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The ligninolytic enzyme laccase has proved its potential for environmental applications.
However, there is no documented industrial application of free laccase due to low stability,
poor reusability, and high costs. Immobilization has been considered as a powerful
technique to enhance laccase’s industrial potential. In this technology, appropriate
support selection for laccase immobilization is a crucial step since the support could
broadly affect the properties of the resulting catalyst system. Through the last decades, a
large variety of inorganic, organic, and composite materials have been used in laccase
immobilization. Among them, carbon-based materials have been explored as a support
candidate for immobilization, due to their properties such as high porosity, high surface
area, the existence of functional groups, and their highly aromatic structure. Carbon-based
materials have also been used in culture media as supports, sources of nutrients, and
inducers, for laccase production. This study aims to review the recent trends in laccase
production, immobilization techniques, and essential support properties for enzyme
immobilization. More specifically, this review analyzes and presents the significant
benefits of carbon-based materials for their key role in laccase production and
immobilization.
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INTRODUCTION

Water is one of the fundamental resources on which all life on earth is anchored. Over the past few
decades, concerns regarding the shortage in freshwater supply and its effect on the sustainability of
human societies have increased (Rathi et al., 2021). Rapid population growth, industrialization,
climate change, and environmental destruction are factors directly involved in increasing water
demand (Jéquier and Constant, 2010; Rathi et al., 2021). Water recycling and reuse through proper
treatment is a potential solution to meet the current and rising water demand. In this process,
polluted water from different sources including households, industries, hospitals and agriculture may
be treated to an acceptable standard and recovered for further use (Englande et al., 2015). However,
non-regulated micropollutants termed emerging contaminants (ECs) such as pharmaceuticals and
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personal care products, certain pesticides, food additives and
synthetic hormones constitute a major challenge to existing water
treatment methods (Taheran et al., 2018).

ECs is a standard term created to identify environmental risks
of pollutants released into the environment with unpredictable
consequences (Rathi et al., 2021). According to the United
Nations Educational, Scientific and Cultural Organization
(UNESCO), the term ECs refers to a group of natural or
synthetic chemicals or microorganisms with known or
suspected negative effect on humans’ health or the
environment (UNESCO, 2019). The word “emerging” does not
imply the pollutants that are recently accumulated in the
environment; in contrast, this term defines the concern and
awareness regarding their negative impacts that are emerging
in the world (Scaria et al., 2021). The best-known and widely
occurring ECs are hormones such as contraceptives, personal care
products such as fragrances and deodorants, pesticides such as
insect repellents, and pharmaceutical compounds such as
painkillers. At hospital wastewaters, landfills, municipal
sewage, fertilizer industries, pharmaceutical production plants,
concentrations of ECs could be detected (Ahmed et al., 2017). Up
to now, there is no regulation regarding ECs concentration in the
environment but several attempts can be found in Europe and
North America to reduce their released levels (Taheran et al.,
2018). For instance, in Canada and Switzerland, different projects
have proposed potential strategies to reduce EC concentration in
wastewater treatment plants (WWTPs) (Morales-Caselles et al.,
2016; Schmidt, 2018).

Usually, EC concentrations in the environment range from
parts per trillion (ppt or ng L−1) to parts per billion (ppb or
µg L−1) (Petrie et al., 2015; Rout et al., 2021). Figure 1
demonstrates routes of EC spread into the environment
(Gomes et al., 2020).

Conventional WWTPs are not capable of properly
removing all ECs especially pesticides, detergents,
pharmaceuticals and personal care products (PPCPs) at
ng L−1 or µg L−1 from the wastewater and, consequently,

ECs will get discharged into the environment (Mohapatra
and Kirpalani, 2019). These pollutants could last for a long
period of time and circulate, migrate, and transform in the
different environmental matrices (Tran et al., 2019). Previous
studies have demonstrated that the ECs might be found in
conventionally treated wastewater, urban sewage, agricultural
runoff, freshwater, and drinking water (Husk et al., 2019; Tran
et al., 2019).

The existence of ECs in the environment is a global concern
since in the long run their presence could have adverse effects on
living organisms (Gomes et al., 2020). These could include
bacterial resistance, feminization of aquatic organisms,
neurotoxicity, endocrine disruption, and cancer along with
other unidentified adverse effects (Mohapatra and Kirpalani,
2019). Several studies have explained the possibility of animal
behavior alteration due to exposure to ECs. For instance, Barry
(2014) found that tadpoles (Bufo arabicus) became more
vulnerable to predation after exposure to fluoxetine
(concentration around 3 µg L−1). In Denmark, from 1993 to
2006 a study demonstrated that exposure of patients
56–61 years old to Perfluorooctanoic acid (PFOA) and
Perfluorooctane sulfonate (PFOS) could lead to cancer
development (Lei et al., 2015).

Even though the concentration of ECs in the environment is
relatively low, they still could affect negatively the food chain.
Consequently, it is important to understand how to eliminate
them from water and wastewater. EC removal methods may be
categorized into four different groups, namely physical (such as
sedimentation, precipitation, adsorption, and filtration), chemical
(such as ozonation, photolysis, and Fenton), biological (such as
activated sludge, aerobic microbial treatment, and enzymatic
treatment), and hybrid systems (Ahmed et al., 2017; Taheran
et al., 2018). Table 1 summarizes the limitations and advantages
of each procedure. Among these four categories, biological
treatment can be identified as an eco-friendly and cost-
effective methodology. In this approach, large molecules could
be degraded into smaller ones using different

FIGURE 1 | Routes for EC spreading in the environment.
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microorganisms such as bacteria, fungi, and algae (Unuofin et al.,
2019).

Among microorganisms that potentially can be implemented
in biological treatment, fungal systems have been mostly studied
due to their significant ability to degrade ECs (Viancelli et al.,
2020). Another advantage of fungal treatment is the flexibility in
carbon or energy sources due to the fact that EC removal is
essentially the result of the secondary metabolic action of fungi
(Harms et al., 2011; Touahar et al., 2014).

Among different types of fungi utilized in ECs removal,
white-rot fungi (WRF) and their oxidative enzymes have been
mostly reported. Due to being non-specific, ligninolytic
enzymes including laccase (Lac; EC 1.10.3.2), manganese
peroxidase (MnP; EC 1.11.1.13), versatile peroxidase (VP;
EC 1.11.1.16), and lignin peroxidase (LiP; EC 1.11.1.14)
secreted by WRF have shown great ability to transform
numerous compounds through an oxidation process (Bilal
et al., 2019a). Even though each of these enzymes has its
specific realm of catalytic action, the principal outcome of the
reaction is to produce free radicals and ions in the medium
and degrade chemical compounds such as dyes,
pharmaceuticals and pesticides (Zdarta et al., 2018a).
Among these enzymes, laccase has shown a significant
capability of chemical compound transformation and has
become a strong potential candidate in wastewater
treatment applications (Unuofin et al., 2019).

Laccases are identified as a group of multicopper oxidases that
are widely distributed in plants, bacteria and fungi (Senthivelan
et al., 2016). Natural lignin degradation ability is the key feature of
laccases; however, thanks to its low-substrate specificity, this
enzyme could be implemented in different industries such as
biofuel production, bioremediation, pulp and paper, food
processing, biosensors, and dye decolorization (Mate and
Alcalde, 2017; Antecka et al., 2021). A major application of
this enzyme is in the bioremediation area as laccase could
oxidize different pollutants such as phenolics, non-phenolics,
aromatics, non-aromatics, and carbohydrates (Antecka et al.,

2021). Through oxidation, laccase transforms contaminants
into smaller components or into high molecular weight
oligomers with the concomitant reduction of oxygen molecules
into water (Arregui et al., 2019). Figure 2 presents the different
percentages of laccase application in different industries.

Although laccase’s ability to eliminate a wide range of
contaminants has propelled this enzyme to become a potential
candidate for wastewater treatment applications, there are some
obstacles regarding its industrial usage, including high
production costs, low stability of the enzyme, and its recovery
(Hafid et al., 2021). All of these factors directly influence the
economic sustainability of such processes. Large-scale production
of laccase for industrial application requires a multistep process
which can be expensive (Antecka et al., 2021; Hafid et al., 2021).

TABLE 1 | Advantages and challenges of treatment procedures for ECs removal.

Treatment
process

Advantages Limitations Reference

Physical process
Adsorption Wide range of available adsorbents for different

pollutants
Generate secondary pollution (solid waste) Varsha et al. (2022)
The existence of organic matter can affect the performance
negatively

(Sophia and Lima, 2018)

Reverse osmosis High removal efficiency for PPCP and EDC
removal

High operation and maintenance cost Egea-Corbacho Lopera et al.
(2019)
Rai and Shrivastav, (2022)

Biological Treatment Process
Activated Sludge Environmentally friendly Not applicable for wastewaters with COD >4000 mg L−1 Koumaki et al. (2021)

Low operational and maintenance cost
Microbial reactor High removal efficiency Low removal efficiency for pharmaceutical compounds Mery-Araya et al. (2019)

Environmentally friendly Koumaki et al. (2021)
Chemical Treatment
Ozonation High removal performance Energy --demanding Bilińska et al. (2019)

Simultaneous disinfection and sterilization Creation of oxidative byproducts Rueda-Marquez et al. (2020)
Photocatalysis Ability to remove persistent organic contaminants Not applicable for many types of wastewaters Rueda-Marquez et al. (2020)

Catalyst reusability is a problem

FIGURE 2 | Percentage of laccase application in different industries
(adapted from Mate and Alcalde 2017).
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In addition, laccases are generally secreted during fungal
secondary metabolism and, unfortunately, the amount of
produced laccase from its host is not generally considered
sufficient for industrial applications (Antecka et al., 2021;
Hafid et al., 2021). A common approach to minimize laccase
production cost is to optimize fermentation (process)
conditions and reduce the cost of the growth medium
(Olivieri et al., 2006). Usually, laccase is produced by fungi
grown in single-cell mode in liquid culture. However, through
solid-state fermentation laccase could demonstrate higher
productivity (Galhaup and Haltrich, 2001). For instance, Xu
et al. (2020) reported the noteworthy enhancement in laccase
activity secreted from Trametes versicolor cultured through
solid-state fermentation on tea residue (Xu et al., 2020).
Since laccase production efficiency is greatly dependent on
growth medium composition (Antecka et al., 2021), the latter
can also be optimized towards lower production cost.
Myrothecium roridum laccase production was significantly
increased when hay and rapeseed press cake extract were
implemented as carbon sources (Jasińska et al., 2019).

Laccase structure could be distorted and deactivated through
changing reaction conditions (Yavaşer and Karagözler, 2021).
Moreover, there is no documented industrial application of free
laccase (Zerva et al., 2019) due to low stability, poor reusability,
and high costs. Laccase immobilization can be used to deal
practically with its low stability and recovery. Laccase
immobilization over solid supports could crucially increase
stability and enable its reuse (Zhang et al., 2021) which, in
turn, can contribute to cost reduction of the overall process.
For instance, laccase immobilized over rice straw biochar showed
increased stability (Imam et al., 2021): after six cycles of usage,
immobilized laccase still maintained 47% of its initial activity.
Overall, immobilization of laccase on solid supports can increase
its stability and reusability along with boosting its activity.
However, the efficiency depends upon the methods of
immobilization employed. Moreover, the immobilized laccase
properties such as immobilization yields, residual activity,
subtrate specificity and kinetic parameters depend upon the
immobilization methods and supports used (Patel et al., 2016;
Patel et al., 2018; Patel et al., 2019).

Various solid supports have been used for immobilization of
laccase including materials of various origin and chemical
composition such as silica and inorganic materials (Girelli
et al., 2020), chitosan (Bilal et al., 2019b), and metal oxides
(Zdarta et al., 2018a). The extent of laccase immobilization on
these solid supports depends upon their properties such as
chemical composition, surface area and functional groups on
the surface (Zdarta et al., 2018a). Among these divese supports,
carbon based materials have been considered as an ideal
candidate for enzyme immobilization (Zdarta et al., 2018a).
Carbon-based materials such as activated carbons, graphene,
and biochars have been employed efficiently for enzyme
immobilization (Zhou et al., 2021). Due to well developed
pore structures, high surface area (up to 1000 m2 g−1),
existence of numerous functional groups on the surface, these
materials are a valuable candidate for laccase immobilization
(Zdarta et al., 2018a).

Among carbon-based materials, biochar, due to its properties,
has attracted special attention (Madadi and Bester, 2021). Biochar
is a solid carbonaceous material produced through hydrothermal
and thermochemical methods (Madadi and Bester, 2021).
Biochar is made up of numerous polyaromatic carbon units
which enable this material to remove organic and inorganic
pollutants from wastewater (Xiang et al., 2020). Further,
biochar’s low cost and reasonable adsorption capacity make it
a potential candidate for laccase immobilization (Madadi and
Bester, 2021). Moreover, biochar has already proved its
compatibility with a carbon negative, circular and sustainable
economy (Glaser et al., 2009; Bolognesi et al., 2021).

In recent decades, a number of studies developed different
immobilized laccase systems to eliminate ECs from wastewater
systems. This review is focusing on carbonaceous materials and
their role as a growth support for WRF as well as a solid support
for laccase immobilization. Moreover, this review highlights the
properties of various carbonaceous materials, recent trends in
laccase production, and various strategies/mechanisms used for
laccase immobilization. It also analyzes and presents the
significant benefits of carbon-based materials for their key role
in laccase production and immobilization. Furthermore, this
review aims to eliminate current research gaps on the
immobilization of laccase on carbonaceous materials and
provide insights on future research directions in this domain.

LACCASES

Lignin and Laccases
Lignin is an irregular branched three-dimensional polyphenolic
biopolymer, which contributes to plant cell wall structural
integrity and stability, resulting in the overall strength and
rigidity of woody plants (Joffres et al., 2013; Figueiredo et al.,
2018; Bugg et al., 2020). Its complex chemical structure consisting
of three basic phenylpropanolic monomers (monolignols), i.e.,
coniferyl, p-coumaryl, and sinapyl alcohols makes lignin a highly
resistant compound (Joffres et al., 2013; Bagewadi et al., 2017;
Figueiredo et al., 2018). Besides, the presence of functional groups
such as phenolic hydroxyl, benzylic hydroxyl and carbonyl
moieties linked to the monolignols adds to this
macromolecule’s heterogeneity and complexity (Bagewadi
et al., 2017).

Laccases are one of the best characterized classes of
extracellular lignin modifying enzymes (LME) (Zerva et al.,
2017; Elisashvili et al., 2018). Owing to their capacity to
depolymerize/degrade lignin, laccases attract biotechnological
interest as one of the promising “green” tools for phenolic and
non-phenolic compounds transformation and environmental
bioremediation (Kameshwar and Qin, 2017; Zerva et al.,
2017). Laccases are naturally expressed in bacteria, plants, or
fungi (Kameshwar and Qin, 2017). WRF species, which play a
major role in the wood decay process, are under considerable
scrutiny in research for LME production (Ergun and Urek, 2017;
Elisashvili et al., 2018).

Enzyme production is an important field in biotechnology.
Given the promising biotechnological and industrial applications
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of laccases, continuous efforts have been deployed for the
optimization of their production, aiming at their catalytic
property enhancement and minimizing production costs.
Bioengineering of new producing fungal species, optimization
of the production methods and cultivation media, or bioprocess
technologies are the avenues usually exploited (Pollegioni et al.,
2015; Elisashvili et al., 2017; Kumar and Chandra, 2020).

Fermentation Strategies for the Production
of Laccases
Typically, submerged (SmF) and solid-state fermentations (SSF)
of lignocellulosic materials by WRF are used for laccase
production (Elisashvili et al., 2018). SSF involves the growth of
microorganisms on solid natural (e.g., organic substrates) or
synthetic inert materials in the absence or near absence of free
liquid medium (Palma et al., 2016; Ergun and Urek, 2017). This
approach offers attractive features such as the use of cheap and
underutilized agroforestry wastes as growth substrates to produce
high value-added enzymes, high volumetric productivity, low
energy and operational cost, low wastewater production, and low
susceptibility to bacterial contamination (Karp et al., 2015;
Soumya et al., 2016; Ergun and Urek, 2017; Ariste et al.,
2020). SSF has been shown to be particularly fitting for
filamentous fungi, since it provides adequate surface adherence
and tends to mimic their natural habitat and growth conditions
(Chenthamarakshan et al., 2017; Soccol et al., 2017).

Under SmF, microorganisms are grown in carbohydrate-based
liquid media usually supplemented with nitrogen and other
nutrients, under aerobic conditions. Unlike SSF, SmF allows easy
monitoring of operating parameters such as pH, dissolved oxygen, or
concentration of water-soluble substrates. In addition, this system is
characterized by an easy mixing of the broth and separation of the
biomass after fermentation. Due to its relatively easy scale-up,
industrial production of enzymes is mainly performed under
SmF (Wang et al., 2019). However, SmF can be limited by
uncontrolled mycelial growth resulting in an overabundant
biomass. Expansion of biomass can increase broth viscosity and
limit mass and oxygen transfer, thereby reducing metabolic rate and
enzyme secretion (Krull et al., 2013; Silvério et al., 2013).

Co-culture: An Effective Strategy for the
Enhanced Production of Laccase
In recent years, microbial co-culture has developed rapidly as a
promising alternative for the biosynthesis of various natural
bioproducts of interest (Qian et al., 2020). This technique,
which can be performed under SSF or SmF, brings together
different species. It is therefore a convenient way to exploit the
interactions of different species and stimulate individual strain
cryptic genes and trigger the generation of new products. Yet, the
exact biosynthetic mechanisms and pathways behind the overall
process are complex and still await elucidation (Maglangit et al.,
2020; Zhuang and Zhang, 2021). To be successful, biosynthesis of
new products in co-culture requires appropriate conditions for
the compatible coexistence of the different microbial species
involved (Zhuang and Zhang, 2021). In terms of compatibility,

different interactions have been highlighted between species in
co-culture fermentations: one species develops at the expense of
the others, the species inhibit each other (deadlock), or they
collaborate (Wiberth et al., 2019).

Several recent studies on co-culture have proven its feasibility
and viability as an experimental approach to enhance the
chemical diversity of microorganisms. Co-culture of
Pycnoporus sanguineus and Beauveria brongniartii strains
under SSF by Jiménez-Barrera et al. (2018) yielded a six-fold
increase in laccase activity. Also, a co-culture of Pycnoporus
sanguineus and Trametes maxima and eight soil-borne
micromycetes under SmF showed different competitive
antagonism and collaboration interactions while, overall,
ligninolytic enzymes including laccase showed increased
activity (Wiberth et al., 2019). Laccase enzyme systems have
been produced by co-cultures of Alcaligenes faecalis / P.
sanguineus (Li et al., 2016) and T. maxima / Paecilomyces
carneus (Chan-Cupul et al., 2016) under SmF; both yielded
higher laccase activity compared to monocultures.

Factors Affecting Laccase Production
Under SmF and SSF
Under solid-state or submerged fermentation, several factors can
influence enzyme production. Successful production implies
selection of appropriate fungi species, supports/substrates, growth
media and conditions, and inducers (Soccol et al., 2017). In general,
the key factors that regulate laccase production can be clustered into
two broad sets. The first category includes themedia composition (in
particular the carbon and nitrogen sources and concentrations), the
concentration of dissolved oxygen (DO) and the type and
concentration of inducers (Kumar et al., 2016; Elisashvili et al.,
2017; Schneider et al., 2020). Second, the operating parameters,
which comprise pH, temperature, agitation, and incubation time can
significantly affect fungal laccase production. As the effects of these
factors combine, it is quite complex to establish a standardized
model for the regulation of laccase synthesis (Chenthamarakshan
et al., 2017; Elisashvili et al., 2018).

Importance of Carbon and Nitrogen Sources on
Laccase Production
As a first note, different fungi may require different sources of
carbon and nitrogen to fully release their laccase expression
potential. Under submerged conditions, Hariharan and
Nambisan (2012) tested many sources of carbon including
glucose, sucrose, starch, maltose, and lactose. Their results
suggested that glucose and sucrose enhanced the enzyme
expression, but other carbon sources contributed to activity
decrease. These results are consistent with those recently
unveiled by other researchers, where glucose effectively
promoted laccase activity (Schneider et al., 2019; Marin et al.,
2020). Furthermore, Schneider et al. (2019) found that the
secretion of laccase was related to the nitrogen source in the
media, with casein being a better enzyme promoter than peptone.
In the same sense, Lentinus strigosus 1566 showed highest laccase
activity in a peptone-yeast extract medium supplemented with
galactose, arabinose, and xylose, while glucose, sucrose, or
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maltose decreased its activity (Myasoedova et al., 2015). These
authors also found that glucose slightly increased laccase activity
compared to malt dextrin, whereas fructose decreased laccase
production. As for sucrose and glycerol, they lowered laccase
activity yield but substitution by maltose had no effects on laccase
production. Overall, diverse carbon sources have a significant role
in laccase production. Determining the best carbon source is the
first step towards optimal growth medium design and eventually
optimal laccase production.

Typically, culture media are supplemented with organic or
inorganic nitrogen sources. Depending upon these two forms,
different levels of laccase expression and activity can be observed
with the same strain and from one strain to another. A direct positive
correlation between peptone concentration and biomass
development and laccase activity increase was observed in a
culture of Coriolopsis gallica 142 strain (Mikiashvili et al., 2006;
Elisashvili et al., 2017). However, at a certain threshold, the
subsequent increase in peptone concentration led to an opposite
effect on the activity. In the aforementioned study, nitrogen sources
such as peptone, yeast extract, beef extract, ammonium sulphate,
ammoniumnitrate, and urea, were also tested for laccase production.
The authors found that beef extract was the best nitrogen source for
highest activity expression after 120 h of incubation (Hariharan and
Nambisan, 2012). Previously, Zerva et al. (2017) studied the
comparative influence of five different nitrogen sources including
diammonium tartrate, potassium nitrate, ammonium nitrate, yeast
extract and corn steep liquor (CSL) on laccase expression by
Pleurotus citrinopileatus and Irpex lacteus. It was observed that
both species developed highest biomass and laccase activities in
samples supplementedwithCSL. Besides, inorganic nitrogen sources
were found to promote less fungal growth. In another study,
Chauhan (2019) obtained a similar result with Grammothele
fuligo cultured in glucose-based medium, where inorganic
nitrogen sources tested failed to promote abundant biomass and
further to secrete laccase. The fermentation of P. ostreatus Pl 22
strain using different nitrogen sources showed that yeast extract
increased laccase activity by almost six-fold in comparison with
ammonium sulfate (Karp et al., 2015). Mikiashvili et al. (2006)
determined that ammonium sulfate and ammonium nitrate were
good sources of nitrogen for laccase production by Trametes
multicolor. Besides their individual effects, the Carbon/Nitrogen
(C/N) ratio can significantly influence the synthesis and secretion
of fungal laccase (Rivera-Hoyos et al., 2013; Elisashvili et al., 2018).
Globally, depending upon the strains, low or high C/N ratio can
alternately improve or decrease the production (Elisashvili et al.,
2018). Interestingly, Yang et al. (2016) determined that the
combination of high concentrations of carbon and nitrogen led
to higher production of laccase from Cerrena sp.

In summary, a wide range of nitrogen sources has been studied
and can induce diverse effects on laccase production, hence there
is considerable uncertainty regarding the selection of the optimal
nitrogen concentration for laccase production (Elisashvili et al.,
2018).

Effect of Inducers on Laccase Production
Lignin degradation metabolites and metals naturally present in
the environment can act as promoters of fungal laccase

production. In a laboratory context, phenolic and aromatic
compounds, especially those structurally related to lignin
(Furukawa et al., 2014; Pollegioni et al., 2015; Elisashvili et al.,
2017), and metals such as copper, manganese, cadmium, and
magnesium can play an important role in laccase production
(Valle et al., 2014; Martani et al., 2017; Lallawmsanga et al., 2019).
However, these compounds have also been depicted to be playing
dual roles as they can act as inducer or repressor, depending
notably on their concentration, the media composition, the
fungal species, and the enzyme tested (Elisashvili et al., 2017).
Under submerged fermentation, hydroquinone was found to
cause an increase in laccase production by T. versicolor,
whereas C. unicolor rather decreased laccase activity
(Elisashvili et al., 2010). Under laboratory conditions,
compounds such as 2,5-xylidine, guaiacol, veratryl alcohol
(VA) and catechol are often used as laccase inducers (Krull
et al., 2013; Martani et al., 2017). In a submerged fermentation
of T. multicolor 511, VA and guaiacol enhanced laccase specific
activity by two-fold (Mikiashvili et al., 2006). Similarly, gallic acid
(1 mM), tartaric acid (20 mM), and citric acid (20 mM) could
elevate laccase activity (Chang and Chang, 2016). It was also
observed that among several organic inducers, ethanol and
guaiacol induced laccase production by Lentinus crinitus while
pyrogallol, veratryl alcohol, xylidine, and vanillin were ineffective
(Valle et al., 2014). It was also determined that the induction of
laccase activity by ethanol was concentration-dependent, as
concentrations of 1% v/v and 3% v/v have increased
Ganoderma lucidum laccase activity production by 6.5 and
14 times compared to the control, repectively. However, with
up to 5% v/v ethanol, the activity reached only 10 times that of the
control, showing that the correlation of activity induction with
ethanol concentration was positive up to a certain level, beyond
which the ethanol concentration could be less effective in
increasing laccase activity (Manavalan et al., 2013).
Resveratrol, tannic acid, and guaiacol were found to be the
best laccase inducers in a culture of C. gallica, however, 2–2′-
azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and
gallic were ineffective (Xu et al., 2016) under the same
fermentation conditions. On the contrary, laccase activity was
increased in Cerrena sp. HYB07 fermentation by ABTS and
guaiacol, though other aromatic compounds had no significant
effects (Yang et al., 2016).

Several inorganics canmodulate laccase expression. In general,
trace metallic elements at high concentrations can be toxic to
ligninolytic fungi growth and repress their laccase expression.
Besides, it was demonstrated early on that tolerance to high
concentrations of trace metallic elements can largely be species
dependent (Giller et al., 1998; Valle et al., 2014). Meanwhile, some
metallic compounds such as Cu, Mn, Co, and Zn, present at low
concentrations in the culture medium are essential for fungal
growth and biological functions (Baldrian, 2003; Asif et al., 2017).
Among microelements, copper is largely used as an inducer in
enzyme production. The positive correlation between laccase
production and copper, often added to the media as copper
sulfate, has been well described in previous studies (Valle
et al., 2014; Karp et al., 2015; Chang and Chang, 2016;
Vrsanska et al., 2016; Yang et al., 2016; Zhu et al., 2016;
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Schneider et al., 2019). Moreover, the influence of copper on
laccase expression is likely to be magnified or minimized
concomitantly with high or low nitrogen concentration,
respectively (Valle et al., 2014). However, under certain
conditions, the negative effect of copper has also been
highlighted (Dao et al., 2019). Thus, as reported by Martani
et al. (2017), the overall influence of copper on laccase production
depends on its concentration in the culture medium, the
microbial strains involved, and the presence of other
components in the medium.

Effect of Fermentation Operating Parameters on
Laccase Production
In addition to the design of the nutritional environment,
operational factors such as temperature, pH, time, agitation
rate, and dissolved oxygen can significantly influence the
fungal growth and enzyme production.

Temperature does not correlate significantly with fungal
growth rate and biomass development (Martani et al., 2017).
However, it importantly influences the potential and the level of
laccase activity expressed, as revealed by several studies.
Schneider et al. (2019) showed that laccase activity of
Marasmiellus palmivorus VE111 was maximum at 28°C and
decreased when this temperature was either lowered or raised
by 5°C. The decrease of laccase activity below or above 28°C was
explained by the reduction of expression of some genes involved
in the transcription of this enzyme (Rivera-Hoyos et al., 2013;
Schneider et al., 2019). A previous study on M. palmivorus LA1
laccase secretion under SSF using pineapple leaf as substrate led
to a similar conclusion (Chenthamarakshan et al., 2017).
Hariharan and Nambisan (2012) found that 27°C was the best
temperature for laccase production byGanoderma lucidum under
SSF, while temperatures lower than 23°C or higher than 33°C led
to a significant reduction in enzyme production. Yet, Chang and
Chang (2016) determined 30°C as the optimum temperature for
laccase production from Pleurotus eryngii, under submerged
conditions.

The pH can have an important influence on fungal growth and
thereby on laccase expression. According to previous studies,
highly acidic or basic media negatively affect fungal growth and
laccase activity, and this can be noticed either under SSF or SmF.
Chang and Chang (2016) noted an increase of laccase activity of
P. eryngii between pH 2 and 5, before its decrease in the 5–9 pH-
range. In another study, Chenthamarakshan et al. (2017)
determined that pH 5 was the optimum for best growth of M.
palmivorus LA1 on pineapple leaf for laccase secretion and
maximum activity. In the same vein, pH 5 was determined as
optimal for production of laccase from G. lucidum under SSF,
after an optimization process (Hariharan and Nambisan, 2012)
while Zerva et al. (2017) got the best results at pH 5 and 6 with
Pleurotus citrinopileatus and Irpex lacteus strains using
supplemented olive mill wastewater as culture medium. For
Schneider et al. (2019), pH 4 and below or pH 8 and above
led to laccase activity decrease, whereas it reached maximum
activity at pH 7.

Incubation time for an enzyme to reach maximum activity
expression varies from one strain to another and according to

fermentation conditions. In general, microorganisms are
characterized by a period of acclimation followed by growth
and biomass production accompanying the substrate
consumption. Overall, thanks to the ready availability of
nutrients, the culture period for enzyme production in SmF is
generally shorter than that of SSF (Wang et al., 2019). The
Ganoderma lucidum 447 culture for enzyme production in
olive mill by-products medium achieved highest laccase
activity after 6 days, i.e. earlier than with other fungi tested in
the same study. In contrast, Cerrena unicolor 302 attained
maximum laccase activity after 2 weeks of fermentation
(Elisashvili et al., 2017). A 2-week period was also the
cultivation time necessary for Ganoderma applanatum with
rice bran as media to achieve maximal laccase activity (Wang
et al., 2019). The culture of Coriolus versicolor on sweet sorghum
bagasse in SSF supplemented with CuSO4, gallic acid and syringic
acid produced maximum laccase activity within 16 days (Mishra
et al., 2017). Under SmF, P. citrinopileatus and I. lacteus produced
highest laccase activity in 10 and 24 days of cultivation in olive
mil wastewater, respectively (Zerva et al., 2017), however Cerrena
consors took much more time (30 days) for the
laccase activity peak in a 50% olive mill wastewater (Mann
et al., 2015).

Under submerged fermentation conditions, the availability
and transfer of oxygen is essential for fungal growth. As
mentioned earlier, mycelial uncontrolled expansion can limit
oxygen transfer (Krull et al., 2013; Silvério et al., 2013). To
promote oxygen transfer, it is important that the culture must
remain continuously under shaking conditions. This was
corroborated by Domingos et al. (2017) who found that
unshaken culture resulted in incomplete sugar consumption
partially due to lack of proper oxygen transfer. In another
study, Schneider et al. (2019) have analyzed the influence of
the concentration of dissolved oxygen on enzymatic activity from
Marasmiellus palmivorus VE111 strain. Thus, in general, it is
proved that increased laccase activity is directly related to DO
concentration.

The monitoring of agitation has shown a positive correlation
between biomass growth and agitation rate. However, above a
certain threshold, agitation can lead to a negative effect on
biomass growth and enzyme expression. In fact, under
excessive agitation, hydrodynamic shear stress on biomass can
result in changes in its morphology, leading to subsequent
enzyme under-expression (Zerva et al., 2017).

Sustainable and Cost-Effective Growth
Media for Enhanced Production of
Laccases
Recently, several fungal strains have been screened for their
potential growth under SmF conditions for laccase
production, using various natural carbonaceous substrates
such as agro-residues. For instance, Elisashvili et al. (2018)
used mandarin peels (MDP), olive tree sawdust (OTS), olive
pomace (OP), and olive mill wastewater (OMW) as growth
substrates under SmF and SSF conditions. They have tested
seven strains belonging to C. unicolor, Fomes fomentarius,
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Ganoderma lucidum, P. ostreatus, P. coccineus, T. trogii, and
T. versicolor species. The culture media were initially
supplemented with 0.3% peptone as additional nitrogen
source and 1 mM CuSO4 as laccase inducer. Overall, C.
unicolor and T. trogii 146 strains showed the highest
laccase activity. MDP were good substrates for laccase
secretion by the C. unicolor strains, and OTS promoted
best secretion of laccase by C. unicolor 302, whereas OP
appeared to be ideal for laccase production by C. unicolor
strains and T. versicolor (Elisashvili et al., 2018). Cultures with
OMW favored enhanced production of laccase by G. lucidum
447, P. ostreatus 2175, and P. coccineus 310. Overall, highest
laccase activity was obtained from C. unicolor 301 and T. trogii
146 with OMW-based medium. In a similar study, Zhao S.-X.
et al. (2017) grew P. ostreatus under SmF conditions using tea,
peanut shells, orange peel, corn cob, and bagasse as substrates
in glucose-based medium. Laccase production was enhanced
in all the cultures except in those using peanut shells as
substrates. The cultures with orange peel showed the
highest laccase activity which was nine times higher than
the control.

IMMOBILIZATION OF LACCASE

Free laccase can have high activity. However, due to not being
able to separate and be reused, activity can be lost in a continuous
process thus increasing the operational cost (Masjoudi et al.,
2021). In addition, it has been proved that free laccase may exhibit
poor stability while exposed to harsh operating conditions and
over time (Wen et al., 2019). In order to tackle these challenges,
the immobilization strategy is considered the most successful
method. Attachment of laccase over solid supports could
significantly enhance its capability to maintain its activity over
time and its resistance to operational conditions (e.g.
temperature, pH, and exposure to different chemical agents)
(Shakerian et al., 2020). Moreover, reusability of immobilized

laccase can crucially decrease operational cost in continuous
systems (Naghdi et al., 2017). However, immobilization could
result in laccase conformational change, and a decrease in activity
(Ji et al., 2017). For an efficient immobilization, mode of
immobilization, support material, and initial activity of laccase
are critical parameters to be considered (Yavaşer and Karagözler,
2021). Figure 3 shows the important factors regarding biocatalyst
preparation.

Modes of Immobilization
Immobilization procedures are categorized into two groups
including physical and chemical interactions (Fernández-
Fernández et al., 2013). The difference between chemical and
physical immobilization procedure refers to how the enzyme
attaches onto/into the support (Zdarta et al., 2018a). During
physical immobilization, there is no or minimal enzyme
conformation change, and the enzyme could keep its activity
(Zhou et al., 2021). In this methodology, there are no strong
interactions between enzyme and carrier and the two can be
connected through weak intermolecular forces such as hydrogen
bonds, ionic, and hydrophobic interactions (Ba et al., 2013;
Zdarta et al., 2018b). Entrapment and adsorption stand out as
the main physical procedures (Zhou et al., 2021).

In contrast to physical attachment, chemical interactions are
involved through the creation of covalent bonds between enzyme
and solid support (Daronch et al., 2020). Chemical
immobilization is based on the interaction between functional
groups of the solid support and enzyme functional groups
(mostly –NH2, –SH, and –OH). Covalent binding and cross-
linking can be considered as two methodologies in this category.

Since physical bonding is relatively weak, it will maintain the
enzyme bound to the support for a shorter period of time (Datta
et al., 2013). In addition, changes in operational conditions (e.g.
ionic strength, pH, and temperature) could result in loss of
enzyme activity. As a result, preference is given to chemical
immobilization (Wahab et al., 2020) for industrial applications
such as wastewater treatment. Generally, it is expected that
chemical immobilization reduces enzyme leakage and
significantly improves its reusability (Zdarta et al., 2018b).
Figure 4 illustrates different immobilization techniques.

Entrapment
Entrapment is identified as the simplest immobilization
technique in which enzyme molecules disperse into a porous
solid matrix; hence no direct attachment may be formed
between carrier and enzyme (Fernández-Fernández et al.,
2013; Karthik et al., 2021). Alginate, collagen, silicon
rubber, gelatin, carrageenan, polyurethane, polyacrylamide,
and polyvinyl alcohol with styryl pyridinium groups are solid
matrices that can be used for enzyme entrapment (Dayaram
and Dasgupta, 2008; Phetsom et al., 2009; Fernández-
Fernández et al., 2013). Enzyme entrapment can be carried
out in two steps: first enzyme molecules are dispersed into
monomer solution, and then a polymerization process ensues
which maintains enzyme molecules trapped (Karthik et al.,
2021). Entrapment technology could increase laccase stability
considerably and it can be helpful to avoid enzyme

FIGURE 3 | Important factors to be considered in biocatalyst design and
synthesis.
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denaturation. Despite its benefits, this method has some
limitations which restrict its application. One such issue is
enzyme leakage which can be significant when a support with
a large pore size is used.

Adsorption
In the adsorption immobilization technique, the enzyme is linked
to the carrier through weak interactions (Sirisha et al., 2016).
Based on the types of weak forces, adsorption immobilization can
be divided into two categories, namely ionic attachment
(electrostatic interaction is dominant) and physical attachment
(mainly through van der Waals forces, hydrophobic interactions
or hydrogen bond formation) (Karthik et al., 2021; Zhou et al.,
2021). Compared with other techniques, adsorptionmethodology
is recognized as a simple and low-cost procedure for enzyme
immobilization (Fernández-Fernández et al., 2013). Despite its
benefits, the amount of enzyme leakage in this method is high,
therefore the application of adsorption immobilization for long-
term processes or processes with varying operational conditions
is not recommended (Zhou et al., 2021). pH, ionic strength of the
solution and solid support surface area are three factors that
should be considered during adsorption immobilization (Rekuć
et al., 2008; Huajun et al., 2009; Xu et al., 2009; Forde et al., 2010).

Covalent Binding
Covalent binding is considered as the most reliable method for
industrial application (Fernández-Fernández et al., 2013). In this
methodology, strong bonds are formed between non-essential
amino acids at the surface of enzymes and carrier chemical
groups. Due to the formation of these strong bonds between
supports and enzymes, the amount of leakage decreases
significantly (Hernandez and Fernandez-Lafuente, 2011; Zdarta
et al., 2018b). Based on the functional groups on the supports,
various reagents could be implemented to prepare the support for

covalent immobilization. For supports with hydroxyl groups,
cyanogen bromide (CNBr) and carbonyl diimidazole (CDI) are
recommended (Karthik et al., 2021). For supports with carboxyl
groups, zero length reagents such as EDC (1-ethyl-3-(3-
dimethylaminopropyl) carbodiimide hydrochloride), NHS
(N-hydroxysulfosuccinimide), and EDC coupling with Sulfo-
NHS are recommended (Hermanson, 2013). In addition to
these reagents, ionic liquids have been frequently used in
enzyme immobilization as they are eco-friendly solvent media
(Hermanson, 2013). However, selection of ionic liquid types is a
key step since cation or anion changes in such a liquid could affect
activity, structure and enzyme stability (Hermanson, 2013). The
possibility of laccase immobilization on magnetic nanoparticles
was also investigated (Qiu et al., 2020). In this study, the surface of
magnetic nanoparticles was modified with an amino-
functionalized ionic liquid. Through surface modification with
3-(chloropropyl) trimethoxysilane (CPTMO) and (3-
aminopropyl) trimethoxysilane (APTES), laccase was
covalently immobilized on the surface (Qiu et al., 2020).
Stability-wise, the biocatalyst could maintain around 70% of
its initial activity after six cycles (Qiu et al., 2020). In the
context of magnetic supports, bioinspired magnetic particles
bearing laccase (laccase-biotitania, lac-bioTiO2) were applied
for the efficient removal of bisphenol A, 17α-ethinylestradiol
and diclofenac in a mixture of six model endocrine
disrupting compounds (EDCs) and retained 90% of activity
after five reaction cycles and 60% after 10 cycles (Ardao et al.,
2015).

Cross-Linking of Enzyme Aggregates
Cross-linking of enzyme aggregates is a carrier-free
insolubilization procedure in which multifunctional or
bifunctional reagents are implemented to assist enzyme cross-
linking into a unified structure with no added carriers (Mateo

FIGURE 4 | Enzyme immobilization methods.
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et al., 2004; Zhou et al., 2021). Since, in this methodology, enzymes
act as their own solid supports, this procedure is also called a self-
immobilization technique (Karthik et al., 2021). Among different
cross-linker reagents such as diiminoesters, diisocyanates, and
diamines activated by carbodiimide, the best-known is
glutaraldehyde (GA) as it is inexpensive, widely available, and
easy to manipulate (Fernández-Fernández et al., 2013; Xiang et al.,
2018). However, currently this cross-linker is raising potential
toxicity concerns (Yang et al., 2019). This method is highly
dependent on pH which includes Schiff’s base formation and
Michael-type 1,4 in addition to α, β-unsaturated aldehyde
moieties (Migneault et al., 2004). There are two kinds of
enzyme cross-linking techniques, namely formation of cross-
linking enzyme crystals (CLEC), and of cross-linking aggregates
(CLEA) (Ba et al., 2013). In CLEA (Schoevaart et al. 2004), first
enzyme molecules are clustered in chemical precipitant solutions
such as acetone, ammonium sulfate or ethanol and
subsequently a cross-linking reaction completes the
process, as initially demonstrated with laccase CLEA by
Cabana et al. (2007) and then by others (Matijošyte et al.,
2010; Nguyen et al., 2017). CLEC techniques demonstrate
good stability and promising activity, however for this process
high purity of enzyme is required (Sirisha et al., 2016). Finally,
cross-linking with the concomitant enzyme immobilization
on an inert porous support may confer additional stability.
For istance, Nair et al. (2013) described the deactivation of
free and immobilized enzymes during their incubation at 45,
55, 65 and 75°C at pH 5 in absence of electron-donor substrate
by periodically measuring the residual activity with ABTS as a
substrate. An apparent higher stability of immobilized laccase
was evidenced with greater half-lives for the immobilized
laccase than soluble laccase. Table 2 presents indicative
properties of enzyme immobilization techniques applicable
to laccases.

Immobilization Carriers/Solid Supports and
Their Properties on Laccase Immobilization
The selection of appropriate solid support for laccase
immobilization is crucial for biocatalyst efficiency (Daronch
et al., 2020). Generally, carriers are sought to enhance laccase
catalytic activity and stability (Zhou et al., 2021). An ideal support
should protect both enzyme structure and activity under a variety
of operational conditions (Zdarta et al., 2018a) while keeping its

own physical integrity. Here below, important characteristics of a
solid support are discussed (Figure 5).

Particle Size
Solid support particle size plays a significant role in the success of
immobilization. In industrial applications, large particles may be
handled better than small ones (Santos et al., 2015). Nanoporous
gold supports were employed to study the effect of particle size on
laccase immobilization (Huajun et al., 2009). The results obtained
from three different particle size samples demonstrated that the

TABLE 2 | Inherent characteristics of immobilization methods (Zhou et al., 2021).

Characteristics Entrapment Adsorption Covalent binding Self-immobilization

Cost + ++ +++ +
Preparation difficulty + + +++ ++
Stability + + +++ +
Binding force + + +++ +++
Enzyme leakage +++ ++ - -
Diffusion resistance ++ - +++ -
Laccase protection ++ - - -
Activity loss + ++ +++ +++
Applicability ++ ++ +++ +

FIGURE 5 | Support properties for laccase immobilization.
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larger particle size support had the ability to keep more enzyme on
its surface due to laccase accessibility to inner pore structures
(Huajun et al., 2009). However, having larger support particles
could have some drawbacks as well. Large particles could enhance
diffusional limitations which could, in turn, affect negatively the
enzyme activity (Bortone et al., 2014). In the case of the substrate, if
its consumption rate by the enzyme is higher than its diffusion rate,
there is a possibility of the enzyme located at the support core not
receiving any substrate and therefore the biocatalyst’s apparent
enzyme activity could decrease (Lortie and André, 1991; Boniello
et al., 2010). At the same time, even though nanoparticles present
handling issues, the diffusion problems can be prevented by the use
of nanoparticles instead of microparticles and for non-porous
supports the enzyme is always exposed to the substrate (Bilal
and Iqbal, 2019; Bilal et al., 2020). Moreover, to produce effective
multipoint covalent immobilization on nanoparticles, epoxy,
glyoxyl or divinylsulfone activated nanoparticles can be used
(Bilal and Iqbal, 2019; Bilal et al., 2020).

Pore Size/Specific Area
There is a connection between pore size and surface area in which
larger pores result in a lower specific area. Specific surface area
determines the amount of enzyme that could be loaded over the
carrier (Di Cosimo et al., 2013). From an economics perspective, a
larger specific surface area could result in a higher amount of
enzyme that could be loaded over the support (Santos et al., 2015).
Pore diameter determines the size of the enzyme which could be
immobilized over the solid support. Importantly, the size of the pore
should be big enough to allow the new enzymemolecules to enter in
the support (Hudson et al., 2008). In general, the diameter of the
pore should be four to five fold larger than the enzyme’s molecule
size (Hanefeld et al., 2009). According to a comprehensive analysis
of 182 experiments with emphasis on the effect of pore size and
surface area on enzyme immobilization, a general trend emerged:
higher surface area would result in higher enzyme load on the
support (Bayne et al., 2013). However, this general trend for pore
size was divided into three ranges in which for the supports with
pore size less than 10 nm, the amount of loading is less (apparently
due to physical restrictions in accessing the augmenting surface
inherent in this pore diameter range), for the supports with pore size
between 10 and 100 nm, the amount of enzyme loading tends to be
constant (possibly due to protein–protein interaction blocking
pores and restricting access to the higher surface area available
at lower pore diameters), and for supports with pore size higher
than 100 nm, the amount of enzyme loading per unit mass would
decline due to a parallel reduction in available surface area (Bayne
et al., 2013). Thus, upon a critical analysis even if the surface area is
larger for solid supports with small pores the possibility of enzyme
loading is lower. Moreover, there was no clear trend between pore
characteristics and retention of catalytic activity (Bayne et al., 2013).

Functional Groups
The existence of functional groups on the solid supports is another
factor that controls enzyme-support interactions (Santos et al.,
2015). Favorable functional groups on the solid support are
essential to ensure that strong multiple interactions would occur
between enzyme, binding agent, and support leading to decreased

leakage (Pandey et al., 2020). While the density of active groups on
the solid support is crucial, the nature of functional groups is also
critical. Most active groups are stable and do not require further
consideration (Garcia-Galan et al., 2011). However, covalent
immobilization merits further analysis (Garcia-Galan et al.,
2011). An ideal functional group for successful covalent
immobilization should have the following properties:

- Allow reaction between enzyme and support with low steric
hindrances (Mateo et al., 2005);

- Maintain the physical properties of the enzyme after
immobilization (Bolivar et al., 2009);

- Be stable over a wide range of conditions (Pedroche et al.,
2007);

- Require a simple immobilization protocol with no additional
treatment (Santos et al., 2015).

Inertness and Mechanical Properties
Support inertness could affect both immobilization and the
substrate on which immobilized laccase is expected to act
(Daronch et al., 2020). Commonly, a solid support should
maintain its physical integrity and be inert after
immobilization to avoid interfering with desired reactions (Ba
et al., 2013). Polysaccharide matrices such as agarose and
cellulose beads, carbonaceous materials, as well as silica
compounds are considered as inert solid supports (Santos
et al., 2015). Mechanical properties of solid supports are
highly dependent on the process use intended for the
immobilized laccase (Garcia-Galan et al., 2011). For instance,
in a fixed-bed reactor, the solid support should have high rigidity
to tolerate high pressure (Santos et al., 2015), hence silica
materials, carbon-based materials, and inorganic oxides are
recommended (Kim et al., 2008; Tartaj, 2011; Hartmann and
Kostrov, 2013). However, the situation would be different in a
stirred-tank reactor (Santos et al., 2015)where, instead of mineral
materials, more flexible compounds such as agarose beads,
cellulose beads, and lentikats can be used (Grazu et al., 2006;
Cárdenas-Fernández et al., 2012; Lam et al., 2012).

Besides the above-mentioned properties, the ideal solid
support should be low cost and eco-friendly (not increasing
operation cost and generating environmental problems), with
high affinity toward the enzyme to be amenable to regeneration
(Ba et al., 2013; Daronch et al., 2020). Table 3 categorizes three
major types of support materials used for immobilization and
their specific properties.

CARBONACEOUS MATERIALS IN
LACCASE PRODUCTION AND AS A
SUPPORT FOR THEIR IMMOBILIZATION

Perspectives of Carbon-BasedMaterials for
Laccase Production As Inducers and
Growth Medium
The prospect of using carbon-based materials is very interesting
for laccase production. However, there are few reports in the
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literature on biochar utilization in laccase production, in contrast
to more abundant trends towards biochar immobilization of
enzymes produced conventionally. Another technique involves
the concomitant production and immobilization of enzymes on
solid supports in a single-step process. However, to the best of our
knowledge, this has not been explored further and future studies
can further explore the concerted production and immobilization
of enzymes within the same process. Fortunately, due to the
eclectic and rich composition of biochar and its overall
physicochemical characteristics (see below), the use of this
material can be considered a multi-in-one technique to
enhance laccase production and immobilization.

Biochar as a Substrate for Production and Support for
Immobilization
The study of biochar’s composition has revealed that, depending
on the feedstocks and pyrolysis conditions, this material can
present incompletely degraded lignocellulosic biomass and
nitrogen-content residues such amine groups (see below).
Furthermore, functionalization can introduce new chemical
groups to the biochar structure. These elements make biochar
a complementary source among the common carbonaceous
nutrients provided in culture media for laccase production
WRF. Besides, the large specific area and pore size, and the
existence of specific chemical groups on biochar surface favor its
adsorptive capacity, which can also be related to the molecular
size of the enzyme (Rajapaksha et al., 2016; Li et al., 2018;
Fernandez-Sanroman et al., 2020; Pandey et al., 2020). Several
studies have reported the successful enhancement of laccase
production and immobilization on biochar either by
adsorption or covalent bonds (Lonappan et al., 2018a; Li et al.,
2018; Fernandez-Sanroman et al., 2020; Pandey et al., 2020; Imam
et al., 2021). A summary of such studies is shown in Table 4.

Biochar as an Inducer of Laccase Production
In a biochar-based medium for laccase production, laccase can
adsorb onto biochar or some of its components can be released in
the culture medium and absorbed by the fungus. In both cases, as
discussed in other sections, these organic and inorganic
components in the biochar exert regulatory actions on laccase
production, either as promoting or inhibiting agents (Giller et al.,
1998). Due to its physicochemical characteristics, i.e., its high
porosity and hydrophobicity (Taskin et al., 2019b), biochar can
demonstrate high affinity for organic and inorganic contaminants
(Taskin et al., 2019b; Fernandez-Sanroman et al., 2020). This
property allows its use as a sorbent of organic or inorganic
pollutants for soil amendments (Taskin et al., 2019b). Biochar
has also been used in wastewater as additive/support media
during anaerobic digestion, filtration matrix for the removal of

suspended matter, heavy metals, or pathogens (Madadi and
Bester, 2021).

The presence in biochar of bioavailable organic components
like hydrophilic compounds and thermally labile fractions
(Rombolà et al., 2016), adsorbed volatile organic compounds
(Spokas et al., 2011), and polycyclic aromatic hydrocarbons (Buss
et al., 2015) is well established. Many inorganic compounds
including essential elements for the improvement of fungal
laccase production such as Cu, Mn, or Fe have also been
found in the biochar structure (see below). On the other hand,
some of these compounds are potentially toxic and can be
detrimental to laccase production or immobilization (Singh
et al., 2010; Zhang G. et al., 2018). In some cases, it all
depends on biochar level in culture media (Taskin et al.,
2019b). Ultimately, the use of biochar as a substrate for
laccase production or immobilization remains an open question.

Regarding carbon-based stimulation of WRF enzyme
production, Liu et al. (2019) investigated the impact of single-
walled carbon nanotubes, graphene and oxidized graphene
(graphene oxide, GO) on the extracellular LME activities of a
Cladosporium sp. strain, using a SmF with basal medium made of
peptone and yeast extracts. It was found that, among the three
carbon-based materials tested, single-walled carbon nanotubes
and graphene increased laccase production, while GO caused a
slight decrease in laccase activity (Liu et al., 2019). The effects on
laccase expression of two carbon-based materials, i.e., biochar
(BC) and hydrochar (HC) prepared from four feedstocks were
also studied using T. versicolor, P. ostreatus and P. eryngii strains
(Taskin et al., 2019a). At two different doses (0.4 and 2% w/v),
the two materials significantly stimulated laccase production
and increased its activity for T. versicolor and P. eryngii strains,
but P. ostreatus did not release any detectable laccase. Hence,
BC from red spruce pellets at 0.4% w/v and HC from urban
pruning residues at 2% w/v have promoted T. versicolor laccase
activity by 6.4 and 21-fold with respect to the controls,
respectively. Similarly, BC from vine pruning residues at
0.4% w/v and HC from urban pruning residues at 2% w/v
induced a 6.4- and 21-fold increase in P. eryngii laccase activity
over controls, respectively. Despite the promoting impacts of
BC on laccase production, some inhibitory effects were noticed
in connection with higher doses of BC (2%, w/v) in laccase
expression by T. versicolor and P. ostreatus (Taskin et al.,
2019a). On the other hand, Ascough et al. (2010) previously
found depressive effects of BC at concentrations as low as 0.5%
(w/v) on the growth of P. pulmonarius and T. versicolor. As for
the effects of microelements such as Cu, Fe and Mn, Taskin
et al. (2019a) could relate laccase expression induction to high
levels of Fe (about 4.3 mM) and Mn (2.5 mM) in BC. In
contrast, the absence of Mn, coupled with the presence of

TABLE 3 | Categories and properties of support materials for immobilization.

Material types Advantages Examples

Organic Presence of functional groups, biocompatibility, abundant in nature Chitosan, cellulose, agar, synthetic polymers, etc
Inorganic Good pH and temperature stability, mechanical resistance, operational stability Silica, alumina, active carbons, biochar, etc
Hybrid and composite Reusability, strong binding to enzyme, high stability Alginate-chitosan, silica magnetite, etc
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TABLE 4 | Immobilization of laccase on carbon-based materials.

Source of
enzyme

Support Pre-treatment Immobilization
loading

Relative
activity

Re-usability Reference

Trametes maxima Rice straw HCl 66% - 40% (six cycles) Imam et al. (2021)
Aspergillus niger Commercial activated

carbon
No - 70% (five cycles) Daoud et al. (2010)

Aspergillus sp. Activated carbon fibers Dopamine 23% 60% (six cycles) Zhang et al. (2018a)
T. versicolor Rice straw Cetyltrimethylammonium bromide 57.5 mg g−1 500 U g−1 45.1% (six

cycles)
Wang et al. (2021a)

T. hirsuta Polyvinylidene fluoride
membrane

MWCNTs 30.4 mg cm−2 4.47 U cm−2 20% (five cycles) Masjoudi et al. (2021)

T. versicolor Wheat straw No - - - Wang et al. (2021b)
- Waste newspaper

derived cellulose
nanocrystals

No 64.94% 1.108 U mg−1 67% (six cycles) Xing et al. (2021)

Aspergillus sp. Microporous starch No - - - Chen et al. (2021)
A. oryzae MWCNTs No - 522 U g−1 - Tavares et al. (2015)
Bacillus subtilis Luffa sponge Fe3O4 (Magnetic) 80 mg g−1 6.85 U mg−1 84.25% (10

cycles)
Zhang et al. (2020a)

A. oryzae MWCNTs Hydrothermal oxidation with HNO3 96% 20.5% 65% (five cycles) Costa et al. (2019)
T. versicolor Hollow mesoporous

carbon nanospheres
NH2 (amino functionalize) 835 mg g−1 88% 60% (eight

cycles)
Shao et al. (2019)

T. versicolor MWCNTs No 300 µg mg−1 0.2 U mg−1 - Park et al. (2012)
T. versicolor MWCNTs HNO3 420 µg mg−1 0.3 U mg−1 - Park et al. (2012)
T. versicolor Graphene oxide No 450 µg mg−1 0.7 U mg−1 - Park et al. (2012)
T. versicolor Pecan nutshells FeCl3 - - Ramírez-Montoya

et al. (2015)
T. versicolor Pistachio shell CaHPO4 - - Ramírez-Montoya

et al. (2015)
T. versicolor Pine nutshell CaCl2 - - Ramírez-Montoya

et al. (2015)
T. versicolor Mesoporous carbon

capsules
Fe3O4 (Magnetic) - - - Valle-Vigón and

Fuertes, (2011)
A. oryzae MWCNTs HNO3 98% 250 U mg−1 - Silva et al. (2014)
A. oryzae MWCNTs No 75% 600 U mg−1 - Silva et al. (2014)
B. subtilis Prosopis juliflora bark H3PO4 - - 40% (eight

cycles)
Thiyagarajan et al.
(2020)

Myceliophthora
thermophila

MWCNTs Cellulose nitrate 0.286 U mg−1 95% (10 cycles) Othman et al. (2016)

- Graphene oxide Zeolite 350 mg g−1 - 95% (five cycles) Thiyagarajan et al.
(2020)

T. versicolor Polyvinyl alcohol/chitosan MWCNTs 907 mg g−1 80% (seven
cycles)

Xu et al. (2015)

T. versicolor CNTs No - - - Zhang et al. (2020b)
T. versicolor Electrospun fibrous

membranes
MWCNTs - 4.53 U mg−1 - Dai et al. (2016)

T. versicolor Pinewood H2SO4/HNO3 26% 1.84 U mg−1 11% (seven
cycles)

Naghdi et al. (2017)

A. oryzae Granular activated
carbon (GAC)

HCl 10 mg g−1 33 µMDMP

min−1a
- Nguyen et al. (2016)

T. versicolor CNTs Polymethacrylate - - 90% (10 cycles) Lai et al. (2019)
T. pubescens Graphene Platelet Polymer hydrogel - - - Ormategui et al. (2015)
T. versicolor Pinewood H2SO4/HNO3 - 4.95 U g−1 10% (seven

cycles)
Naghdi et al. (2018)

A. oryzae Graphene sheet H2SO4/ethanol 179.12 mg g−1 - - Skoronski et al. (2017)
- Activated carbon-

Polyvinyl formal
H2SO4 - - 51% (seven

cycles)
Ma et al. (2017)

- SWCNTs 0.8 mg g−1

for Lac
8 U mg−1

for Lac
Li et al. (2013b)

0.9 mg g−1

for HRP
110 U mg−1

for HRP
- Pinewood Citric acid 14.58 U g−1 10 U ml−1 - Lonappan et al.

(2018a)
- Almond shell Citric acid 24.3 U g−1 10 U ml−1 - Lonappan et al.

(2018b)
(Continued on following page)
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As, Pb, and Cl at relatively high levels, may have contributed to
the decrease of laccase expression by P. ostreatus at both
BC doses.

Lonappan et al. (2018a) immobilized laccase on BC from three
different feedstocks, i.e., pine wood (BC-PW), pig manure (BC-
PM) and almond shell (BC-AS) produced in different pyrolysis
conditions, for diclofenac elimination. The specific surface areas
of the three BCs, determined using the Brunauer, Emmett, and
Teller (BET) method were 14.1 m2 g−1 (BC-PW), 46.1 m2 g−1

(BC-PM) and 17 m2 g−1 (BC-AS), respectively. The BCs
exhibited different surface texture, morphology, surface
chemistry and functional groups. In addition, they
demonstrated good results in covalent laccase immobilization,
with BC-PM being the best immobilization support, mostly due
to its higher specific area. In a similar study, two BCs prepared
from maple (MB) and spruce (SB) were used as supports for
laccase immobilization and for chlorinated biphenyl removal in
wastewater (Li et al., 2018). FT-IR, SEM and BET analyses
showed a honeycomb structure in the MB with a specific area
of 613.6 m2g−1 and pore volume 0.695 cm3g−1 while SB exhibited
86.3 m2g−1 specific area and 0.065 cm3g−1 pore volume. Maple-
based BC displayed the higher immobilization yield (Li et al.,
2018).

As mentioned earlier, several studies have demonstrated the
potential of ethanol to induce laccase production (Meza et al.,
2005; Manavalan et al., 2013; Valle et al., 2014, 2015).
Furthermore, due to its antimicrobial activity, ethanol has also
been used as inactivating agent of competing fungal strains
(Peters et al., 2013; Lucas et al., 2017) and other undesired
microorganisms. In addition, ethanol is a safe, stable, and
affordable solvent that can easily permeate the BC structure.
Therefore, ethanol-based sterilization of BC and the subsequent
use of the soaked BC as a substrate and carrier for laccase
production and immobilization may be considered as an
attractive means of enhancing the expression of specific fungal
laccases. More generally, BC could be soaked in inducer solutions
(e.g., copper containing solution) to serve as a complete culture
medium of laccase production.

Carbonaceous Materials as a Support for
Laccase Immobilization
Carbon-based materials have been identified as effective and
valuable supports in enzyme immobilization and have been
implemented especially in the past two decades (Daoud et al.,
2010). Carbon-based materials usually have fully developed

TABLE 4 | (Continued) Immobilization of laccase on carbon-based materials.

Source of
enzyme

Support Pre-treatment Immobilization
loading

Relative
activity

Re-usability Reference

- Pig manure Citric acid 31.4 U g−1 - - Lonappan et al.
(2018a)

- Pinewood Citric acid/Glutaraldehyde 20 U g−1 - 43% (five cycles) Lonappan et al.
(2018b)

- Almond shell Citric acid/Glutaraldehyde 30 U g−1 - 41% (five cycles) Lonappan et al.
(2018a)

- Pig manure Citric acid/Glutaraldehyde 40 U g−1 10 U ml−1 40% (five cycles) Lonappan et al.
(2018b)

T. versicolor Graphene oxide CuFe2O4 14.16 mg g−1 80% (10 cycles) Rouhani et al. (2018)
Graphene oxide Fe3O4 - - 60% (10 cycles) Chen et al. (2017)

T. versicolor C60 powder No 1.2 mg g−1 10% of initial
activity

- Pang et al. (2015)

T. versicolor MWCNTs No 1.3 mg g−1 40% of initial
activity

- Pang et al. (2015)

T. versicolor Oxidized MWCNTs No 1.4 mg g−1 38% of initial
activity

- Pang et al. (2015)

T. versicolor Graphene oxide No 1.3 mg g−1 65% of initial
activity

- Pang et al. (2015)

Aspergillus sp. Graphene oxide nano-
sheets

No 150 mg g−1 - - Kashefi et al. (2019)

T. versicolor Graphene oxide Polyethersulfone 1 mg g−1 0.108 U mg−1 - Xu et al. (2018)
T. versicolor Graphene oxide Nα,Nα-Bis(carboxymethyl)-L-lysine

hydrate (NTA-NH2)
177 mg g−1 - (89.4% (10

cycles)
Samak et al. (2018)

T. pubescens Reduced graphene oxide Xerogels - 20 U ml−1 - Rodriguez-Couto et al.
(2014)

T. pubescens Reduced graphene oxide Hydrogel - 4.33 U ml−1 - Rodriguez-Couto et al.
(2014)

A. niger Graphene oxide alginate - 85 U g−1 - Sharifi-Bonab et al.
(2016)

T. versicolor Graphene oxide Fe3O4 - 86% of initial
activity

- Rouhani et al. (2021)

aOxidation with 2,6-dimethoxy phenol (DMP).
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pore structures with adequate pore size and high surface area
(up to 1000 m2 g−1) which make them appropriate candidates
for enzyme immobilization (Zdarta et al., 2018a). Besides
these properties, carbon-based materials contain a great
number of functional groups (i.e. carboxyl, and hydroxyl)
on their surface which makes them ideal candidates for
covalent and adsorption immobilization (Zdarta et al.,
2018b).

Graphene and Graphene-Related Materials
Graphene-based materials are promising immobilization
supports due to inherent properties such as their high
surface area (approximately 2630 m2 g−1), and functional
groups such as epoxide, carboxylic, and hydroxyl on their
surface (Daneshmandi et al., 2021; Karthik et al., 2021).
Graphene materials have been used for enzyme
immobilization through adsorption or covalent
methodologies (Zhou et al., 2021). For instance, Skoronski
et al. (2017) studied immobilization of laccase from
Aspergillus sp. on commercial graphene nanoplatelets as a
support (Skoronski et al., 2017). In this study, laccase activity
immobilized on graphene through adsorption and covalent
binding was evaluated. For covalent binding, graphene was
modified through a nitration process to ensure that -NH2

groups would be created on its surface. Then using
glutaraldehyde as a cross-linker agent, laccase was
immobilized on the modified graphene surface. The
obtained results demonstrated that laccase immobilized on
graphene covalently could maintain its activity (around 80%
of initial activity) after six cycles while the other forms of
immobilizations such as adsorptive immobilization could not
keep the activity after five cycles of operation.

Two other forms of graphene are graphene oxide (GO) and
reduced graphene oxide (rGO). GO could be prepared through
various methods such as Brodie, Staudenmaier, and Hummers
processes in which graphite layers are separated followed by an
oxidation step with strong oxidizing agents (Adeel et al., 2018).
The oxidation step increases the distance between layers
(Adeel et al., 2018). In a study on GO, atomic force
microscopy (AFM) analysis demonstrated that a fully
enriched surface of GO with abundant oxygen-containing
functional groups such as epoxide, hydroxyl, and carboxyl
could possibly enable laccase to attach to GO sheets without
the need for further modification or cross-linking reagents
(Zhang J. et al., 2010). In addition, it was demonstrated that as
the extend of reduction of GO increases, the obtained support
would have better enzyme loading capability and stability
(Skoronski et al., 2017; Catania et al., 2021; Olabi et al.,
2021). Kashefi et al. (2019) investigated laccase
immobilization on GO covalently. Through addition of
glutaraldehyde, it was demonstrated that in the final
biocatalyst laccase obtained from Aspergillus sp. was
covalently attached to GO sheets. Additionally, the final
catalyst maintained 75% of laccase initial activity after six
cycles.

Reduced GO is produced through removing oxygen
functional groups from GO using different methodologies

such as thermal reduction (Mcallister et al., 2007), photo-
reduction (Zhang Y. et al., 2010), electrochemical reduction
(Ramesha and Sampath, 2009), microwave reduction (Zhu
et al., 2010), and chemical reduction (Stankovich et al., 2007;
Olabi et al., 2021). Various reducing agents can be
implemented in each procedure such as hydroiodic acid,
ascorbic acid, hydrazine, and NaBH4 (Pei and Cheng, 2012;
Lavin-Lopez et al., 2017). In a study by Patel et al. (2017)
laccase was immobilized on a composite support produced
through doping Fe3O4 on the rGO surface. The results
illustrated that laccase stability was improved 15-fold at
room temperature. Furthermore, the biocatalyst
maintained 92% of initial activity after 10 cycles (Patel
et al., 2017). Table 5 describes each type of graphene and
its properties.

Carbon Nanotubes
Carbon nanotubes (CNTs) or buckytubes are hollow cylinders in
which carbon atoms are located in hexagonal arrangements (Assi
et al., 2021). Since CNT materials are formed from graphene
sheets, they demonstrate similar properties to graphene materials
like thermal and chemical stability, high tensile strength, and
biocompatibility (Karthik et al., 2021). However, graphene atoms
are in a two-dimensional arrangement while carbon atoms of
CNTs are in a one-dimensional arrangement (Anzar et al., 2020).
Moreover, CNTs exhibit radical breathing mode (RBM) in
Raman spectrum which is unique to CNTs in comparison
with other carbon systems, where all of the carbon atoms
move in the radial direction synchronously thus generating an
effect similar to breathing (Lei et al., 2011). CNTs can be formed
through three different methods, i.e., arc discharge method, laser
ablation method and chemical vapor deposition procedure.
Commonly, two forms of CNTs can be developed: single wall
carbon nanotubes (SWCNTs), and multiple wall carbon
nanotube (MWCNTs).

- Single-walled carbon nanotubes:

SWCNTs may be developed from a single graphene sheet
rolling upon itself (1–2 nm diameter) (Sabzehmeidani et al.,
2021). SWCNTs were first reported in 1993 (Karthik et al.,
2021). They have unique properties such as strong covalent
bonding, one-dimensional structure, and nanometer size (Liu
et al., 2015). Based on how graphene sheets are rolled up, two
forms of SWCNTs can be obtained: a zigzag structure, and an
armchair structure (Shoukat and Khan, 2021).

- Multi-walled carbon nanotubes:

MWCNTs are prepared by rolling up multiple layers of
graphene sheets on themselves (Ali et al., 2021). Based on the
number of graphene tubes being rolled up, MWCNT diameter
varies from 2 to 50 nm (Ibrahim, 2013). The simplest form of
MWCNT is a double-walled carbon nanotube (DWCNT)
(Karthik et al., 2021).

Recently, studies on enzyme immobilization over CNTs have
increased rapidly since these materials have high surface area,
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capability of enhanced enzyme loading, and low mass transfer
hindrances. For instance, in a study conducted by Xu et al. (2015)
laccase was immobilized on a novel composite membrane
(polyvinyl alcohol/chitosan/MWCNTs) (Xu et al., 2015). The
immobilization was completed through surface modification of
the membrane with glutaraldehyde. The final product was shown
to maintain 80% of initial laccase activity after seven cycles of
operation. As mentioned previously, industrial application of
nanoparticles due to their small sizes could be challenging,
especially their handling in the environmental arena. Most
studies in the field of enzyme immobilization on graphene and
carbon nanotubes are related to biosensor applications. In
addition, plasma based treatment/production of CNTs may
result in better immobilization/loading of laccase. Plasma
based treatments are non-polluting in nature and can provide
a wide range of functional groups (Ruelle et al., 2011). To the best
of our knowledge, this technique has not been used for the
immobilization of laccase on plasma treated CNTs. However,
Othman et al. (2016) used MWCNTs synthesized using plasma
enhanced chemical vapor deposition for the immobilization of
laccase (Othman et al., 2016)

Activated Carbon
Activated carbon (AC) denotes amorphous carbonaceous
materials with good chemical and physical characteristics
(Barroso Bogeat, 2021). Its high surface area
(600–1300 m2 g−1) with large number of contact sites makes
activated carbon a valuable support for enzyme
immobilization (Karthik et al., 2021). Previous studies have
demonstrated that natural activated carbon or functionalized
activated carbon with HCl could act as a support in laccase
immobilization (Sirisha et al., 2016). Recently mesoporous
activated carbon with large contact sites has been using for
laccase immobilization as well as acid protease and acid
lipases immobilization (Ganesh Kumar et al., 2010; Datta
et al., 2013). In a study, activated carbon fibers modified
with dopamine was utilized as a support for laccase
obtained from Aspergillus sp. immobilization (Zhang C.
et al., 2018). The results indicated that the biocatalyst had
the capability of maintaining its activity (around 60% of initial
laccase activity) after six cycles of operation while free laccase
only kept 40% of initial activity after the same number of
operations (Zhang C. et al., 2018). Table 4 presented various
studies of immobilization of enzymes on carbon based
materials.

Kinetic Parameters of Immobilized Laccase
Kinetic parameters such as Km, Vmax and the catalytic
efficiency kcat/Km determine the catalytic action of
enzymes. These parameters can vary considerably
depending on the types of enzymes, support materials and
process conditions. The Michaelis constant (Km) expresses
the affinity of the laccase to the substrate. Vmax is the
maximum reaction rate. Low apparent Vmax can result
from mass transfer limitations and reduction in
enzyme–substrate affinity after immobilization (Gahlout
et al., 2017). The Vmax/Km ratio reflects the catalytic
efficiency of the enzyme-substrate system. Some values of
kinetic parameters related to free laccase and its immobilized
counterparts formed using different techniques and carriers
are reported in Table 6.

Biodegradation of Organic Contaminants by
Immobilized Laccase
A number of studies have been performed using immobilized
laccases for the biotransformation of organic contaminants.
Most of these studies have been conducted using synthetic
wastewater, however a few of them also involved real
wastewater, at laboratory or pilot scale. Due to the
immobilized enzymes’ overall stability over free enzymes
and their recyclability, they generally exhibited higher
removal. Table 7 summarizes some of the very recent
studies on the application of immobilized laccase for
emerging contaminant removal.

BIOCHAR AS AN EMERGING “CARBON
NEGATIVE” CARBONACEOUS SOLID
SUPPORT FOR IMMOBILIZATION OF
LACCASE

Biochar Properties and Sustainability
BC is a porous carbonaceous solid residue that can be obtained
through biomass conversion via hydrothermal and
thermochemical processes such as pyrolysis and gasification in
the absence of oxygen under various temperatures (Kuzyakov
et al., 2009; Liu et al., 2019; Cheng et al., 2021; Madadi and
Bester, 2021). BC production is adding value to the economy
because in this process wastes and biomass residues can be
recycled and reused as secondary resources (Janu et al., 2021).

TABLE 5 | Advantages and disadvantage of graphene materials (Catania et al., 2021).

Advantage Disadvantage

Graphene Good control of functionalization High production cost
Small-scale production

GO Water dispersibility Poor control of functionalization after preparation
Polar functionalization
Cheap
Easy to use

rGO Lower price compared to graphene High production cost
Good control of functionalization
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Moreover, BC is carbon negative (Glaser et al., 2009) and its
production and application feeds directly into the circular and
sustainable economy (Bolognesi et al., 2021). In comparison
to activated carbon, BC can be obtained from various types of
resources requiring less production energy (Madadi and
Bester, 2021). Also, in contrast to activated carbon, BC
production is a chemical-free process (Frišták et al., 2018;

Madadi and Bester, 2021). The existence of large numbers
of polyaromatic carbon groups on BC surfaces with
abundant functional groups (carboxyl and hydroxyl) makes
it an efficient and low-cost support for immobilization
(Komkiene and Baltrenaite, 2016; Kong et al., 2017; Tong
et al., 2019). Surface area, existence of functional groups with
affinity to laccase and pore size are the crucial parameters

TABLE 6 | Kinetic parameters related to different immobilization techniques and carriers used.

Laccase strain Immobilization technique/
carrier

Substrate
specificity

Vmax μM/min Km (mM) Kcat (μmol
s−1 g−1)

kcat/Km (L
s−1 g−1)

References

Genetically
modified
Aspergillus sp.

Covalent bond/graphene oxide
nanosheets

ABTS 45.88 ± 4.3 1.16 ± 0.07 82.36 ± 6.7 0.07 ± 0.005 Kashefi et al. (2019)

Free enzyme 62.11 ± 3.8 0.71 ± 0.06 103.52 ± 4.4 0.14 ± 0.01

Non specified Covalent immobilization on Zeolite
nanoparticles

Direct Red 23 3270 ± 103 70.308 ±
4.29a

Mahmoodi and
Saffar-Dastgerdi, (2020)

Covalent immobilization on
Graphite oxide-zeolite
nanocomposites

7580 ± 130 118.702 ±
34.30a

Coprinus comatus Adsorption on Maple biochar ABTS 2.68 Li et al. (2018)
Free enzyme 0.223

T. versicolor Covalent immobilization on biochar Catechol 38 ± 2 0.077 ±
0.012

0.045 ±
0.002

0.058 ±
0.001

Zhang and Hay, (2020)

Recombinant E. coli strain
expressing B. subtilis

44 ± 3 0.096 ±
0.013

0.057 ±
0.003

0.059 ±
0.005

Free laccase 43 ± 3 0.072 ±
0.011

0.053 ±
0.003

7.4 × 10–2 ±
6.0 × 10–5

Ganoderma
cupreum

Covalent immobilization on silica ABTS 358 0.5 Gahlout et al. (2017)
Free laccase 1234 0.19

T. versicolor Covalent immobilization on
graphene oxide/CuFe2O4

nanocomposite

ABTS 26 1.8 Rouhani et al. (2018)

Free laccase 56 1.3

B. subtilis Adsorption on magnetic carbon
nanocarriers

9.72 0.09 Zhang et al. (2020a)

Free laccase 8.51 0.11

T. versicolor Covalent immobilization on silica-
chitosan support

ABTS 0.0034 0.008 Girelli et al. (2020)

Free laccase 0.041

M. thermophila Covalent immobilization on poly
(glycidyl methacrylate)
microspheres

ABTS 395.1 ± 25.6 7.3 ± 1.2 658.51 90.21 Vera et al. (2020)
T. versicolor 110.2 ± 5.3 2.5 ± 0.5 146.95 58.15
Aspergillus sp. 165.1 ± 9.2 5.4 ± 0.8 302.64 55.59

T. versicolor Covalent immobilization of laccase
Fe3O4@SiO2@Kit-6 magnetite
nanoparticles

ABTS 39.59 μmol/
g/min

345.37 Amin et al. (2018)

Free laccase 121.25 μmol/
g/min

211.13

T. versicolor Covalent immobilization on
magnetic silica microbeads

ABTS 64.3 ± 6.7 134.6 ± 6.7 2.10 ± 0.11 Arca-Ramos et al.
(2016)

Free laccase 38.5 ± 3.1 153.7 ± 1.3 4.00 ± 0.29

B. subtilis copper-Trimesic acid framework 89.398 0.159 562.251 Zhang et al. (2020b)
Free Laccase 5.417 0.108 50.157

aMol.
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affecting laccase immobilization on BC (Madadi and Bester,
2021). BCs with high surface area, activated sites, and the
proper porous structure can be considered as a cost-effective
candidate compared to activated carbons for enzyme
immobilization (Madadi and Bester, 2021). The physical
and chemical properties of BC are highly dependent on the

feedstock and conditions of production (Barroso Bogeat,
2021; Madadi and Bester, 2021).

Feedstock Composition
BC sources can be divided into two categories, i.e., BCs produced
from lignocellulosic materials and BCs produced from non-

TABLE 7 | Removal of trace organic contaminants by immobilized laccase.

Laccase strain Immobilization technique/carrier Treatment media Removal efficiency References

Aspergillus sp. Covalent immobilization on peanut shell Isoproturon, Atrazine, Prometryn,
Mefenacet, Penoxsulam, Nitenpyram,
Prochloraz, Pyrazosulfuron-Ethyl and
bensulfuron-methyl, in mixed solution

>54.5% in water in presence of
syringaldehyde

Chen et al. (2019)

20.9–92.9% in soil
Covalent immobilization in wheat straw >65.9% in water in presence of

syringaldehyde
14.7–92.0% in soil

Genetically
modified A.
oryzae

Enzyme coupled with granular activated
carbon (GAC)

Carbamazepine 52% carbamazepine Nguyen et al.
(2014)Diclofenac 63% diclofenac

Sulfamethoxazole 58% sulfamethoxazole
Atrazine 75% atrazine

Free enzyme 10% carbamazepine
21% diclofenac
9% sulfamethoxazole
14% atrazine

M. thermophila
and P. eryngii

Covalent immobilization on Stevensite
and biochar

Synthetic wastewater containing
oxytetracycline tetracycline
chlortetracycline

100% removal in presence of ABTS as
mediator

García-Morales
et al. (2018)

Synthetic wastewater containing
sulfathiazole sulfadiazine

100% sulfathiazole removal
54% sulfadiazine removal in presence of
ABTS

T. versicolor Covalent immobilization on biochar 2–4 dichlorophenol contaminated soil 64.6% removal Wang et al. (2021a)
free enzyme 44.4% removal

B. subtilis Adsorption on magnetic carbon
nanocarriers

Synthetic wastewater containing
Bisphenol A

100% removal Zhang et al.
(2020a)

Free enzyme 62.70% removal

M. thermophila Covalent immobilization on
functionalized multiwalled carbon
nanotubes

Reactive Black 5 (RB5) decolorization 84.26% decolorization in presence of 1-
hydroxybenzotriazole as mediator

Othman et al.
(2016)

T. versicolor Covalent immobilization onto micro-
biochar

Diclofenac in wastewater 100% removal Lonappan et al.
(2018b)

T. versicolor physical absorption (HMCs-Lac) and
covalent binding on hollow mesoporous
carbon spheres (HMCs) and amino-
functionalized

Synthetic wastewater containing TCH
and CPH

93.8, 97.6, and 99.1% TCH removal for
HMCs-Lac, HMCs-NH2-Lac and HMCs-
NH2-GTA-Lac in presence of
syringaldehyde

Shao et al. (2019)

HMCs-NH2-Lac and HMCs-NH2-
GTA-Lac

98.1, 99.4, and 99.2% THC removal for
HMCs-Lac, HMCs-NH2-Lac and HMCs-
NH2-GTA-Lac in presence of 1-
hydroxybenzotriazole

T. versicolor immobilization on to acrylate
microbeads

Synthetic wastewater containing
Methylene Blue dye (MB) and Carbaryl
pesticide (CP)

100% removal of MB and CP in presence of
acetosyringone as mediator

Bayramoglu and
Arica, (2019)

Pycnoporus
sanguineus

Covalent immobilization on titania
nanoparticles functionalized with
APTES

Acetaminophen (ACE) and
diclofenac (DCF)

68% DCF after 8 h García-Morales
et al. (2018)90% ACE after 2 h

T. hirsuta Entrappment in alginate beads Carbamazepine and acetaminophen in
binary solution

40% CBZ Hachi et al. (2017)
70% ACE
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lignocellulosic materials (Stella Mary et al., 2016; Karim et al.,
2019). Lignocellulosic biochars can be divided into three different
subcategories namely: wood (hardwood or softwood), crop waste,
and grass and leaves (Ippolito et al., 2020). Non-lignocellulosic
biochars mainly come from sewage sludge, manure, and algae
(Ippolito et al., 2020; Pandey et al., 2020). From lignocellulosic
sources, corn, wheat straw, and rice/husk straw are commonly
used (Ippolito et al., 2020). Regarding non-lignocellulosic sources
poultry, pig, and cattle manure are the most common sources for
biochar production (Ippolito et al., 2020). Feedstock significantly
affect the carbon content, surface area, and functional groups of
final products (Novak et al., 2019). Normally carbon content is
proportionally related to biomass lignin content. Biochars
produced from wood feedstock demonstrates higher carbon
content compared to other sources (Wang et al., 2016).
Biochars produced from manure normally have higher
content of N, S, and P (Ippolito et al., 2020). In the terms
of surface area, lignocellulosic biochars have higher surface
and among different sources, wood-based biochar represent
higher surface area (Lehmann and Joseph, 2009; Weber and
Quicker, 2018). Biochar produced from manure usually have
low surface area due to structural cracking or micropore
blockage (Ahmad et al., 2014; Ippolito et al., 2017).
Regarding functional groups, normally lignocellulosic
biochars exhibit content of hydroxyl and carboxyl bonds
on their surface (Pandey et al., 2020). However, manure-
based biochars demonstrate amine groups on their
structures (Leng et al., 2019). The amine content on
biochars obtained from different biomasses is followed the
pattern in order of wood biochars<crop biochars<grass
biochars<manure biochars (Ippolito et al., 2020).

Pyrolysis Type
There are two kinds of pyrolysis, slow and fast. During slow
pyrolysis, low temperature heating rate (0.01–2 Cs−1) would be
implemented (Sohi et al., 2009). However, temperature heating
rate would be higher than 2°Cs−1 in fast pyrolysis. Pyrolysis type
would affect surface area and average particle size (Ippolito et al.,
2020). Biochar produced through fast pyrolysis usually have
higher surface area compared to biochars produced with slow
pyrolysis; however, fast pyrolysis biochars demonstrate lower
average particle size compared to slow pyrolysis biochars
(Asadullah et al., 2010; Qambrani et al., 2017).

Pyrolysis Temperature
Temperature is considered as a significant parameter that affects
biochar physiochemical properties. Biochar porosity and surface
area would crucially change by pyrolysis temperature variation.
Generally, at higher temperature, larger pore volume and surface
area would be expected (Mendonça et al., 2017; Weber and
Quicker, 2018). Pyrolysis temperature could also affect the
content of functional groups and aromatic structure of
biochar. Biochar produced at temperature above 500°C
demonstrate lower amount of O- and H-containing functional
groups (Janu et al., 2021). However, biochars produced below
500°C exhibits higher O- containing functional groups (Janu
et al., 2021). For instance, Li X. et al. (2013) studied how

variation in pyrolysis temperature could affect biochar
properties. The obtained results from two-dimensional (2D)
13C nuclear magnetic resonance (NMR) demonstrated the
lower aromaticity ratio (H/C) and lower polarity (O/C and
(O+N)/C ratios. This could happen because at higher
temperature, the carbon content would increase while H, N,
and O contents would decrease (Li X. et al., 2013).

Biochar Engineering
BC engineering is identified as a procedure to manipulate BC
properties to enhance its surface area, porosity and the content of
functional groups. BC could be engineered through physical and
chemical modification procedures.

Physical Activation
In the physical activation approach, no chemical agents are
implemented, and this methodology is considered as an
economical and simple approach (Rajapaksha et al., 2016).
Physical activation of biochar involves the use of gases such
steam, CO2, and ozone at temperatures above 700°C (Jimenez-
Cordero et al., 2015; Shen et al., 2015; Shim et al., 2015). This
modification can be summarized into two steps: first biochar
surface area is increased through modification of its unstructured
parts and second its crystalline-C formation is improved (Jung
and Kim, 2014, 2014; Cha et al., 2016). Park et al. (2016) studied
the effect of steam modification on BC surface. In this study BC
was produced from P. tenera at 500°C and steam modification
was carried out at 700°C for 1 h. The results confirmed that while
the surface area of untreated BC was close to zero, that of treated
BC increased to 22 m2 g−1 (Park et al., 2016).

Chemical Activation
During chemical modification, BC is mixed with a chemical agent
and through dehydration and oxidation, its properties can change
(Xiang et al., 2020). Despite its drawback such as the high cost of
chemicals, and inability to recover and reuse such chemical
agents, this method has a higher efficiency compared to
physical activation (Cha et al., 2016). Chemical treatment of
BC is achieved using strong acids such as H3PO4, HCl, and
H2SO4, and strong bases such as KOH, NaOH, and NH3 (Cha
et al., 2016; Zhang C. et al., 2020; Pandey et al., 2020).

Acid treatments normally promote the emergence of oxygen-
containing functional groups together with increasing surface
area (Rajapaksha et al., 2016). In a study of covalent laccase
immobilization onmodified BC Lonappan et al. (2018b) used raw
BC from pinewood, pig manure, and almond shell. Through BC
modification with citric acid, more carboxylic groups were
observed on its surface compared to untreated BC (Lonappan
et al., 2018b).

BC alkalinization enhances non-polarity with increasing
surface area and functional group content. Jin et al., 2014)
studied the effects of KOH on the BC produced from
municipal solid wastes (Jin et al., 2014). FTIR analysis
demonstrated that the number of hydroxyl and carboxyl
groups on the surface of treated BC was increased (Jin et al.,
2014). In addition, surface area was increased from 14.4 m2 g−1

for raw BC to 49.1 m2 g−1 for treated BC (Jin et al., 2014).
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Specific Properties of Biochar for
Immobilization of Enzymes
Previously, several studies were carried out on the “carbon
negative” biochar to be used as a sustainable and green solid
support for the immobilization of laccase (Kuzyakov et al., 2009).
Porosity, existence of functional groups, stability, and surface area
are important BC properties which could affect immobilization.
Previous studies have been conducted to illustrate how feedstock,
activation processes, and pyrolysis temperature could affect these
properties. For instance, Jin et al. (2014) investigated the effect of
chemical activation on BC produced frommunicipal solid wastes.
The obtained results confirmed that KOH activation would
increase the surface area from 14.4 m2 g−1 to 49 m2 g−1 (Jin
et al., 2014). In another study, Kloss et al. (2012) studied how
feedstock could affect surface area. The results illustrated that BCs
derived from wood biomass often have higher surface area (Kloss
et al., 2012). Furthermore, Zhao L. et al. (2017) studied the effect
of pyrolysis temperature on physicochemical properties of
produced BCs from apple tree branches. The final results
explained that surface area increases with increasing pyrolysis
temperature (Zhao S.-X. et al., 2017). More details on BC
properties are given in the review by Madadi and Bester (2021).

As a waste management alternative, immobilization of
enzymes on BC paves a sustainable pathway in environmental
management. However, the disposal/management of used
catalyst (i.e. enzyme immobilized on BC) is a potential
concern. Despite the environmental friendliness and
effectiveness of the BC-laccase catalyst, the disposal of the
used catalyst must be carried out properly otherwise the used
catalyst itself will end as another potential “emerging
contaminant.” Consequently, the used catalyst could be
valorized as a fertilizer in soil given the proved ability of BC
in fertilizing agricultural lands (Ding et al., 2016). The unused
enzyme present on the BC surface can further eliminate pesticides
and other organic contaminants present in the soil. In addition,
the accumulated nutrients on BC after its application in
wastewater treatment (given that wastewater also contains
several nutrients (Kaetzl et al., 2020)) will reach the soil as
well. Therefore, re-using already utilized BC-enzyme catalyst
after wastewater applications is bound to have a considerable
positive effect as a soil amendment.

On the other hand, these BC-based biocatalysts could adsorb
organic, inorganic and biological contaminants that could have
negative impacts on the yield or the crop quality. Thus, the
potential impacts as well as the fate of the adsorbed contaminants
at the surface of BC should be further studied. Nonetheless,
certain contaminants could be further degraded by the
residual laccase present on the biochar surface.

CONCLUSIONS, CURRENT RESEARCH
CHALLENGES AND FUTURE
PERSPECTIVES
This review provides a survey on the recent developments of
laccase production, immobilization techniques, and application
of carbon-based materials as supports.

Low productivity, low stability and limited reusability are the
major concerns which challenge the industrial production and
application of laccase. Although past studies have concentrated
on enhanced laccase production through various methods and
then through its immobilization, concerns regarding the cost-
effectiveness of these approaches still exist and raise questions
regarding their industrial feasibility.

• In the recent past, co-culture has been studied as an effective
strategy for the enhanced production of laccase (Chan-
Cupul et al., 2016). However, to be a successful process
this approach requires the compatible coexistence of the
different microbial species involved. Optimization of this
process is often challenging. More studies are required to
further elucidate the complex pathways behind the co-
culture approach for laccase production.

• Inducers were previously proven to be a factor for the
enhanced production of laccase if added at the correct
concentration. Inducers such as Cu, 2,5-xylidine,
guaiacol, etc. enhance laccase production and are usually
added in the form of a more complex medium ingredient
containing these elements/chemicals. However, addition of
expensive chemicals may endanger process economics.
Thus, waste/residual materials/inexpensive materials such
as biochar can be an economically attractive alternative for
industrial production. Nevertheless, it has to be noted that
the process must be optimized on the basis of the inducer
concentration in the residual materials. In addition, the
choice of these “residual material-based” inducers must be
made wisely as the presence of potential toxic molecules can
inhibit fungal growth and thus laccase production.

• For a given species, the culture media composition is one of
the key determining factors which dictates the overall
productivity of the process. This is also the most cost-
intensive factor (Alessandrello and Vullo, 2016). Thus,
inexpensive “culture media alternatives” could
significantly reduce the overall cost of the process. In the
recent past, the quest for inexpensive and sustainable
alternatives for growth media/substrates has resulted in
various waste/residual materials such as olive tree saw
dust, olive pomace, apple pomace, etc. However,
fermentation using these materials must be carried out
under solid state conditions for which process control
such as maintaining pH, mixing and aeration cannot be
easily obtained. On the other hand, for liquid residual
materials, submerged fermentations can be carried out
and thus adequate process control can be implemented.
Research in this domain is minimal and further studies in
these directions will improve the sustainability and cost-
effectiveness of the overall process at industrial scale.

• Future studies should be carried out in the direction of
concomitant enzyme production and immobilization.
Instead of completing each procedure separately, the
development of procedure using feedstocks which can
satisfy both enzyme production enhancement and
efficient immobilization would be cost-effective and
efficient.
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Free laccase is comparatively unstable and expensive and thus
it has to be immobilized/cross linked for real life applications.
Immobilization of laccase over solid supports could significantly
enhance the capability of laccase to maintain its activity over time
and its resilience to operational conditions (such as temperature,
pH, and exposure to different chemical agents) (Shakerian et al.,
2020). Various immobilization methods such as entrapment,
adsorptive and covalent immobilization and cross linking have
been employed and extensively studied in the past. For immobilization
supports the particle size, specific surface area, porosity, mechanical
properties and surface functional groups play important roles in the
extent of immobilization. Various immobilization supports were
studied in the past and application of carbonceous materials is
interesting owing to their organic/renewable origin and nature. In
particularly, activated carbon, carbon nano tubes, and graphene are
well known immobilization supports and which have been used
frequently for laccase immobilization.

The application of biochar as an immobilization support for
laccase is under-explored and this review is an attempt to
summarize the existing studies and further explore biochar’s
potential as an immobilization support for laccase. Because of
its carbon negative nature (Glaser et al., 2009) application of
biochar can be a further step towards sustainability and
integration into the circular economy. As previously described,
particle size, specific surface area, porosity, mechanical properties
and surface functional groups play important roles in the extent
of the immobilization. For biochar these properties are often
dictated by feedstock composition and method of production.
Thus, properly designed and engineered biochar materials can
result in excellent immobilization/loading of laccase on their
surface. Moreover, biochar activation can be an effective tool
for enhanced laccase loading/immobilization.

In summary, the following gaps in research, technological
challenges and perspectives for future studies may be noted:

• The application of BC itself as a substrate for fungi can be
interesting and challenging at the same time. The limiting
factors here may reflect nutrient deficiencies and presence of
growth inhibitors. However, further research in this

direction could be profitable, given the sustainable and
cost-effective nature of BC.

• The minimal cost of BC production and its special features
such as the existence of functional groups, porosity, and
surface area are key positive factors in considering BC as an
immobilization support. However, raw BC is not sufficiently
diversified in terms of functional groups. Although a
number of past studies have focused on BC
functionalization, future work should be directed towards
increasing amino groups on the BC surface to enhance the
potential of chemical immobilization of laccase and similar
enzymes.

• While glutaraldehyde has been identified as a common and
efficient cross-linker for chemical immobilization, it can be
harmful for the environment or exposed workers.
Therefore, future studies should be concentrated to
identify green and environmental friendly alternatives.

• BC is rich with many molecules which can act as potential
mediators for laccase-based elimination of ECs. Thus, BC-
immobilized laccase has already the potential for enhanced
elimination of ECs. In addition, further engineering BC with
functional groups which can act as mediators for laccase-
based elimination of ECs can be a promising area for further
research.
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