 Training DBTpred

During the training of DBTpred, the model iteratively built a bound-
ary tree with a subset of training data, and traversed this tree using
another subset of training data to update the parameters of the back-
bone neural network. When building the boundary tree, we ensured
that the absolute difference between the query node and its closest
node was larger than a threshold (denoted as ¢), otherwise it was be
discarded. This process is slow when trained on a large dataset
(Zoran et al., 2017). To address this problem, we first pre-trained a
conventional neural network (only one epoch) and then used the
weights except for the last output layer as the initiation to our back-
bone. Next, we used our parallel training algorithm to accelerate the
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Fig. 7. Comparison of computational time between the conventional query algo-
rithm of boundary tree (Mathy et al., 2015) and our parallel querying algorithm

query process of the boundary tree, which was the most time-con-
suming step in the whole training process. In our study, we found
that a good initiation of backbone enabled the training process to
converge fast. Figure 6a illustrates how the performance changed
with the number of training epochs in DBTpred. We found that the
label difference parameter should be larger than 0.1 to ensure a
model with good training performance. When was too small, the
performance of DBTpred fluctuated, since there were less samples in
the boundary tree to represent the whole dataset.

Another observation was that the larger, the less number of
nodes was left in the tree. As shown in Figure 6b, all the boundary
trees with small contained more nodes than those with large. In add-
ition, the ratio of the number of tree nodes to the total number of
training samples decreased as the number of training epochs in
DBTpred. This result indicated that the training process enabled the
model to learn good feature representation such that the boundary
tree can represent the whole dataset with less nodes. For example,
after 25 training epochs, DBTpred only needed 40% training exam-
ples to achieve over 0.8 of test performance in terms of PCC.

In addition, our parallel algorithm transferred the discrete query
process into matrix multiplications, which can be easily calculated
on GPUs. As illustrated in Figure 7, compared to the original query
algorithm (Mathy et al., 2015), whose training time was linearly
proportional to the number of samples, our method exhibited al-
most a constant growth rate, which thus can greatly speed up the
training process.

3.3 Feature representation

We investigated how many samples are generally needed in
DBTpred for each allele. Intriguingly, we found that for each allele,
if there were more samples of the allele left in the boundary tree, the
smaller was the performance of this allele. As shown in Figure 8,
most alleles can be represented by only 30-40% of all the samples
using the boundary tree and achieved over 0.7 of test performance,

in the boundary tree, they did not achieve a good performance com-
pared with those of other alleles. Notably, we also found that there
were some alleles which left small amounts of samples in the bound-
ary tree while still achieving good performance (e.g. alleles in bot-
tom right corner in Fig. 8), which indicated that the features of these
alleles may be easy to learn. Figure 8 also showed the label complex-
ity of individual alleles (measured as the entropy of the allele labels).
In fact, these alleles with less tree nodes while achieving high per-
formance were those with low label complexity (e.g. most of the
labels are 0). Thus, the boundary tree needed a very small amount of
samples to represent the features of these alleles. In summary, the
statistical properties of the boundary tree demonstrated how well
the model was trained for the task. In some cases, the ratio of the
number of samples left in trees to the total number of samples actu-
ally indicated the complexity of the learning.

3.4 Model interpretation

Most deep learning models are end-to-end methods which input test
samples into a deep neural network and then output prediction
results. Although deep learning has exhibited strong predictive
power in lots of biological problems, researchers are interested in
analyzing the interpretability of models which may provide useful
biological understandings. There have been many developed meth-
ods in analyzing deep neural networks such as LIME (Ribeiro et al.,
2016), saliency map (Simonyan et al., 2013), GradCam (Selvaraju
et al., 2017) and DeepLIFT Shrikumar ez al. (2017). These methods
are able to decipher which part of input plays an important role in
the final prediction. However, deeply interpreting a conventional
deep learning method is still a popular research direction (Lipton,
2018; Simonyan et al., 2013).

DBTpred takes advantage of the strong learning power of deep
neural networks to learn a good representation of datasets, through
organizing the datasets into a tree structure. Thus, when predicting
a test sample, DBTpred can provide an interpretable decision path
of the tree, which may provide useful interpretation. Figure 9 illus-
trates a simple example of the interpretation of how DBTpred pre-
dicted a test sample. First, we calculated the saliency map
(Simonyan et al., 2013) in terms of the Euclidean distance between
the test sample and each tree node. The saliency map scores pointed
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Fig. 9. Illustration of a query path in DBTpred. The normalized saliency map scores
are shown on the bottom

out the important residues in determining the sample distance.
DBTpred clearly demonstrated how the test sample traversed to its
closest node step by step. In particular, the model first searched for
the last valine in the peptide which occupied the largest saliency
map score (step 1 to step 3), and then it searched for cysteine and
two valines in the first, fifth and the last positions of peptide (step 3
to step 7). These three residues are the key residues in determining
the prediction of binding affinity of the test sample. In addition,
apart from these three residues, the path also displayed several pos-
sible point mutations which may strongly alter the binding affinity
of the test sample that can be smoothed out by the deep neural net-
work, e.g. the mutation between valine and isoleucine on the second
residue of the peptide (marked as crimson in Fig. 9). Moreover, since
the peptide sequences and MHC pseudo-sequences are both passed
through the deep neural network, we can also calculate the saliency
scores along the MHC sequence to demonstrate the important resi-
dues influencing the final prediction of binding affinities
(Supplementary Fig. S2). In summary, DBTpred enabled an easy in-
terpretation of how the model makes a prediction of peptide-MHC
binding affinity and also provided possible mutation residues that
may influence the binding affinity.

4 Discussion

In this article, we demonstrated that DBTpred can achieve an accur-
ate prediction about MHC class I binding affinity. We developed a
parallel training algorithm to accelerate the most time-consuming
step of the differential boundary tree and made it possible to apply
DBTpred into a large dataset. We also demonstrated that the tra-
verse path of the test sample can provide an interpretable visualiza-
tion of how the model predicted the final output. Meanwhile,
DBTpred detected the possible residue mutations that can largely in-
fluence the binding affinity of the test sample which was missed by
conventional deep neural networks. In addition, like other KNN
based methods, DBTpred searches for the nearest training samples
for queries and uses the weighted summation of the labels of the
training examples and their children as the final prediction. This
means that it is easy for DBTpred to evaluate the reliability of its
prediction based on the distance between queries and their closest
nodes (Supplementary Fig. S3). However, although we have vastly
increased the training and inference speed of DBTpred, it was still
quite slow compared to conventional neural networks. The training
of DBTpred on the total dataset still requires about two days. When
building the boundary tree, the training samples were randomly
sampled from the training dataset, which may influence the struc-
ture of the boundary tree. Thus, the paths for the test samples may

be different in the boundary trees. In practice, we built several
boundary trees and query the test samples in these trees to choose a
path with good interpretation. We also calculated the averaged co-
sine distance of the saliency map between the test sample and the
traverse nodes as the interpretable score for the path. In summary,
DBTpred provides a novel method that can accurately predict the
MHOC class I binding affinity and provide detect useful mutation res-
idues affecting the binding affinity.
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